1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
|
{
"metadata": {
"name": "",
"signature": "sha256:52c2219fbd43444e9f10668aa35432419392cd1b075ad84ee07b92a8e31571e1"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Chapter 9 - Hydraulic Turbines"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex 9.1 Page 406"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from __future__ import division\n",
"\n",
"#input data\n",
"H=91.5#Head of the pelton wheel at inlet in m\n",
"Q=0.04#Discharge of the pelton wheel in m**3/s\n",
"N=720#Rotating speed of the wheel in rpm\n",
"Cv=0.98#Velocity coefficient of the nozzle \n",
"n0=0.8#Efficiency of the wheel\n",
"UC1=0.46#Ratio of bucket speed to jet speed\n",
"g=9.81#Acceleration due to gravity in m/s**2\n",
"dw=1000#Density of water in kg/m**3\n",
"\n",
"#calculations\n",
"P=dw*g*H*Q*n0*10**-3#Power developed in kw\n",
"C1=Cv*(2*g*H)**(1/2)#Jet speed in m/s\n",
"U=UC1*C1#Wheel speed in m/s\n",
"w=(2*3.1415*N)/60#Angular velocity of the wheel in rad/s\n",
"D=(2*U)/w#Diameter of the wheel in m\n",
"A=Q/C1#Jet area in m**2\n",
"d=((4*A)/3.1415)**(1/2)#Jet diameter in m\n",
"Dd=D/d#Wheel to jet diameter ratio at centre line of the buckets\n",
"Nsp=((1/(g*H))**(5/4))*(((P*10**3)/dw)**(1/2))*(N/60)*2*3.1415#Dimensionless power specific speed in rad\n",
"\n",
"#output\n",
"print '(a)Wheel-to-jet diameter ratio at the centre line of the buckets is %3.1f \\n(b)\\n The jet speed of the wheel is %3.2f m/s\\n Wheel speed is %3.1f m/s\\n(c)Dimensionless power specific speed is %3.3f rad'%(Dd,C1,U,Nsp)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"(a)Wheel-to-jet diameter ratio at the centre line of the buckets is 14.5 \n",
"(b)\n",
" The jet speed of the wheel is 41.52 m/s\n",
" Wheel speed is 19.1 m/s\n",
"(c)Dimensionless power specific speed is 0.082 rad\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex 9.2 Page 407"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#input data\n",
"H=500#Head over which pelton wheel works in m\n",
"P=13000#Power which pelton wheel produces in kW\n",
"N=430#Speed of operation of pelton wheel in rpm\n",
"n0=0.85#Efficiency of the wheel \n",
"g=9.81#Acceleration due to gravity in m/s**2\n",
"dw=1000#Density of water in kg/m**3\n",
"Cv=0.98#Veloity coefficient\n",
"UC=0.46#Speed ratio\n",
"\n",
"#calculations\n",
"Q=(P*10**3)/(dw*g*H*n0)#Discharge of the turbine in m**3/s\n",
"C=Cv*(2*g*H)**(1/2)#Jet speed in m/s\n",
"U=UC*C#Wheel speed in m/s\n",
"D=(U*60)/(3.1415*N)#Wheel diameter in m\n",
"d=((Q/C)*(4/3.1415))**(1/2)#Diameter of the nozzle in m\n",
"\n",
"#output\n",
"print '(a)Discharge of the turbine is %3.2f m**3/s\\n(b)Diameter of the wheel is %3.2f m\\n(c)Diameter of the nozzle is %3.3f m'%(Q,D,d)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"(a)Discharge of the turbine is 3.12 m**3/s\n",
"(b)Diameter of the wheel is 1.98 m\n",
"(c)Diameter of the nozzle is 0.202 m\n"
]
}
],
"prompt_number": 2
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex 9.3 Page 409"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from math import pi, cos\n",
"#input data\n",
"D=0.8#Mean diameter of the bucket in m\n",
"N=1000#Running speed of the wheel in rpm\n",
"H=400#Net head on the pelton wheel in m\n",
"Q=0.150#Discharge through the nozzle in m**3/s\n",
"g=9.81#Acceleration due to gravity in m/s**2\n",
"UC1=0.46#Ratio of bucket speed to jet speed\n",
"dw=1000#Density of water in kg/m**3\n",
"a=15#Side clearance angle in degree\n",
"\n",
"#calculations\n",
"m=dw*Q#Mass flow rate through the nozzle in kg/s\n",
"U=(3.1415*D*N)/60#Wheel speed in m/s\n",
"C1=U/UC1#Jet speed in m/s\n",
"P=(1/2)*m*C1**2*(10**-3)#Power available at the nozzle in kW\n",
"W1=C1-U#Relative inlet fluid velocity in m/s\n",
"W2=W1#Relative exit fluid velocity in m/s assuming no loss of relative velocity\n",
