1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
|
{
"metadata": {
"name": "",
"signature": "sha256:4917afa3531ad5b8b88974bc3a67730d6fe85dd6094df74e9d2ebeeb54dc0430"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Chapter8 - Hydraulic pumps"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex 8.1 Page 354"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from __future__ import division\n",
"from math import pi, tan\n",
"#input data\n",
"D=1.3#Diameter of the pump in m\n",
"Q=3.5/60#Discharge of water by pump in m**3/s\n",
"U2=10#Tip speed of pump in m/s\n",
"Cr2=1.6#Flow velocity of water in pump in m/s\n",
"b2=30#Outlet blade angle tangent to impeller periphery in degree\n",
"Cx1=0#Whirl velocity at inlet in m/s\n",
"U=10#Tip speed of pump in m/s\n",
"d=1000#Density of water in kg/m**3\n",
"g=9.81#Acceleration due to gravity in m/s**2\n",
"\n",
"#calculations\n",
"Wx2=Cr2/tan(b2*pi/180)#Exit relative velocity in m/s\n",
"E=(U2/g)*(U2-(Wx2))#Euler head in m or W/(N/S)\n",
"m=d*Q#Mass flow rate of water in kg/s\n",
"W=E*m*g#Power delivered in W\n",
"r=D/2#Radius of the pump in m\n",
"T=W/(U/r)#Torque delivered in Nm\n",
"\n",
"#output\n",
"print 'Torque delivered by the impeller is %3.1f Nm'%(T)\n",
"# Answer in the textbook is wrong."
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Torque delivered by the impeller is 274.1 Nm\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex 8.2 Page 355"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from math import sin, tan\n",
"#input data\n",
"b2=30#Impeller blade angle to the tangent at impeller outlet in degree\n",
"d=0.02#Blade depth in m\n",
"D=0.25#Blade diameter in m\n",
"N=1450#Pump rotation speed in rpm\n",
"Q=0.028#FLow rate of the pump in m**3/s\n",
"sf=0.77#Slip factor \n",
"g=9.81#Acceleration due to gravity in m/s**2\n",
"\n",
"#calculations\n",
"A=3.1415*d*D#Flow area in m**2\n",
"Cr2=Q/A#Flow velocity in m/s\n",
"Wx2=Cr2/tan(b2*pi/180)#Exit relative velocity in m/s\n",
"U2=(3.14*D*N)/60#Tip speed of pump in m/s\n",
"Cx2=U2-Wx2#Absolute whirl component at exit in m/s\n",
"E=(U2*Cx2)/g#Euler head with no whirl at inlet in m\n",
"Cx21=sf*Cx2#Actual value of component of absolute value in tangential direction in m/s\n",
"Es=sf*E#Theoretical head with slip in m\n",
"Z=(3.145*sin(b2*pi/180))/((1-sf)*(1-((Cr2/U2)/tan(b2*pi/180))))#Number of blades required based on stodola slip factor\n",
"\n",
"#output\n",
"print '(a)Theoretical head with slip is %3.2f m\\n(b)Number of blades required is %3.f'%(Es,Z)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"(a)Theoretical head with slip is 23.65 m\n",
"(b)Number of blades required is 8\n"
]
}
],
"prompt_number": 2
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex 8.3 Page 356"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#input data\n",
"D2=0.4#Outer diameter of impeller in m\n",
"b2=0.05#Outlet width of impeller in m\n",
"N=800#Running speed of pump in rpm\n",
"Hm=16#Working head of pump in m\n",
"b22=40#Vane angle at outlet in degree\n",
"nm=0.75#Manometric efficiency \n",
"g=9.81#Acceleration due to gravity in m/s**2\n",
"\n",
"#calculations\n",
"U2=(3.1415*D2*N)/60#Impeller tip speed in m/s\n",
"Cx2=(g*Hm)/(U2*nm)#Absolute whirl component at exit in m/s\n",
"Wx2=U2-Cx2#Exit relative velocity in m/s\n",
"Cr2=Wx2*tan(b22*pi/180)#Flow velocity of water in pump in m/s\n",
"A=3.14*D2*b2#Area of flow in m**2\n",
"Q=A*Cr2#Discharge of the pump in m**3/s\n",
"\n",
"#output\n",
"print 'The discharge of the pump is %3.4f m**3/s'%(Q)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The discharge of the pump is 0.2247 m**3/s\n"
]
}
],
"prompt_number": 3
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex 8.4 Page 357"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from math import tan, atan, degrees\n",
