summaryrefslogtreecommitdiff
path: root/Turbomachines_by_A._V._Arasu/Ch3.ipynb
blob: d1cafb3843f103bd078854f77cf3d906236cfef0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
{
 "metadata": {
  "name": "",
  "signature": "sha256:dc07aa3042daa4cf3235ebcee99afeac70f8ff9726da7fd96f3108e76e2b9625"
 },
 "nbformat": 3,
 "nbformat_minor": 0,
 "worksheets": [
  {
   "cells": [
    {
     "cell_type": "heading",
     "level": 1,
     "metadata": {},
     "source": [
      "Chapter 3 - Centrifugal Compressors & Fans"
     ]
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Ex 3.1 Page 93"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "from __future__ import division\n",
      "#input data\n",
      "m=10#The mass flow rate of air into compressor in kg/s\n",
      "P1=1#The ambient air pressure in compressor in bar\n",
      "T1=293#The ambient air temperature in compressor in K\n",
      "N=20000#The running speed of the compressor in rpm\n",
      "nc=0.8#The isentropic efficiency of the compressor\n",
      "P02=4.5#The total exit pressure from the compressor in bar\n",
      "C1=150#The air entry velocity into the impeller eye in m/s\n",
      "Cx1=0#The pre whirl speed in m/s\n",
      "WS=0.95#The ratio of whirl speed to tip speed\n",
      "Cp=1005#The specific heat of air at constant pressure in J/kg.K \n",
      "R=287#The universal gas constant in J/kg.K\n",
      "Dh=0.15#The eye internal diamater in m\n",
      "r=1.4#Ratio of specific heats of air \n",
      "d=1.189#The density of the air in kg/m**3\n",
      "\n",
      "#calculations\n",
      "T01=T1+((C1**2)/(2*Cp))#The stagnation temperature at inlet in K\n",
      "P01=P1*(T01/T1)**(r/(r-1))#The stagnation pressure at inlet in bar\n",
      "T02s=(T01)*(P02/P01)**((r-1)/r)#The temperature after isentropic compression from P01 to P02 in K\n",
      "T=(T02s-T01)/nc#The actual rise in total temperature in K\n",
      "W=Cp*(10**-3)*(T)#The work done per unit mass in kJ/kg\n",
      "U2=((W*(10**3))/(WS))**(1/2)#The impeller tip speed in m/s\n",
      "Dt=(U2*60)/(3.1415*N)#The impeller tip diameter in m\n",
      "P=m*W#Power required to drive the compressor in kW\n",
      "d1=((P1*10**5)/(R*T1))#The density of the air entry in kg/m**3\n",
      "De=(((4*m)/(d*C1*3.14))+(Dh**2))**(1/2)#The eye external diameter in m\n",
      "\n",
      "#output\n",
      "print '(a)The actual rise in total temperature of the compressor is %3.1f K\\n(b)\\n      (1)The impeller tip speed is %3.2f m/s\\n      (2)The impeller tip diameter is %3.2f m\\n(c)The power required to drive the compressor is %3.1f kW\\n(d)The eye external diameter is %0.1f cm'%(T,U2,Dt,P,De*100)"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "(a)The actual rise in total temperature of the compressor is 182.6 K\n",
        "(b)\n",
        "      (1)The impeller tip speed is 439.55 m/s\n",
        "      (2)The impeller tip diameter is 0.42 m\n",
        "(c)The power required to drive the compressor is 1835.4 kW\n",
        "(d)The eye external diameter is 30.6 cm\n"
       ]
      }
     ],
     "prompt_number": 1
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Ex 3.2 Page 95"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "from math import degrees, atan\n",
      "#input data\n",
      "Q1=20#Discharge of air to the centrifugal compressor in m**3/s\n",
      "V1=Q1#Volume of rate is equal to the discharge in m**3/s\n",
      "P1=1#Initial pressure of the air to the centrifugal compressor in bar\n",
      "T1=288#Initial temperature of the air to the centrifugal compressor in K\n",
      "P=1.5#The pressure ratio of compression in centrifugal compressor\n",
      "C1=60#The velocity of flow of air at inlet in m/s\n",
      "Cr2=C1#The radial velocity of flow of air at outlet in m/s\n",
      "Dh=0.6#The inlet impeller diameter in m\n",