"Wx2=W2*cos(a*pi/180)#Exit whirl velocity component in m/s\n",
"Cx2=Wx2-U#Absolute exit whirl velocity in m/s\n",
"Cx1=C1#Absolute inlet whirl velocity in m/s\n",
"Wm=U*(Cx1+Cx2)#Work done per unit mass flow rate in W/(kg/s)\n",
"nH=(Wm/g)/((C1**2/2)/g)#Hydrualic effciency \n",
"\n",
"#output\n",
"print '(a)Power available at the nozzle is %3.3f kW\\n(b)Hydraulic efficiency is %.1f %%'%(P,nH*100)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"(a)Power available at the nozzle is 621.867 kW\n",
"(b)Hydraulic efficiency is 97.7 %\n"
]
}
],
"prompt_number": 3
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex 9.4 Page 409"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#input data\n",
"n=2#Number of jets \n",
"SP=20000*0.736#Shaft power of the wheel in kW\n",
"D=0.15#Diameter of each jet in m\n",
"H=500#Net head on the turbine in m\n",
"Cv=1.0#Velocity coefficient\n",
"g=9.81#Acceleration due to gravity in m/s**2\n",
"d=1000#Density of water in kg/m**3\n",
"\n",
"#calculations\n",
"C1=Cv*(2*g*H)**(1/2)#Velocity of each jet in m/s\n",
"A=(3.1415/4)*D**2#Area of each jet in m**2\n",
"Qj=A*C1#Discharge of each jet in m**3/s\n",
"Q=2*Qj#Total discharge in m**3/s\n",
"P=d*g*Q*H*10**-3#Power at turbine inlet in kW\n",
"no=SP/P#Overall efficiency\n",
"\n",
"#output\n",
"print 'The overall efficiency of the turbine is %0.1f %%'%(no*100)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The overall efficiency of the turbine is 85.7 %\n"
]
}
],
"prompt_number": 4
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex 9.5 Page 410"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#input data\n",
"a=170#Jet deflection angle in degree\n",
"K=1-0.12#Percentage of effective relative velocity after considering friction\n",
"UC1=0.47#Ratio of bucket speed to jet speed\n",
"GH=600#Gross head on the wheel in m\n",
"P=1250#Actual power developed by the wheel in kW\n",
"Hl=48#Head loss in nozzle due to pipe friction in m\n",
"D=0.9#Bucket circle diameter of the wheel in m\n",
"ATnH=0.9#The ratio between actual and calculated hydraulic efficiency\n",
"g=9.81#Acceleration due to gravity in m/s**2\n",
"dw=1000#Density of water in kg/m**3\n",
"Cv=0.98#Velocity coefficient\n",
"\n",
"#calculations\n",
"H=GH-Hl#Net head after loses at entry to nozzle in m\n",
"C1=Cv*(2*g*H)**(1/2)#Jet speed in m/s\n",
"U=UC1*C1#Wheel bucket speed in m/s\n",
"N=(U*60)/(3.1415*D)#Wheel rotational speed in rpm\n",
"Wm=U*((C1-U)*(1-(K*cos(a*pi/180))))#Work done per unit mass flow rate in W/(kg/s)\n",
"Tnh=Wm/(C1**2/2)#Theoretical hydraulic efficiency \n",
"Anh=ATnH*Tnh#Actual hydrualic effficiency\n",
"m2=(P*10**3)/(Anh*(1/2)*C1**2)#Mass flow rate for both the nozzles in kg/s\n",
"m=m2/2#Mass flow rate of each nozzle in kg/s\n",
"d=((4*m)/(dw*C1*3.1415))**(1/2)#Nozzle diameter in m\n",
"\n",
"#output\n",
"print '(a)theoretical hydraulic efficiency is %3.2f \\n(b)Wheel rotational speed is %3.f rpm\\n(c)diameter of the nozzle is %0.1f mm'%(Tnh,N,d*1000)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"(a)theoretical hydraulic efficiency is 0.93 \n",
"(b)Wheel rotational speed is 1017 rpm\n",
"(c)diameter of the nozzle is 42.3 mm\n"
]
}
],
"prompt_number": 5
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex 9.6 Page 413"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#input data\n",
"H=60#Head on the pelton wheel in m\n",
"N=200#Speed of the pelton wheel in rpm\n",
"P=100#Power developed by the pelton wheel in kW\n",
"Cv=0.98#Velocity coefficient\n",
"UC1=0.45#Speed ratio \n",
"n0=0.85#Overall efficiency of the wheel\n",
"g=9.81#Acceleration due to gravity in m/s**2\n",
"dw=1000#Density of water in kg/m**3\n",
"\n",
"#calculations\n",
"C1=Cv*(2*g*H)**(1/2)#Velocity of the jet in m/s\n",
"U=UC1*(2*g*H)**(1/2)#Velocity of the buckets in m/s\n",
"D=(60*U)/(3.1415*N)#Diameter of the wheel in m\n",
"Q=(P*10**3)/(dw*g*H*n0)#Discharge of the wheel in m**3/s\n",