"#input data\n",
"D2D1=2#The ratio of outer and inner diameter \n",
"N=1200#The running speed of pump in rpm\n",
"Hm=75#Total head producing work in m\n",
"Cr1=3#Flow velocity through impeller at inlet in m/s\n",
"Cr2=Cr1#Flow velocity through impeller at outlet in m/s\n",
"b22=30#Vanes set back angle at outlet in degree\n",
"D2=0.6#Outlet diameter of impeller in m\n",
"d=1000#Density of water in kg/m**3\n",
"b2=0.05#Width of impeller at outlet in m\n",
"g=9.81#Acceleartion due to gravity in m/s**2\n",
"\n",
"#calculations\n",
"D1=D2/D2D1#Inlet diameter of impeller in m\n",
"U1=(3.1415*D1*N)/60#Impeller tip speed at inlet in m/s\n",
"b11=degrees(atan(Cr1/U1))#Vane angle at inlet in degree\n",
"U2=(3.1415*D2*N)/60#Impeller tip speed at exit in m/s\n",
"A=3.1415*D2*b2#Area of flow in m**2\n",
"Q=A*Cr2#Discharge of the pump in m**/s\n",
"m=d*Q#Mass flow rate of water in kg/s\n",
"Wx2=Cr2/tan(b22*pi/180)#Exit relative velocity in m/s\n",
"Cx2=U2-Wx2#Absolute whirl component at exit in m/s\n",
"W=m*U2*Cx2*10**-3#Work done per second in kW\n",
"nm=Hm/((U2*Cx2)/g)#Manometric efficiency \n",
"\n",
"#output\n",
"print '(a)Vane angle at inlet is %3.3f degree\\n(b)Work done per second is %3.2f kW\\n(c)Manometric efficiency is %0.2f %%'%(b11,W,nm*100)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"(a)Vane angle at inlet is 9.043 degree\n",
"(b)Work done per second is 346.42 kW\n",
"(c)Manometric efficiency is 60.05 %\n"
]
}
],
"prompt_number": 4
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex 8.5 Page 358"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#input data\n",
"Q=75#Discharge from the pump in l/s\n",
"D1=0.1#Inlet diameter of the pump in m\n",
"D2=0.29#Outlet diameter of the pump in m \n",
"Hm=30#Total head producing work in m\n",
"N=1750#Speed of the pump in rpm\n",
"b1=0.025#Width of impeller at inlet per side in m\n",
"b2=0.023#Width of impeller at outlet in total in m\n",
"a11=90#The angle made by the entering fluid to impeller in degree\n",
"b22=27#Vanes set back angle at outlet in degree\n",
"Qloss=2.25#Leakage loss in l/s\n",
"ml=1.04#Mechanical loss in kW\n",
"cf=0.87#Contraction factor due to vane thickness \n",
"n0=0.55#Overall efficiency\n",
"d=1000#Density of water in kg/m**3\n",
"g=9.81#Acceleration due to gravity in m/s**2\n",
"\n",
"#calculations\n",
"U1=(3.1415*D1*N)/60#Blade inlet speed in m/s\n",
"A1=3.1415*D1*b1*cf*10**3#Area of flow at inlet in m**2\n",
"Qt=Q+Qloss#Total quantity of water handled by pump in l/s\n",
"Qts=Qt/2#Total quantity of water handled by pump per side in l/s\n",
"Cr1=(Qts*10**-3)/(A1*10**-3)#Flow velocity through impeller at inlet in m/s\n",
"b11=degrees(atan(Cr1/U1))#Inlet vane angle in degree\n",
"A2=3.1415*D2*(b2/2)*cf*10**3#Area of flow at outlet in m**2 here b2 is calculated per side\n",
"Cr2=Qts/A2#Velocity of flow at outlet in m/s\n",
"U2=(3.1415*D2*N)/60#Peripheral speed at outlet in m/s\n",
"Wx2=Cr2/tan(b22*pi/180)#Exit relative velocity in m/s\n",
"Cx2=U2-Wx2#Absolute whirl component at exit in m/s\n",
"a22=degrees(atan(Cr2/Cx2))#The absolute water angle at outlet in degree\n",
"C2=Cr2/sin(a22*pi/180)#Absolute velocity of water at exit in m/s\n",
"nh=Hm/((U2*Cx2)/g)#Manometric efficiency \n",
"nv=Q/Qt#Volumetric efficiency \n",
"SP=(d*g*(Q*10**-3/2)*Hm)/n0*10**-3#Shaft power in kW\n",
"nm=(SP-ml)/SP#Mechanical efficiency \n",
"\n",
"#output\n",
"print '(a)Inlet vane angle is %3.2f degree\\n(b)The absolute water angle is %3.2f degree\\n(c)Absolute velocity of water at exit is %3.2f m/s\\n(d)Manometric efficiency is %0.1f %%\\n(e)Volumetric efficiency is %0.2f %%\\n(f)Mechanical efficiency is %0.1f %%'%(b11,a22,C2,nh*100,nv*100,nm*100)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"(a)Inlet vane angle is 31.67 degree\n",