      "Dt=1.2#The outlet impeller diameter in m\n",
      "N=5000#The speed of rotation of centrifugal compressor in rpm\n",
      "n=1.5#polytropic index constant in the given law PV**n\n",
      "Cp=1005#The specific heat of air at constant pressure in J/kg.K \n",
      "\n",
      "#calculations\n",
      "U1=(3.14*Dh*N)/60#Peripheral velocity of impeller at inlet in m/s\n",
      "b11=degrees(atan(C1/U1))#The blade angle at impeller inlet in degree\n",
      "U2=(3.14*Dt*N)/60#Peripheral velocity of impeller top at outlet in m/s\n",
      "T2=T1*(P)**((n-1)/n)#Final temperature of the air to the centrifugal compressor in K\n",
      "Cx2=((Cp*(T2-T1))/U2)#The whirl component of absolute velocity in m/s\n",
      "Wx2=U2-Cx2#The exit relative velocity in m/s\n",
      "a2=degrees(atan(Cr2/Cx2))#The blade angle at inlet to casing in degree\n",
      "b22=degrees(atan(Cr2/Wx2))#The blade angle at impeller outlet in degree\n",
      "b1=Q1/(2*3.14*(Dh/2)*C1)#The breadth of impeller blade at inlet in m \n",
      "V2=(P1*V1*T2)/(T1*P*P1)#Volume flow rate of air at exit in m**3/s\n",
      "Q2=V2#Volume flow rate is equal to discharge in m**3/s\n",
      "b2=Q2/(2*3.14*(Dt/2)*Cr2)#The breadth of impeller blade at outlet in m\n",
      "\n",
      "#output\n",
      "print '(a)The blade and flow angles\\n   (1)The blade angle at impeller inlet is %3.1f degree\\n   (2)The blade angle at inlet to casing is %3.1f degree\\n   (3)The blade angle at impeller outlet is %3.2f degree\\n(b)Breadth of the impeller blade at inlet and outlet\\n   (1)The breadth of impeller blade at inlet is %3.3f m\\n   (2)The Volume flow rate of air at exit is %3.2f m**3/s\\n   (3)The breadth of impeller blade at outlet is %3.4f m'%(b11,a2,b22,b1,V2,b2)\n",
      "\n",
      "\n",
      "#comments\n",
      "#error in the first review is not printing the value of V2 which is corrected"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "(a)The blade and flow angles\n",
        "   (1)The blade angle at impeller inlet is 20.9 degree\n",
        "   (2)The blade angle at inlet to casing is 24.2 degree\n",
        "   (3)The blade angle at impeller outlet is 18.38 degree\n",
        "(b)Breadth of the impeller blade at inlet and outlet\n",
        "   (1)The breadth of impeller blade at inlet is 0.177 m\n",
        "   (2)The Volume flow rate of air at exit is 15.26 m**3/s\n",
        "   (3)The breadth of impeller blade at outlet is 0.0675 m\n"
       ]
      }
     ],
     "prompt_number": 2
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Ex 3.3 Page 97"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#input data\n",
      "m=14#The mass flow rate of air delivered to centrifugal compressor in kg/s\n",
      "P01=1#The inlet stagnation pressure in bar\n",
      "T01=288#The inlet stagnation temperature in K\n",
      "P=4#The stagnation pressure ratio\n",
      "N=200#The speed of centrifygal compressor in rps\n",
      "ss=0.9#The slip factor\n",
      "ps=1.04#The power input factor\n",
      "ntt=0.8#The overall isentropic efficiency\n",
      "r=1.4#The ratio of specific heats of air\n",
      "Cp=1005#The specific heat of air at constant pressure in J/kg.K\n",
      "\n",
      "#calculations\n",
      "pp=ss*ps*ntt#The pressure coefficient\n",
      "U2=((Cp*T01*((P**((r-1)/r))-1))/pp)**(1/2)#Peripheral velocity of impeller top at outlet in m/s\n",
      "D2=U2/(3.14*N)#The overall diameter of the impeller in m\n",
      "\n",
      "#output\n",
      "print 'The overall diameter of the impeller is %.f cm'%(D2*100)"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The overall diameter of the impeller is 69 cm\n"
       ]
      }
     ],
     "prompt_number": 3
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Ex 3.4 Page 98"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "from math import cos, pi, tan\n",
      "#input data\n",