"d=((4*Q)/(3.1415*C1))**(1/2)#Diameter of the jet in m\n",
"Z=15+(D/(2*d))+1#Number of buckets rounding off to nearest decimal as the final answer has a decimal value less than 0.5\n",
"w=5*d#Width of the buckets in m\n",
"de=1.2*d#Depth of the buckets in m\n",
"\n",
"#output\n",
"print '(a)Diameter of the wheel is %3.2f m\\n(b)Diameter of the jet is %3.3f m\\n(c)Number of buckets is %3.f\\n(d)Size of the buckets is \\n width of the bucket is %3.3f m\\n Depth of the bucket is %3.3f m'%(D,d,Z,w,de)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"(a)Diameter of the wheel is 1.47 m\n",
"(b)Diameter of the jet is 0.087 m\n",
"(c)Number of buckets is 24\n",
"(d)Size of the buckets is \n",
" width of the bucket is 0.435 m\n",
" Depth of the bucket is 0.104 m\n"
]
}
],
"prompt_number": 6
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex 9.7 Page 414"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#input data\n",
"N=300#Running speed of the wheel in rpm\n",
"H=150#OPerating head of the wheel in m\n",
"dD=1/12#Ratio of nozzle diameter to wheel diameter\n",
"Cv=0.98#Velocity coefficient\n",
"UC1=0.46#Speed ratio\n",
"g=9.81#Acceleration due to gravity in m/s**2\n",
"dw=1000#Density of water in kg/m**3\n",
"n0=0.84#Overall efficiency\n",
"\n",
"#calculations\n",
"C1=Cv*(2*g*H)**(1/2)#Velocity of jet in m/s\n",
"U=UC1*(2*g*H)**(1/2)#Velocity of the wheel in m/s\n",
"D=(60*U)/(3.14*N)#Diameter of the wheel in m\n",
"d=D*dD#Diameter of the jet in m\n",
"Q=(3.1415/4)*(d**2)*C1#Quantity of water required in m**3/s\n",
"Pa=dw*g*Q*H#Power available at the nozzle in kW\n",
"P=n0*Pa*10**-3#Power developed in kW\n",
"#output\n",
"print '(a)Diameter of the wheel is %3.2f m\\n(b)Diameter of the jet is %3.3f m\\n(c)Quantity of water required is %3.3f m**3/s\\n(d)Power developed is %3.1f kW'%(D,d,Q,P)\n",
"# Answer in the textbook is wrong."
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"(a)Diameter of the wheel is 1.59 m\n",
"(b)Diameter of the jet is 0.132 m\n",
"(c)Quantity of water required is 0.733 m**3/s\n",
"(d)Power developed is 905.5 kW\n"
]
}
],
"prompt_number": 7
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex 9.8 Page 415"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from math import tan, pi\n",
"#input data\n",
"N=1260#Rotational speed of the francis turbine in rpm\n",
"H=124#The net head in m\n",
"Q=0.5#Volume flow rate of the turbine in m**3/s\n",
"r1=0.6#Radius of the runner in m\n",
"b1=0.03#Height of the runner vanes at inlet in m\n",
"b11=72#Angle of inlet guide vanes in radial direction in degree\n",
"g=9.81#Acceleration due to gravity in m/s**2\n",
"dw=1000#Density of water in kg/m**3\n",
"Cx2=0#Absolute exit whirl velocity in m/s as flow is radial at outlet\n",
"\n",
"#calculations\n",
"m=dw*Q#Mass flow rate in kg/s\n",
"T1=-m*r1#Torque by the turbine in Nm in terms of Cx1\n",
"A=2*3.1415*r1*b1#Area at inlet in m**2\n",
"Cr1=Q/A#Inlet flow velocity in m/s\n",
"Cx1=Cr1*tan(b11*pi/180)#Absolute inlet whirl velocity in m/s\n",
"T=-T1*Cx1#Torque by water on the runner in Nm\n",
"w=(2*3.1415*N)/60#Angular velocity of the turbine in rad/s\n",
"W=T*w*10**-3#Power exerted in kW\n",
"nH=W*10**3/(dw*g*Q*H)#Hydraulic efficiency \n",
"\n",
"#output\n",
"print '(a)Torque by water on the runner is -%3.f Nm\\n(b)Power exerted is %3i kW\\n(c)Hydraulic efficiency is %0.1f %%'%(T,W,nH*100)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"(a)Torque by water on the runner is -4082 Nm\n",
"(b)Power exerted is 538 kW\n",
"(c)Hydraulic efficiency is 88.6 %\n"
]
}
],
"prompt_number": 8
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex 9.9 Page 416"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from math import atan, degrees\n",
"#input data\n",
"n0=0.74#Overall efficiency\n",
"H=5.5#Net head across the turbine in m\n",