"(b)The absolute water angle is 13.07 degree\n",
"(c)Absolute velocity of water at exit is 18.74 m/s\n",
"(d)Manometric efficiency is 60.7 %\n",
"(e)Volumetric efficiency is 97.09 %\n",
"(f)Mechanical efficiency is 94.8 %\n"
]
}
],
"prompt_number": 5
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex 8.6 Page 360"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#input data\n",
"Hi=0.25#Vaccum gauge reading in m of Hg vaccum\n",
"P0=1.5#Pressure gauge reading in bar\n",
"Z01=0.5#Effective height between gauges in m\n",
"P=22#Power of electric motor in kW\n",
"Di=0.15#Inlet diameter in m\n",
"Do=0.15#Outlet diameter in m\n",
"Q=0.1#Discharge of pump in m**3/s\n",
"dHg=13600#Density of mercury in kg/m**3\n",
"dw=1000#Density of water in kg/m**3\n",
"g=9.81#Acceleration due to gravity in m/s**2\n",
"\n",
"#calculations\n",
"Pi=dHg*g*Hi#Inlet pressure in N/m**2 vaccum\n",
"Po=P0*10**5#Outlet pressure in N/m**2\n",
"V0=Q/((3.1415*Do**2)/4)#Velocity of water in delivery pipe in m/s\n",
"Vi=V0#vleocity of water in suction pipe in m/s\n",
"Hm=((Po+Pi)/(dw*g))+((V0**2-Vi**2)/(2*g))+(Z01)#Manometric head in m\n",
"n0=(dw*g*Q*Hm)/(P*10**3)#Overall efficiency \n",
"\n",
"#output\n",
"print '(a)Manometric head is %3.2f m\\n(b)Overall efficiency is %0.1f %%'%(Hm,n0*100)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"(a)Manometric head is 19.19 m\n",
"(b)Overall efficiency is 85.6 %\n"
]
}
],
"prompt_number": 6
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex 8.7 Page 361"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#input data\n",
"Hm=20#Head against which work is produced in pump in m\n",
"b22=45#Vanes set back angle at outlet in degree\n",
"N=600#Rotating speed of pump in rpm\n",
"Cr1=2#Flow velocity through impeller at inlet in m/s\n",
"Cr2=Cr1#Flow velocity through impeller at outlet in m/s\n",
"g=9.81#acceleration due to gravity in m/s**2\n",
"\n",
"#calculations\n",
"Wx2=Cr2/tan(b22*pi/180)#Exit relative velocity in m/s\n",
"U2=(4+(16+(4*3*792.8))**(1/2))/(2*3)# Blade outlet speed in m/s\n",
" #The above equation is obtained by solving \n",
" #Cx2=U2-Wx2 #Absolute whirl component at exit in m/s\n",
" #C2=(Cx2**2+Cr2**2)**(1/2) #Absolute velocity of water at exit in m/s\n",
" #Hm=(U2*Cx2/g)-((C2**2)/(4*g)) #Total head producing work in m\n",
" #3*(U2**2)-(4*U2)-792.8=0 \n",
"D2=(60*U2)/(3.1415*N)#Impeller diameter in m\n",
"\n",
"#output\n",
"print 'The impeller diameter is %3.4f m'%(D2)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The impeller diameter is 0.5391 m\n"
]
}
],
"prompt_number": 7
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex 8.8 Page 362"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#input data\n",
"n0=0.7#Overall efficiency\n",
"Q=0.025#Discharge of water by the pump in m**3/s\n",
"H=20#Height of supplied by the pump in m\n",
"D=0.1#Diameter of the pump in m\n",
"L=100#Length of the pipe in m\n",
"f=0.012#Friction coefficient \n",
"g=9.81#Acceleration due to gravity in m/s**2\n",
"d=1000#Density of water in kg/m**3\n",
"\n",
"#calculations\n",
"V0=Q/((3.1415/4)*D**2)#Velocity of water in the pipe in m/s\n",
"hf0=(4*f*L*V0**2)/(2*g*D)#Loss of head due to friction in pipe in m\n",
"Hm=H+hf0+(V0**2/(2*g))#Manometric head in m\n",
"P=(d*g*Q*Hm)/(n0)*10**-3#Power required to drive the pump in kW\n",
"\n",
"#output\n",
"print 'Power required to drive the pump is %3.2f kW'%(P)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Power required to drive the pump is 15.87 kW\n"
]
}
],
"prompt_number": 8
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex 8.9 Page 363"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#input data\n",
"Q=0.015#Discharge of water in pump in m**3/s\n",
"D1=0.2#Internal diameter of the impeller in m\n",