      "D1=0.457#Impeller diameter at inlet in m\n",
      "D2=0.762#Impeller diameter at exit in m\n",
      "Cr2=53.4#Radial component of velocity at impeller exit in m/s\n",
      "ss=0.9#Slip factor\n",
      "N=11000#Impeller speed in rpm\n",
      "P2=2.23#Static pressure at impeller exit in bar\n",
      "T01=288#The inlet stagnation temperature in K\n",
      "P01=1.013#The inlet stagnation pressure in bar\n",
      "C1=91.5#Velocity of air leaving the guide vanes in m/s\n",
      "a11=70#The angle at which air leaves the guide vanes in degrees\n",
      "r=1.4#The ratio of specific heats of air\n",
      "R=287#The universal gas constant in J/kg.K\n",
      "Cp=1005#The specific heat of air at constant pressure in J/kg.K\n",
      "\n",
      "#calculations\n",
      "Cx1=C1*cos(a11*pi/180)#Inlet absolute velocity of air in tangential direction in m/s\n",
      "Ca1=Cx1*tan(a11*pi/180)#Radial component of absolute velocity at inlet in m/s\n",
      "U1=(3.14*D1*N)/(60)#Peripheral velocity of impeller at inlet in m/s\n",
      "Wx1=U1-Cx1#Relative whirl component of velocity at inlet in m/s\n",
      "W1=((Wx1**2)+(Ca1**2))**(1/2)#Relative velocity at inlet in m/s\n",
      "T1=T01-((C1**2)/(2*Cp))#The inlet air temperature in K\n",
      "a1=(r*R*T1)**(1/2)#The velocity of air in m/s\n",
      "M1r=W1/a1#Initial relative mach number\n",
      "U2=(3.14*D2*N)/60#Peripheral velocity of impeller top at exit in m/s\n",
      "W=(ss*U2**2)-(U1*Cx1)#Work done by the compressor in kJ/kg\n",
      "T02=(W/Cp)+T01#The outlet stagnation temperature in K\n",
      "Cx21=ss*U2#Absolute whirl component of velocity with slip consideration in m/s\n",
      "C2=((Cx21**2)+(Cr2**2))**(1/2)#The absolute velocity of air at exit in m/s\n",
      "T2=T02-((C2**2)/(2*Cp))#The exit temperature of air in K\n",
      "P02=P2*(T02/T2)**(r/(r-1))#The exit stagnation pressure of compressor in bar\n",
      "nc=(T01/(T02-T01))*(((P02/P01)**((r-1)/r))-1)#Total head isentropic efficiency\n",
      "\n",
      "#output\n",
      "print '(1)The inlet relative mach number is %3.3f\\n(2)The impeller total head efficiency is %0.1f %%'%(M1r,nc*100)"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "(1)The inlet relative mach number is 0.732\n",
        "(2)The impeller total head efficiency is 90.9 %\n"
       ]
      }
     ],
     "prompt_number": 4
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Ex 3.5 Page 100"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#input data\n",
      "N=16500#The running speed ofradial blade of a centrifugal compressor in rpm\n",
      "P=4#The total pressure ratio\n",
      "P01=1#The atmospheric pressure in bar\n",
      "T01=298#THe atmospheric temperature in K\n",
      "Dh=0.16#The hub diameter at impeller eye in m\n",
      "Ca=120#The axial velocity at inlet in m/s\n",
      "C1=Ca#The absolute velocity at inlet in m/s\n",
      "sp=0.7#The pressure coefficient\n",
      "C3=120#The absolute velocity at diffuser exit in m/s\n",
      "m=8.3#The mass flow rate in kg/s\n",
      "nc=0.78#The adiabatic total-to-total efficiency\n",
      "r=1.4#The ratio of specific heats of air\n",
      "R=287#The universal gas constant in J/kg.K\n",
      "Cp=1005#The specific heat of air at constant pressure in J/kg.K\n",
      "\n",
      "#calculations\n",
      "T1=T01-((C1**2)/(2*Cp))#The inlet temperature in K\n",
      "P1=P01*(T1/T01)**(r/(r-1))#The inlet pressure in bar\n",
      "d1=(P1*10**5)/(R*T1)#The inlet density of air in kg/m**3\n",
      "Dt=(((4*m)/(3.14*d1*Ca))+(0.16**2))**(1/2)#The eye tip diameter in m\n",
      "T=((T01)*((P**((r-1)/r))-1))/nc#The overall change in temperature in K\n",
      "ssps=sp/nc#The product of slip factor and power factor\n",
      "U2=(T*Cp/ssps)**(1/2)#Peripheral velocity of impeller top at exit in m/s\n",
      "D2=(U2*60)/(3.14*N)#The impeller tip diameter in m\n",