"P=125#Required Power output in kW\n",
"N=230#Speed of the runner in rpm\n",
"nH=(1-0.18)#Hydraulic efficiency\n",
"g=9.81#Acceleration due to gravity in m/s**2\n",
"dw=1000#Density of water in kg/m**3\n",
"U1=0.97*(2*g*H)**(1/2)#Runner tangential velocity in m/s\n",
"Cr1=0.4*(2*g*H)**(1/2)#Flow velocity in m/s\n",
"\n",
"#calculations\n",
"Cx1=(nH*g*H)/U1#Absolute inlet whirl velocity in m/s as flow is radial at outlet Cx2=0 in m/s\n",
"a11=degrees(atan(Cr1/Cx1))#Inlet guide vane angle in degree\n",
"b11=180+degrees(atan(Cr1/(Cx1-U1)))#Angle of inlet guide vanes in radial direction in degree\n",
"D1=(U1*60)/(3.1415*N)#Runner inlet diameter in m\n",
"Q=(P*10**3)/(n0*dw*g*H)#Flow rate in m**3/s\n",
"b1=Q/(3.1415*D1*Cr1)#Height of runner in m\n",
"\n",
"#output\n",
"print '(a)Inlet guide vane angle is %3.1f degree\\n(b)Angle of inlet guide vanes in radial direction is %3.1f degree\\n(c)Runner inlet diameter is %3.3f m\\n(d)Height of runner is %3.3f m'%(a11,b11,D1,b1)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"(a)Inlet guide vane angle is 43.4 degree\n",
"(b)Angle of inlet guide vanes in radial direction is 143.8 degree\n",
"(c)Runner inlet diameter is 0.837 m\n",
"(d)Height of runner is 0.287 m\n"
]
}
],
"prompt_number": 9
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex 9.10 Page 418"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#input data\n",
"D=1.4#Diameter of the turbine in m\n",
"N=430#Speed of the turbine in rpm\n",
"Cr1=9.5#Flow velocity without shock at runner in m/s\n",
"C2=7#Absolute velocity at the exit without whirl in /s\n",
"dSPH=62#Difference between the sum of static and potential heads at entrance to runner and at exit from runner in m\n",
"W=12250#Power given to runner in kW\n",
"Q=12#Flow rate of water from the turbine in m**3/s\n",
"H=115#Net head from the turbine in m\n",
"g=9.81#Acceleration due to gravity in m/s**2\n",
"dw=1000#Density of water in kg/m**3\n",
"\n",
"#calculations\n",
"U1=(3.1415*D*N)/60#Runner tip speed in m/s\n",
"Cx1=(W*10**3)/(dw*Q*U1)#Absolute inlet velocity in m/s as flow is radial at outlet Cx2=0 in m/s as Cx2=0 as zero whirl at outlet\n",
"a1=degrees(atan(Cr1/Cx1))#Guide vane angle in degree\n",
"C1=(Cr1**2+Cx1**2)**(1/2)#Inlet velocity in m/s\n",
"b1=degrees(atan(Cr1/(Cx1-U1)))#Runner blade entry angle in degree\n",
"dHr=dSPH+(((C1**2)-(C2**2))/(2*g))-(U1*Cx1/g)#Loss of head in the runner in m\n",
"\n",
"#output\n",
"print '(a)\\n (1)Guide vane angle at inlet is %3.1f degree\\n (2)Inlet absolute velocity of water at entry to runner is %3.1f m/s\\n(b)Runner blade entry angle is %3.1f degree\\n(c)Total Loss of head in the runner is %3.2f m'%(a1,C1,b1,dHr)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"(a)\n",
" (1)Guide vane angle at inlet is 16.3 degree\n",
" (2)Inlet absolute velocity of water at entry to runner is 33.8 m/s\n",
"(b)Runner blade entry angle is 84.8 degree\n",
"(c)Total Loss of head in the runner is 13.50 m\n"
]
}
],
"prompt_number": 10
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex 9.11 Page 420"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from math import sin, tan, degrees\n",
"#input data\n",
"D1=0.9#External diameter of the turbine in m\n",
"D2=0.45#Internal diameter of the turbine in m\n",
"N=200#Speed of turbine running in rpm\n",
"b1=0.2#Width of turbine at inlet in m\n",
"Cr1=1.8#Velocity of flow through runner at inlet in m/s\n",
"Cr2=Cr1#Velocity of flow through runner at outlet in m/s\n",
"a11=10#Guide blade angle to the tangent of the wheel in degree\n",
"a22=90#Discharge angle at outlet of turbine in degree\n",
"g=9.81#Acceleration due to gravity in m/s**2\n",
"dw=1000#Density of water in kg/m**3\n",
"\n",
"#calculations\n",
"C1=Cr1/sin(a11*pi/180)#Absolute velocity of water at inlet of runner in m/s\n",
"Cx1=Cr1/tan(a11*pi/180)#Velocity of whirl at inlet in m/s\n",