"D2=0.4#External diameter of the impeller in m\n",
"b1=0.016#Width of impeller at inlet in m\n",
"b2=0.008#Width of impeller at outlet in m\n",
"N=1200#Running speed of the pump in rpm\n",
"b22=30#Impeller vane angle at outlet in degree\n",
"g=9.81#Acceleration due to gravity in m/s**2\n",
"d=1000#Density of water in kg/m**3\n",
"\n",
"#calculations\n",
"print 'From velocity triangles the following values have been deduced'\n",
"a11=90#The absolute water angle at inlet in degree\n",
"Cx1=0#Absolute whirl component at inlet in m/s\n",
"A1=3.1415*D1*b1#Area of flow at inlet in m**2\n",
"Cr1=Q/A1#Flow velocity through impeller at inlet in m/s\n",
"C1=Cr1#Absolute velocity at inlet in m/s\n",
"A2=3.1415*D2*b2#Area of flow at outlet in m**2\n",
"Cr2=Q/A2#Flow velocity through impeller at outlet in m/s\n",
"U2=(3.1415*D2*N)/60#Blade outlet speed in m/s\n",
"Cx2=U2-(Cr2/tan(b22*pi/180))#Absolute whirl component at outlet in m/s\n",
"C2=(Cx2**2+Cr2**2)**(1/2)#Velocity at impeller exit in m/s\n",
"Ihl=((Cx2*U2)/g)-((C2**2)/(2*g))+((C1**2)/(2*g))#Pressure rise in impeller in m\n",
"\n",
"#output\n",
"print '\\n\\nThe rise in pressure in the impeller is %3.3f m'%(Ihl)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"From velocity triangles the following values have been deduced\n",
"\n",
"\n",
"The rise in pressure in the impeller is 31.852 m\n"
]
}
],
"prompt_number": 9
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex 8.10 Page 365"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#input data\n",
"Ihl=3#Head loss in impeller in m\n",
"Cr2=4.64#Flow velocity through impeller at outlet in m/s\n",
"U2=30#Blade outlet speed in m/s\n",
"dPi=35.3#Difference in pressure gauge readings at impeller inlet and outlet in m of water\n",
"Pg=4.7#Pressure gain in the casing in m of water \n",
"n=0.385#Part of absolute kinetic energy converted into pressure gain\n",
"g=9.81#Acceleration due to gravity in m/s**2\n",
"d=1000#Density of water in kg/m**3\n",
"ss=0.85#Slip coefficient\n",
"\n",
"#calculations\n",
"Kei=Pg/n#Kinetic energy at impeller exit in m/s\n",
"C2=((Kei)*2*g)**(1/2)#Velocity at impeller exit in m/s\n",
"Cx22=(C2**2-Cr2**2)**(1/2)#Absolute whirl component at outlet with fliud slip in m/s\n",
"Cx2=Cx22/ss#Ideal absolute whirl velocity in m/s\n",
"b22=degrees(atan(Cr2/(U2-Cx2)))#Blade angle at exit in degree\n",
"Wm=ss*U2*Cx2#Euler work input in J/kg\n",
"nm=dPi/(U2*Cx22/g)#Manometric efficiency\n",
"dP=(U2*Cx22/g)-(Ihl)-(C2**2/(2*g))#Pressure rise in impeller in m\n",
"\n",
"#output\n",
"print '(a)\\n Exit blade angle is %3.2f degree\\n Euler work input is %3.2f J/kg\\n(b)Manometric efficiency is %0.2f %%\\n(c)Pressure rise in the impeller is %3.3f m'%(b22,Wm,nm*100,dP)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"(a)\n",
" Exit blade angle is 20.17 degree\n",
" Euler work input is 442.93 J/kg\n",
"(b)Manometric efficiency is 78.18 %\n",
"(c)Pressure rise in the impeller is 29.943 m\n"
]
}
],
"prompt_number": 10
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex 8.11 Page 366"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#input data\n",
"r1=0.051#Eye radius of the impeller in m\n",
"D2=0.406#Outer diameter of the impeller in m\n",
"b11=(90-75)#Inlet blade angle measured from tangential flow direction in degree\n",
"b22=(90-83)#Outlet blade angle measured from tangential flow direction in degree\n",
"b=0.064#Blade depth in m\n",
"Cx1=0#Inlet whirl velocity in m/s\n",
"nh=0.89#Hydraulic efficiency \n",
"g=9.81#Acceleration due to gravity in m/s**2\n",
"d=1000#Density of water in kg/m**3\n",
"N=900#Rotating speed of impeller in rpm\n",
"\n",
"#calculations\n",
"w=(2*3.1415*N)/60#Angular velocity at inlet in rad/s\n",
"U1=(w*r1)#Inlet tangential impeller velocity in m/s\n",
