1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
|
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# 9: Nuclear Reactions"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example number 1, Page number 272"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"number of nuclei produced per second is 1.66 *10**5\n",
"answer given in the book is wrong\n"
]
}
],
"source": [
"#importing modules\n",
"import math\n",
"from __future__ import division\n",
"\n",
"#Variable declaration \n",
"rho=19.3*10**3; #density(kg/m**3)\n",
"N=6.02*10**23; #avagadro number\n",
"M=197; #molecular weight\n",
"a=2*10**12; #neutrons/m**2 sec\n",
"A=5*10**-4; #area(m**2)\n",
"sigma=94*10**-28; #reaction cross section(m**2)\n",
"t=0.3*10**-3; #thickness(m)\n",
"\n",
"#Calculations\n",
"n=rho*N/M; #number of nuclei per unit volume(per m**3)\n",
"N0=a*A; #number of neutrons hitting the target\n",
"N0_N=N0*(1-math.exp(-n*sigma*t)); #number of nuclei produced per second\n",
"\n",
"#Result\n",
"print \"number of nuclei produced per second is\",round(N0_N/10**5,2),\"*10**5\"\n",
"print \"answer given in the book is wrong\""
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example number 2, Page number 275"
]
},
{
"cell_type": "code",
"execution_count": 20,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"energy of neutron is 19.768 MeV\n",
"energy of Be is 5.007 MeV\n",
"angle of recoil of Be atom is 44.855 or 45 degrees\n"
]
}
],
"source": [
"#importing modules\n",
"import math\n",
"from __future__ import division\n",
"\n",
"#Variable declaration \n",
"M1=2.01472; #molecular mass of H(amu)\n",
"M0=7.01784; #molecular mass of Li(amu)\n",
"M2=8.00776; #molecular mass of Be(amu)\n",
"M3=1.00893; #molecular mass of n(amu)\n",
"Ek1=10; #energy(MeV)\n",
"\n",
"#Calculations\n",
"M1M0=M1+M0; #mass of interacting particles(amu)\n",
"M2M3=M2+M3; #mass of product particles(amu)\n",
"Q=(M1M0-M2M3)*931; #decrease in mass(MeV)\n",
"Ek3=(Q+(Ek1*(1-(M1/M2))))/(1+(M3/M2)); #energy of neutron(MeV)\n",
"Ek2=Q+Ek1-Ek3; #energy of Be(MeV)\n",
"phi=math.atan(math.sqrt(Ek3*M3/(Ek1*M1))); #angle of recoil of Be atom(rad)\n",
"phi=phi*180/math.pi; #angle of recoil of Be atom(degrees)\n",
"\n",
"#Result\n",
"print \"energy of neutron is\",round(Ek3,3),\"MeV\" \n",
"print \"energy of Be is\",round(Ek2,3),\"MeV\" \n",
"print \"angle of recoil of Be atom is\",round(phi,3),\"or\",int(round(phi)),\"degrees\""
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example number 3, Page number 277"
]
},
{
"cell_type": "code",
"execution_count": 22,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"energy of emitted protons is 5.3 MeV\n"
]
}
],
"source": [
"#importing modules\n",
"import math\n",
"from __future__ import division\n",
"\n",
"#Variable declaration \n",
"Q=-3.9; #Q value of reaction(MeV)\n",
"M1=1.0087; #molecular mass of incident neutron(amu)\n",
"M2=18.99; #molecular mass of O nucleus(amu)\n",
"M3=1.0078; #molecular mass of proton(amu)\n",
"Ek1=10; #energy of incident neutron(MeV)\n",
"\n",
"#Calculations\n",
"x=1-(M1/M2);\n",
"y=1+(M3/M2);\n",
"Ek3=(Q+Ek1*x)/y; #energy of emitted protons(MeV)\n",
"\n",
"#Result\n",
"print \"energy of emitted protons is\",round(Ek3,1),\"MeV\""
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 2",
"language": "python",
"name": "python2"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 2
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython2",
"version": "2.7.11"
}
},
"nbformat": 4,
"nbformat_minor": 0
}
|