"U1=(3.1415*D1*N)/60#Runner tip speed at inlet in m/s\n",
"Wx1=Cx1-U1#Inlet whirl velocity component in m/s\n",
"W1=(Wx1**2+Cr1**2)**(1/2)#Relative velocity at inlet in m/s\n",
"b11=degrees(atan(Cr1/Wx1))#Runner blade entry angle in degree\n",
"U2=(3.1415*D2*N)/60#Runner tip speed at exit in m/s\n",
"b22=degrees(atan(Cr2/U2))#Runner blade exit angle in degree\n",
"b2=D1*b1/D2#Width of runner at outlet in m\n",
"Q=3.1415*D1*b1*Cr1#Discharge of water in turbine in m**3/s\n",
"m=dw*Q#Mass of water flowing through runner per second in kg/s\n",
"V2=Cr2#Velocity of water at exit in m/s \n",
"H=(U1*Cx1/g)+(V2**2/(2*g))#Head at the turbine inlet in m\n",
"W=m*U1*Cx1*10**-3#Power developed in kW\n",
"nH=(U1*Cx1/(g*H))#Hydraulic efficiency\n",
"\n",
"#output\n",
"print '(a)Absolute velocity of water at inlet of runner is %3.3f m/s\\n(b)Velocity of whirl at inlet is %3.3f m/s\\n(c)Relative velocity at inlet is %3.3f m/s\\n(d)\\n Runner blade entry angle is %3.2f degree\\n Runner blade exit angle is %3.2f degree\\n(e)Width of runner at outlet is %3.1f m\\n(f)Mass of water flowing through runner per second is %3.f kg/s\\n(g)Head at the turbine inlet is %3.3f m\\n(h)Power developed is %3.3f kW\\n(i)Hydraulic efficiency is %0.2f %%'%(C1,Cx1,W1,b11,b22,b2,m,H,W,nH*100)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"(a)Absolute velocity of water at inlet of runner is 10.366 m/s\n",
"(b)Velocity of whirl at inlet is 10.208 m/s\n",
"(c)Relative velocity at inlet is 1.963 m/s\n",
"(d)\n",
" Runner blade entry angle is 66.47 degree\n",
" Runner blade exit angle is 20.91 degree\n",
"(e)Width of runner at outlet is 0.4 m\n",
"(f)Mass of water flowing through runner per second is 1018 kg/s\n",
"(g)Head at the turbine inlet is 9.972 m\n",
"(h)Power developed is 97.925 kW\n",
"(i)Hydraulic efficiency is 98.34 %\n"
]
}
],
"prompt_number": 11
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex 9.12 Page 423"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#input data\n",
"P=330#Power output from the turbine is kW\n",
"H=70#Head of operating turbine in m\n",
"N=750#Speed of the turbine in rpm\n",
"nH=0.94#Hydraulic efficiency\n",
"n0=0.85#Overall efficiency\n",
"FR=0.15#Flow ratio \n",
"BR=0.1#Breadth ratio\n",
"D1D2=2#Ratio inner and outer diameter of runner\n",
"g=9.81#Acceleration due to gravity in m/s**2\n",
"dw=1000#Density of water in kg/m**3\n",
"\n",
"#calculations\n",
"Cr1=FR*(2*g*H)**(1/2)#Flow velocity at inlet in m/s\n",
"Q=(P*10**3)/(dw*g*H*n0)#Discharge at outlet in m**3/s\n",
"D1=(Q/(nH*3.1415*BR*Cr1))**(1/2)#Runner inlet diameter in m\n",
"b1=BR*D1#Height of the runner vanes at inlet in m\n",
"U1=(3.1415*D1*N)/60#Runner tip speed at inlet in m/s\n",
"Cx1=(nH*g*H)/(U1)#Velocity of whirl at inlet in m/s\n",
"a11=degrees(atan(Cr1/Cx1))#Guide blade angle in degree\n",
"b11=degrees(atan(Cr1/(Cx1-U1)))#Runner vane angle at inlet in degree\n",
"D2=D1/D1D2#Runner outlet diameter in m\n",
"U2=(3.1415*D2*N)/60#Runner tip speed at outlet in m/s\n",
"Cr2=Cr1#Flow velocity at outlet in m/s\n",
"b22=degrees(atan(Cr2/U2))#Runner vane angle at outlet in degree\n",
"b2=D1*b1/D2#Width at outlet in m\n",
"\n",
"#output\n",
"print '(a)Flow velocity at inlet is %3.2f m/s\\n(b)Discharge at outlet is %3.3f m**3/s\\n(c)Runner inlet diameter is %3.3f m\\n(d)Height of the runner vanes at inlet is %3.4f m\\n(e)Guide blade angle is %3.2f degree\\n(f) Runner vane angle at inlet is %3.2f degree\\n Runner vane angle at outlet is %3.2f degree\\n(g)Runner outlet diameter is %3.4f m\\n(h)Width at outlet is %3.4f m\\n(i)Runner tip speed at inlet is %3.2f m/s\\n(j)Velocity of whirl at inlet is %3.f m/s'%(Cr1,Q,D1,b1,a11,b11,b22,D2,b2,U1,Cx1)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"(a)Flow velocity at inlet is 5.56 m/s\n",
"(b)Discharge at outlet is 0.565 m**3/s\n",
"(c)Runner inlet diameter is 0.587 m\n",