"C1=U1*tan(b11*pi/180)#Velocity at impeller inlet in m/s\n",
"A=2*3.1415*r1*b#Area of flow through the pump in m**2\n",
"Cr1=C1#Flow velocity through impeller at inlet in m/s\n",
"Q=A*Cr1#Volume flow through the pump in m**3/s\n",
"r2=D2/2#Outer radius of the impeller in m\n",
"Cr2=(r1*Cr1)/r2#Flow velocity through impeller at outlet in m/s\n",
"U2=w*r2#Outlet tangential impeller velocity in m/s\n",
"Wx2=Cr2/tan(b22*pi/180)#Exit relative velocity in m/s\n",
"E=(U2/g)*(U2-Wx2)#Theoretical head developed in m\n",
"Hm=nh*E#Total stagnation head developed by the pump in m\n",
"dP021=Hm*d*g*10**-3#Total pressure head coefficient in kPa\n",
"Cx2=U2-(Cr2/tan(b22*pi/180))#Absolute whirl velocity in m/s\n",
"C2=(Cr2**2+Cx2**2)**(1/2)#Velocity at impeller exit in m/s\n",
"dP21=(Hm-(((C2**2)-(C1**2))/(2*g)))*d*g*10**-3#The static pressure head in kPa\n",
"P=d*g*Q*Hm*10**-3#Power given to the fluid in kW\n",
"Ps=P/nh#Input power to impeller in kW\n",
"\n",
"#output\n",
"print '(a)Volume flow rate through the impeller is %3.4f m**3/s\\n(b)\\n stagnation pressure rise across the impeller is %3.1f kPa\\n Static pressure rise across the impeller is %3.1f kPa\\n(c)Power given to fluid is %3.2f kW\\n(d)Input power to impeller is %3.2f kW'%(Q,dP021,dP21,P,Ps)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"(a)Volume flow rate through the impeller is 0.0264 m**3/s\n",
"(b)\n",
" stagnation pressure rise across the impeller is 280.9 kPa\n",
" Static pressure rise across the impeller is 145.6 kPa\n",
"(c)Power given to fluid is 7.42 kW\n",
"(d)Input power to impeller is 8.34 kW\n"
]
}
],
"prompt_number": 11
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex 8.12 Page 368"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from math import pi, tan\n",
"from __future__ import division\n",
"#input data\n",
"Q=0.04#Discharge of the pump design in m**3/s\n",
"Ns=0.075#Specific speed in rev\n",
"b22=(180-120)#Outlet angle with the normal in degree\n",
"H=35#Distance to which pumping of water is done in m\n",
"Dp=0.15#Diameter of suction and delivery pipes in m\n",
"L=40#Combined length of suction and delivery pipes in m\n",
"WD=1/10#Width to diameter ratio at outlet of impeller \n",
"f=0.005#Friction factor \n",
"g=9.81#Acceleration due to gravity in m/s**2\n",
"nh=0.76#Hydraulic effficiency neglecting the slip\n",
"n=0.06#Percentage occupied by blades on circumference area\n",
"\n",
"#calculations\n",
"A=(pi/4)*(Dp**2)#Area of flow in pipe in m**2\n",
"V=Q/A#Velocity in the pipes in m/s\n",
"OL=3*V**2/(2*g)#Other loses in the pipes in m\n",
"TL=(4*f*L*V**2/(2*g*Dp))+(OL)#Total loses in a pipe in m\n",
"TH=TL+H#Total required head in m\n",
"N=(Ns*((g*TH)**(3/4)))/((Q)**(1/2))#The speed of the pump in rev/s\n",
"from sympy import symbols, solve\n",
"from sympy import N as NN\n",
"D = symbols('D')\n",
"Ao=pi*WD*(1-n)*D**2#Flow area perpendicular to impeller outlet periphery \n",
"Cr2=Q/Ao#Flow velocity through impeller at outlet in m/s\n",
"U2=pi*D*N#Outlet tangential impeller velocity in m/s\n",
"Cx2=(g*TH)/(U2*nh)#Absolute whirl velocity in m/s\n",
"expr = tan(b22*pi/180)-(Cr2/(Cx2-U2)) # polynomial of D\n",
"D = solve(expr, D) # discarding -ve values \n",
"D = D[2] # Now discard imaginary part as negligible(in powers of e**-23)\n",
"D = NN(abs(D),3) # in meters # rounding off\n",
"#output\n",
"print 'The pump impeller diameter is %3.3f m'%(D)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The pump impeller diameter is 0.214 m\n"
]
}
],
"prompt_number": 12
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex 8.13 Page 370"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#input data\n",
"N=2875#Speed of the pump in rpm \n",
"Q=57.2/3600#Discharge of the pump in m**3/s\n",
"Hm=42.1#Total head developed by the pump in m\n",
"d=1000#Density of the water in kg/m**3\n",
"g=9.81#Acceleration due to gravity in m/s**2\n",
"n=0.76#Efficiency of the pump\n",
"\n",
"#calculations\n",
"Ns=(N*Q**(1/2))/(Hm**(3/4))#Specific speed of the pump \n",
"P=((d*g*Q*Hm)/n)*10**-3#Power input in kW\n",
"\n",
"#calculations\n",
"print '(a)Specific speed of the pump is %3.f\\n(b)Power input is %3.3f kW'%(Ns,P)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"(a)Specific speed of the pump is 22\n",
"(b)Power input is 8.634 kW\n"
]
}
],
"prompt_number": 13
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex 8.14 Page 371"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from math import ceil\n",
"#input data\n",
"D1=0.6#Inlet impeller diameter in m\n",
"D2=1.2#Outlet impeller diameter in m\n",
"Cr2=2.5#Radial flow velocity in m/s\n",
"N=200#Running speed of the pump in rpm\n",
"Q=1.88#Discharge of the pump in m**3/s\n",
"Hm=6#Head which the pump has to overcome in m\n",
"b22=26#Vane angle at exit at tangent to impeller in degree\n",
"d=1000#Density of the water in kg/m**3\n",
"g=9.81#Acceleration due to gravity in m/s**2\n",
"\n",
"#calculations\n",
"U2=(3.1415*D2*N)/60#Outlet tangential impeller velocity in m/s\n",
"Wx2=Cr2/tan(b22*pi/180)#Exit relative velocity in m/s\n",
"Cx2=U2-Wx2#Absolute whirl velocity in m/s\n",
"nm=(Hm/(U2*Cx2/g))#Manometric efficiency \n",
"Nls=((2*g*Hm*60**2)/((3.1415**2)*((1.2**2)-(0.6**2))))**(1/2)#Least starting speed of the pump in rpm\n",
"\n",
"#output\n",
"print '(1)Manometric efficiency is %0.1f %%\\n(2)Least speed to start the pump is %3.2f rpm, rounding off = %0.f rpm'%(nm*100,Nls, ceil(Nls))"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"(1)Manometric efficiency is 63.0 %\n",
"(2)Least speed to start the pump is 199.40 rpm, rounding off = 200 rpm\n"
]
}
],
"prompt_number": 14
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex 8.15 Page 372"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#input data\n",
"D2=1.25#External diameter of the impeller in m\n",
"D1=0.5#Internal diameter of the impeller in m\n",
"Q=2#Discharge of the pump in m**3/s\n",
"Hm=16#Head over which pump has to operate in m\n",
"N=300#Running speed of the pump in rpm\n",
"b22=30#Angle at which vanes are curved back in degree\n",
"Cr1=2.5#Flow velocity through impeller at inlet in m/s\n",
"Cr2=Cr1#Flow velocity through impeller at outlet in m/s\n",
"d=1000#Density of the water in kg/m**3\n",
"g=9.81#Acceleration due to gravity in m/s**2\n",
"\n",
"#calculations\n",
"U2=(3.1415*D2*N)/60#Outlet tangential impeller velocity in m/s\n",
"Wx2=Cr2/tan(b22*pi/180)#Exit relative velocity in m/s\n",
"Cx2=U2-Wx2#Absolute whirl velocity in m/s\n",
"nm=(Hm*g)/(U2*Cx2)#Manometric or hydraulic efficiency\n",
"m=d*Q#Mass flow rate of water in kg/s\n",
"W=m*U2*Cx2*10**-3#Fluid power developed by the impeller in kW\n",
"Ps=W#Power required by the pump in kW neglecting mechanical loses\n",
"Nls=((2*g*Hm)/(((3.1415/60)**2)*(D2**2-D1**2)))**(1/2)#Minimum starting speed of the pump in rpm\n",
"\n",
"#output\n",
"print '(a)Manometric or hydraulic efficiency is %0.1f %% \\n(b)Power required by the pump is %3.2f kW\\n(c)Minimum starting speed of the pump is %3.1f rpm'%(nm*100,Ps,Nls)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"(a)Manometric or hydraulic efficiency is 52.2 % \n",
"(b)Power required by the pump is 600.98 kW\n",
"(c)Minimum starting speed of the pump is 295.4 rpm\n"
]
}
],
"prompt_number": 15
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex 8.16 Page 373"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#input data\n",
"n=3#Number of stages \n",
"D2=0.4#Outlet impeller diameter in m\n",
"b2=0.02#Outlet impeller width in m\n",
"b22=45#Backward vanes angle at outlet in degree\n",
"dA=0.1#Reduction in circumferential area\n",