"(d)Height of the runner vanes at inlet is 0.0587 m\n",
"(e)Guide blade angle is 11.23 degree\n",
"(f) Runner vane angle at inlet is 48.23 degree\n",
" Runner vane angle at outlet is 25.75 degree\n",
"(g)Runner outlet diameter is 0.2934 m\n",
"(h)Width at outlet is 0.1174 m\n",
"(i)Runner tip speed at inlet is 23.05 m/s\n",
"(j)Velocity of whirl at inlet is 28 m/s\n"
]
}
],
"prompt_number": 12
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex 9.13 Page 424"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#input data\n",
"H=30#Working head of the turbine in m\n",
"D1=1.2#Inlet wheel diameter in m\n",
"D2=0.6#Outlet wheel diameter in m\n",
"b11=90#Vane angle at entrance in degree\n",
"a11=15#Guide blade angle in degree\n",
"Cx2=0#Velocity of whirl at inlet in m/s\n",
"g=9.81#Acceleration due to gravity in m/s**2\n",
"dw=1000#Density of water in kg/m**3\n",
"\n",
"#calculations\n",
"U11=1/tan(a11*pi/180)#Runner tip speed at inlet in m/s in terms of Cr1\n",
"Cr1=(H/((U11**2/g)+(1/(2*g))))**(1/2)#Flow velocity at inlet in m/s\n",
"Cr2=Cr1#Flow velocity at outlet in m/s\n",
"U1=Cr1*U11#Runner tip speed at inlet in m/s \n",
"N=(60*U1)/(3.1415*D1)#Speed of the wheel in rpm\n",
"U2=(3.1415*D2*N)/60#Runner tip speed at inlet in m/s \n",
"b22=degrees(atan(Cr2/U2))#Vane angle at exit in degree\n",
"\n",
"#output\n",
"print '(a)Speed of the wheel is %3.2f rpm\\n(b)Vane angle at exit is %3.2f degree'%(N,b22)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"(a)Speed of the wheel is 268.27 rpm\n",
"(b)Vane angle at exit is 28.19 degree\n"
]
}
],
"prompt_number": 13
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex 9.14 Page 425"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#input data\n",
"D1=0.6#Internal runner diameter in m\n",
"D2=1.2#External runner diameter in m\n",
"a11=15#Guide blade angle in degree\n",
"Cr1=4#Flow velocity at inlet in m/s\n",
"Cr2=Cr1#Flow velocity at outlet in m/s\n",
"N=200#Speed of the turbine in rpm\n",
"H=10#Head of the turbine in m\n",
"a22=90#Discharge angle at outlet in degree\n",
"g=9.81#Acceleration due to gravity in m/s**2\n",
"dw=1000#Density of water in kg/m**3\n",
"\n",
"#calculations\n",
"U1=(3.1415*D1*N)/60#Runner tip speed at inlet in m/s \n",
"U2=(3.1415*D2*N)/60#Runner tip speed at outlet in m/s \n",
"Cx1=Cr1/tan(a11*pi/180)#Velocity of whirl at inlet in m/s\n",
"Wx1=Cx1-U1#Inlet whirl velocity component in m/s\n",
"b11=degrees(atan(Cr1/Wx1))#Vane angle at entrance in degree\n",
"b22=degrees(atan(Cr2/U2))#Vane angle at exit in degree\n",
"Wm=U1*Cx1#Work one per unit mass flow rate in W/(kg/s) as Cx2=0 in m/s\n",
"nH=(U1*Cx1/(g*H))#Hydraulic efficiency \n",
"\n",
"#output\n",
"print '(a)\\n Inlet vane angle is %3.2f degree\\n Outlet vane angle is %3.2f degree\\n(b)Work done by the water on the runner per kg of water is %3.2f W/(kg/s)\\n(c)Hydraulic efficiency is %0.2f %%'%(b11,b22,Wm,nH*100)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"(a)\n",
" Inlet vane angle is 24.83 degree\n",
" Outlet vane angle is 17.66 degree\n",
"(b)Work done by the water on the runner per kg of water is 93.79 W/(kg/s)\n",
"(c)Hydraulic efficiency is 95.61 %\n"
]
}
],
"prompt_number": 14
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex 9.15 Page 427"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#input data\n",
"H=23#Net head across the turbine in m\n",
"N=150#Speed of the turbine in rpm\n",
"P=23#Power developed by the turbine in MW\n",
"D=4.75#Blade tip diameter in m\n",
"d=2#Blade hub diameter in m\n",
"nH=0.93#Hydraulic efficiency\n",
"n0=0.85#Overall efficiency\n",
"g=9.81#Acceleration due to gravity in m/s**2\n",
"dw=1000#Density of water in kg/m**3\n",
"\n",
"#calculations\n",
"dm=(D+d)/2#Mean diameter of the turbine in m\n",
"Pa=(P*10**6)/n0#Power available in MW\n",
"Q=(Pa/(dw*g*H))#Flow rate in the turbine in m**3/s\n",