"nm=0.9#Manometric efficiency of the pump\n",
"Q=0.05#Discharge of the pump in m**3/s\n",
"N=1000#Running speed of the pump in rpm\n",
"n0=0.8#Overall efficiency of the pump\n",
"g=9.81#Acceleration due to gravity in m/s**2\n",
"d=1000#Density of water in kg/m**3\n",
"\n",
"#calculations\n",
"A2=(1-dA)*3.1415*D2*b2#Area of flow at outlet in m**2\n",
"Cr2=Q/A2#Flow velocity through impeller at outlet in m/s\n",
"U2=(3.1415*D2*N)/60#Outlet impeller tangential velocity in m/s\n",
"Wx2=Cr2#Exit relative velocity in m/s as tand(b22)=1\n",
"Cx2=U2-Wx2#Absolute whirl velocity in m/s\n",
"Hm=(nm*U2*Cx2)/g#Head over which pump has to operate in m\n",
"H=n*Hm#Total head generated by the pump in m\n",
"P=d*g*Q*Hm*n#Power output from the pump in W\n",
"Ps=P/n0*10**-3#Shaft power input in kW\n",
"\n",
"#output\n",
"print '(1)The head generated by the pump is %3.2f m\\n(2)Shaft power input is %3.3f kW'%(H,Ps)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"(1)The head generated by the pump is 107.98 m\n",
"(2)Shaft power input is 66.205 kW\n"
]
}
],
"prompt_number": 16
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex 8.17 Page 374"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#input data\n",
"H=156#Total head operated by the pumps in m\n",
"N=1000#Running speed of the pump in rpm\n",
"Ns=20#Specific speed of each pump \n",
"Q=0.150#Discharge of the pump in m**3/s\n",
"\n",
"#calculations\n",
"Hm=((N*(Q)**(1/2))/(Ns))**(4/3)#Head developed by each pump in m\n",
"n=H/Hm#Number of pumps\n",
"\n",
"#output\n",
"print 'The number of pumps are %3.f'%(n)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The number of pumps are 3\n"
]
}
],
"prompt_number": 17
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex 8.18 Page 375"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#input data\n",
"Q1=120#Discharge of each of the multi stage pump in parallel in first case in m**3/s\n",
"Q2=450#Discharge of the multi stage pump in second case in m**3/s\n",
"H1=16#Head of each stage in first case in m\n",
"D1=0.15#Diameter of impeller in first case in m\n",
"H=140#Total head developed by all pumps in second case in m\n",
"N1=1500#Running speed of the pump in rpm in first case\n",
"N2=1200#Running speed of the pump in rpm in second case\n",
"#calculations\n",
"H2=H1*((Q2/Q1)*((N2/N1)**2))**(4/6)#Head of each stage in second case in m\n",
"n=H/H2#Number of stages in second case \n",
"D2=D1*(((N1/N2)**(2))*(H2/H1))**(1/2)#Diameter of impeller in second case in m\n",
"\n",
"#output\n",
"print '(a)number of stages required is %3.f\\n(b)Diameter of impeller in the second case is %3.2f m or %0.f mm'%(n,D2, D2*1000)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"(a)number of stages required is 5\n",
"(b)Diameter of impeller in the second case is 0.25 m or 251 mm\n"
]
}
],
"prompt_number": 18
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex 8.19 Page 376"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#input data\n",
"H=36#Initial total head of the pump in m\n",
"Q1=0.05#Initial discharge of the pump in m**3/s\n",
"H2=3.5#Sum of static pressure and velocity head at inlet in m\n",
"P01=0.75#Atmospheric pressure initially in m of Hg\n",
"Pvap1=1.8*10**3#Vapour pressure of water initially in Pa\n",
"Pvap2=830#Vapour pressure of water finanlly in Pa\n",
"P02=0.62#Atmospheric pressure finally in m of Hg\n",
"g=9.81#Acceleration due to gravity in m/s**2\n",
"dW=1000#Density of water in kg/m**3\n",
"dHg=13.6#Density of mercury in kg/m**3\n",
"\n",
"#calculations\n",
"NPSH=H2-((Pvap1)/(dW*g))#Net positive suction head in m\n",
"s=NPSH/H#Cavitation parameter when pump dvelops same total head and discharge \n",
"dH1=(P01*dHg)-(s*H)-(Pvap1/(dW*g))#The height reduced in initial condition above supply in m\n",
"dH2=(P02*dHg)-(s*H)-(Pvap2/(dW*g))#The height reduced in final condition above supply in m\n",
"Z=dH1-dH2#The total height which the pump must be lowered at new location in m\n",
"\n",
"#output\n",
"print '(a)The cavitation parameter is %3.4f\\n(b)\\n The height reduced in initial condition above supply is %3.1f m\\n The height reduced in final condition above supply is %3.2f m\\n The total height which the pump must be lowered at new location is %3.2f m'%(s,dH1,dH2,Z)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"(a)The cavitation parameter is 0.0921\n",
"(b)\n",
" The height reduced in initial condition above supply is 6.7 m\n",
" The height reduced in final condition above supply is 5.03 m\n",
" The total height which the pump must be lowered at new location is 1.67 m\n"
]
}
],
"prompt_number": 19
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex 8.20 Page 377"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from math import degrees, atan\n",
"#input data\n",
"Dt=1#Impeller outlet diameter in m\n",
"Dh=0.5#Diameter of the boss in m\n",
"Ns=38#Specific speed of the pump \n",
"Ca=2#Velocity of the flow in m/s\n",
"H=6#Head which the pump has to drive in m\n",
"\n",
"#calculations\n",
"A=(3.1415/4)*(Dt**2-Dh**2)#Area of flow in m**2\n",
"Q=A*Ca#Discharge of the pump in m**3/s\n",
"N=(Ns*H**(3/4))/(Q**(1/2))#Pump speed in rpm\n",
"U1=(3.1415*Dh*N)/60#Blade inlet speed in m/s\n",
"b1=degrees(atan(Ca/U1))#Vane angle at the entry of the pump when the flow is axial at inlet in degree\n",
"\n",
"#output\n",
"print '(a)Pump speed is %0.2f rpm\\n(b)Vane angle at the entry of the pump when the flow is axial at inlet is %3.2f degree'%(N,b1)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"(a)Pump speed is 134.22 rpm\n",
"(b)Vane angle at the entry of the pump when the flow is axial at inlet is 29.65 degree\n"
]
}
],
"prompt_number": 20
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex 8.21 Page 378"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#input data\n",
"Q=0.180#Discharge of the pump in m**3/s\n",
"H=2#Head developed by the pump in m\n",
"Ns=250#Specific speed of the pump \n",
"SR=2.4#Speed ratio of the pump\n",
"FR=0.5#Flow ratio of the pump\n",
"g=9.81#Acceleration due to gravity in m/s**2\n",
"\n",
"#calculations\n",
"N=(Ns*(H**(3/4)))/(Q**(1/2))#Pump speed in rpm\n",
"U=SR*(2*g*H)**(1/2)#Peripheral velocity in m/s\n",
"D=(60*U)/(3.1415*N)#Runner diameter of the pump in m\n",
"Ca=FR*(2*g*H)**(1/2)#Velocity of flow in m/s\n",
"Dh=((D**2)-(Q*4/(Ca*3.14)))**(1/2)#Boss diameter of the pump in m\n",
"\n",
"#output\n",
"print '(a)Pump speed is %3.i rpm\\n(b)Runner diameter of the pump is %3.2f m\\n(c)Boss diameter of the pump is %3.2f m\\n'%(N,D,Dh)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"(a)Pump speed is 991 rpm\n",
"(b)Runner diameter of the pump is 0.29 m\n",
"(c)Boss diameter of the pump is 0.10 m\n",
"\n"
]
}
],
"prompt_number": 21
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex 8.22 Page 379"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#input data\n",
"Hs=2.5#Height of the pipe above suction reservoir in m\n",
"H1=18#Height of the pipe below supply reservoir in m\n",
"H=2.7#Total height through which the pump lifts water in m\n",
"Q1=2.75#Discharge of water used from supply reservoir in l/s\n",
"Qt=7.51#Discharge of water totally delivered in l/s\n",
"\n",
"#calculations\n",
"Hd=H-Hs#Height of the pipe from discharge reservoir in m\n",
"Qs=Qt-Q1#Discharge of water in delivery reservoir in l/s\n",
"nj=(Qs/Q1)*((Hs+Hd)/(H1-Hd))#Jet pump efficiency \n",
"\n",
"#output\n",
"print 'The efficiency of the jet pump is %0.1f'%(nj*100)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The efficiency of the jet pump is 26.3\n"
]
}
],
"prompt_number": 22
}
],
"metadata": {}
}
]
}
|