"Um=(3.1415*dm*N)/60#Rotor speed at mean diameter in m/s\n",
"Pr=Pa*nH*10**-6#Power given to runner in MW\n",
"Cx1=Pr*10**6/(dw*Q*Um)#Velocity of whirl at inlet in m/s as Cx2=0 in m/s\n",
"Ca=Q/((3.1415/4)*(D**2-d**2))#Axial velocity in m/s\n",
"b11=180-degrees(atan(Ca/(Um-Cx1)))#Inlet blade angle in degree\n",
"Wx2=Um#Outlet whirl velocity component in m/s\n",
"b22=degrees(atan(Ca/Wx2))#Outlet blade angle in degree\n",
"\n",
"#output\n",
"print '(a)The inlet blade angle at mean radius is %3.1f degree\\n(b)The outlet blade angle at mean radius is %3.1f degree'%(b11,b22)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"(a)The inlet blade angle at mean radius is 156.1 degree\n",
"(b)The outlet blade angle at mean radius is 17.2 degree\n"
]
}
],
"prompt_number": 15
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex 9.16 Page 429"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#input data\n",
"P=9100#Power developed by the turbine in kW\n",
"H=5.6#Net head available at the turbine in m\n",
"SR=2.09#Speed ratio\n",
"FR=0.68#Flow ratio\n",
"n0=0.86#Overall effiiciency of the turbine\n",
"g=9.81#Acceleration due to gravity in m/s**2\n",
"dw=1000#Density of water in kg/m**3\n",
"DbD=1/3#Ratio of diameter of the boss to diameter of the runner\n",
"\n",
"#calculations\n",
"U1=SR*(2*g*H)**(1/2)#Runner tip speed at inlet in m/s\n",
"Cr1=FR*(2*g*H)**(1/2)#Flow velocity at inlet in m/s\n",
"Q=(P*10**3)/(n0*dw*g*H)#Discharge through the turbine in m**3/s\n",
"D=(Q*4/(3.1415*Cr1*((1**2)-(DbD**2))))**(1/2)#Diameter of the runner in m\n",
"N=(U1*60)/(3.1415*D)#Speed of the the turbine in rpm\n",
"Ns=(N*(P)**(1/2))/(H)**(5/4)#Specific speed \n",
"#output\n",
"print '(a)Diameter of the runner of the turbine is %3.2f m\\n(b)Speed of the turbine is %3.1f rpm\\n(c)The specific speed is %3.2f'%(D,N,Ns)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"(a)Diameter of the runner of the turbine is 6.22 m\n",
"(b)Speed of the turbine is 67.3 rpm\n",
"(c)The specific speed is 744.71\n"
]
}
],
"prompt_number": 16
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex 9.17 Page 430"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#input data\n",
"H=20#Head developed over the turbine in m\n",
"P=11800#Power developed by turbine in kW\n",
"D=3.5#Outer diameter of the runner in m\n",
"Db=1.75#Hub diameter in m\n",
"a11=35#Guide blade angle in degree \n",
"nH=0.88#Hydraulic efficiency \n",
"n0=0.84#Overall efficiency\n",
"Cx2=0#Velocity of whirl at outlet in m/s\n",
"g=9.81#Acceleration due to gravity in m/s**2\n",
"dw=1000#Density of water in kg/m**3\n",
"\n",
"#calculations\n",
"Q=(P*10**3)/(n0*g*H*dw)#Discharge of turbine in m**3/s\n",
"Cr1=Q/((3.1415/4)*(D**2-Db**2))#Flow velocity at inlet in m/s\n",
"Cx1=Cr1/tan(a11*pi/180)#Velocity of whirl at inlet in m/s\n",
"U1=(nH*H*g)/(Cx1)#Runner tip speed at inlet in m/s\n",
"Wx1=U1-Cx1#Inlet whirl velocity component in m/s\n",
"b11=180-degrees(atan(Cr1/-Wx1))#Runner inlet angle in degree\n",
"Cr2=Cr1#Flow velocity at outlet in m/s for a kaplan turbine\n",
"U2=U1#Runner tip speed at outlet in m/s for a kaplan turbine\n",
"b22=degrees(atan(Cr2/U2))#Runner outlet angle in degree \n",
"N=(U1*60)/(3.1415*D)#The speed of the turbine in rpm\n",
"\n",
"#output\n",
"print '(1)\\n (a)The runner inlet angle is %3.2f degree\\n (b)The runner outlet angle is %3.1f degree\\n(2)The speed of the turbine is %3.2f rpm'%(b11,b22,N)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"(1)\n",
" (a)The runner inlet angle is 101.33 degree\n",
" (b)The runner outlet angle is 39.2 degree\n",
"(2)The speed of the turbine is 66.49 rpm\n"
]
}
],
"prompt_number": 17
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex 9.18 Page 432"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#input data\n",
"N=50#Speed of the turbine in rpm\n",
"d=6#Runner diameter of the turbine in m\n",
"Ae=20#Effective area of flow in m**2\n",
"b11=150#The angle of the runner blades at inlet in degree\n",
"b22=20#The angle of the runner blade at outlet in degree\n",
"g=9.81#Acceleration due to gravity in m/s**2\n",
"dw=1000#Density of water in kg/m**3\n",
"\n",
"#calculations\n",
"U1=(3.141*d*N)/60#Runner tip speed at inlet in m/s\n",
"U2=U1#Runner tip speed at outlet in m/s\n",
"Cr2=U2*tan(b22*pi/180)#Flow velocity at outlet in m/s\n",
"Cr1=Cr2#Flow velocity at inlet in m/s\n",
"Q=Ae*Cr1#Discharge by the turbine in m**3/s\n",
"Cx1=U1-(Cr1/(tan((180-b11)*pi/180)))#Velocity of whirl at inlet in m/s\n",
"P=dw*g*Q*(U1*Cx1/g)*10**-3#Theoretical Power developed in kW\n",
"C2=Cr2#Absolute outlet velocity in m/s\n",
"H=(U1*Cx1/g)+(C2**2/(2*g))#Net head across the turbine in m\n",
"nH=(U1*Cx1/g)/(H)#Hydraulic efficiency\n",
"\n",
"#output\n",
"print '(a)Discharge of the turbine is %3.1f m**3/s\\n(b)Theoretical Power developed is %3.2f kW\\n(c)Hydraulic efficiency is %0.2f %%'%(Q,P,nH*100)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"(a)Discharge of the turbine is 114.3 m**3/s\n",
"(b)Theoretical Power developed is 10421.35 kW\n",
"(c)Hydraulic efficiency is 84.80 %\n"
]
}
],
"prompt_number": 18
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex 9.19 Page 433"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#input data\n",
"D=8#Outer diameter of the turbine in m\n",
"Db=3#Inner diameter of the turbine in m\n",
"P=30000#Power developed by the turbine in kW\n",
"nH=0.95#Hydraulic efficiency\n",
"N=80#Speed of the turbine in rpm\n",
"H=12#Head operated by the turbine in m\n",
"Q=300#Discharge through the runner in m**3/s\n",
"g=9.81#Acceleration due to gravity in m/s**2\n",
"dw=1000#Density of water in kg/m**3\n",
"\n",
"#calculations\n",
"U1=(3.1415*D*N)/60#Runner tip speed at inlet in m/s\n",
"U2=U1#Runner tip speed at outlet in m/s as flow is axial\n",
"Cr1=Q/((3.1415/4)*(D**2-Db**2))#Flow velocity at inlet in m/s\n",
"Cr2=Cr1#Flow velocity at outlet in m/s as flow is axial\n",
"b22=degrees(atan(Cr2/U2))#The angle of the runner blade at outlet in degree\n",
"Cx1=(nH*g*H)/U1#Velocity of whirl at inlet in m/s\n",
"b11=180-degrees(atan(Cr1/(U1-Cx1)))#The angle of the runner blade at inlet in degree\n",
"nM=(P*10**3)/(dw*g*Q*(Cx1*U1/g))#Mechanical efficiency\n",
"n0=nM*nH#Overall efficiency\n",
"\n",
"#output\n",
"print '(a)Blade angle at\\n inlet is %3.2f degree\\n outlet is %3.2f degree\\n(b)Mechanical efficiency is %0.1f %%\\n(c)Overall efficiency is %0.1f %%'%(b11,b22,nM*100,n0*100)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"(a)Blade angle at\n",
" inlet is 167.04 degree\n",
" outlet is 11.71 degree\n",
"(b)Mechanical efficiency is 89.4 %\n",
"(c)Overall efficiency is 84.9 %\n"
]
}
],
"prompt_number": 19
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex 9.20 Page 434"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#input data\n",
"P=11500#Rated power of the turbine in kW\n",
"H=4.3#Average head of the turbine in m\n",
"n0=0.91#Overall efficiency of the turbine \n",
"DbD=0.3#Ratio of Diameters of runner boss and runner\n",
"SR=2#Speed ratio\n",
"FR=0.65#Flow ratio\n",
"g=9.81#Acceleration due to gravity in m/s**2\n",
"dw=1000#Density of water in kg/m**3\n",
"\n",
"#calculations\n",
"U=SR*(2*g*H)**(1/2)#Runner tip speed in m/s\n",
"Cr=FR*(2*g*H)**(1/2)#Flow velocity in m/s\n",
"Q=(P*10**3)/(n0*dw*g*H)#Discharge of the turbine in m**3/s\n",
"D=((4*Q)/(Cr*3.1415*(1**2-DbD**2)))**(1/2)#Runner diameter in \n",
"N=(60*U)/(3.1415*D)#Speed of the turbine in rpm \n",
"\n",
"#output\n",
"print '(a)Runner diameter of the turbine is %3.2f m\\n(b)Operating speed of the turbine is %3.1f rpm'%(D,N)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"(a)Runner diameter of the turbine is 8.38 m\n",
"(b)Operating speed of the turbine is 41.9 rpm\n"
]
}
],
"prompt_number": 20
}
],
"metadata": {}
}
]
}
|