      "Uh=(3.14*Dh*N)/60#Peripheral velocity of eye hub in m/s\n",
      "bh=degrees(atan(C1/Uh))#Blade angle at eye hub in degree\n",
      "Ut=(3.14*Dt*N)/60#Peripheral velocity of eye tip in m/s\n",
      "bt=degrees(atan(C1/Ut))#Blade angle at eye tip in degree\n",
      "T03=T01+T#Temperature at the exit in K\n",
      "T3=T03-((C3**2)/(2*Cp))#Exit static temperature in K\n",
      "P3=(P*P01)*(T3/T03)**(r/(r-1))#Exit static pressure in bar\n",
      "W=m*Cp*(T03-T01)*10**-6#Power required to drive the compressor in mW\n",
      "#output\n",
      "print '(a)The main dimensions of the impeller are\\n    (1)Eye tip diameter is %3.3f m\\n    (2)Impeller tip diameter is %3.3f m\\n    (3)Blade angle at the eye hub is %3.2f degree\\n       Blade angle at the eye tip is %3.2f degree\\n(b)    (1)The static exit temperature is %3.1f K\\n    (2)The static exit pressure is %3.3f bar\\n(c)The power required is %3.3f mW'%(Dt,D2,bh,bt,T3,P3,W)"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "(a)The main dimensions of the impeller are\n",
        "    (1)Eye tip diameter is 0.325 m\n",
        "    (2)Impeller tip diameter is 0.528 m\n",
        "    (3)Blade angle at the eye hub is 40.98 degree\n",
        "       Blade angle at the eye tip is 23.15 degree\n",
        "(b)    (1)The static exit temperature is 476.5 K\n",
        "    (2)The static exit pressure is 3.796 bar\n",
        "(c)The power required is 1.549 mW\n"
       ]
      }
     ],
     "prompt_number": 5
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Ex 3.6 Page 102"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "from math import sin\n",
      "#input data\n",
      "Dt=0.25#Tip diameter of the eye in m\n",
      "Dh=0.1#Hub diameter of the eye in m\n",
      "N=120#Speed of the compressor in rps\n",
      "m=5#Mass of the air handled in kg/s\n",
      "P01=102#Inlet stagnation pressure in kPa\n",
      "T01=335#Inlet total temperature in K\n",
      "r=1.4#The ratio of specific heats of air\n",
      "R=287#The universal gas constant in J/kg.K\n",
      "Cp=1005#The specific heat of air at constant pressure in J/kg.K\n",
      "\n",
      "#calculations\n",
      "d1=(P01*10**3)/(R*T01)#Density at the inlet of inducer in kg/m**3\n",
      "Dm=(Dh+Dt)/2#Mean impeller diameter in m\n",
      "b=(Dt-Dh)/2#Impeller blade height in m\n",
      "C1=m/(d1*3.14*Dm*b)#Axial velocity component at the inlet in m/s\n",
      "T11=T01-((C1**2)/(2*Cp))#Inlet temperature in K\n",
      "P11=P01*(T11/T01)**(r/(r-1))#Inlet pressure in kPa\n",
      "d11=(P11*10**3)/(R*T11)#Inlet density with mean impeller diameter an blade height in kg/m**3\n",
      "C11=m/(d11*3.14*Dm*b)#Axial velocity component at inlet using mean blade values in m/s\n",
      "T12=T01-((C1**2)/(2*Cp))#Initial temperature using modified axial velocity in K\n",
      "P12=P01*(T12/T01)**(r/(r-1))#Initial pressure at inlet usin modified axial velocity in kPa\n",
      "d12=(P12*10**3)/(R*T12)#Inlet density with modified axial velocity in kg/m**3\n",
      "C12=m/(d12*3.14*Dm*b)#Axial velocity component at inlet using modified axial velocity in m/s\n",
      "U1=3.14*Dm*N#Peripheral velocity of impeller at inlet in m/s\n",
      "b1=degrees(atan(C12/U1))#The blade angle at impeller inlet in degree\n",
      "W11=C12/sin(b1*pi/180)#Relative velocity at inlet in m/s\n",
      "Mr11=W11/(r*R*T12)**(1/2)#Initial relative mach number\n",
      "Ca=C12#Axial velocity at IGV in m/s\n",
      "W12=Ca#Relative velocity at inlet usin IGV in m/s\n",
      "a1=degrees(atan(Ca/U1))#Air angle at IGV exit in degree\n",
      "C13=Ca/sin(a1*pi/180)#The velocity of flow of air at inlet in m/s\n",
      "T13=T01-((C13**2)/(2*Cp))#Initial temperature using IGV in K\n",
      "Mr12=W12/(r*R*T13)**(1/2)#Initial relative mach number using IGV \n",
      "\n",
      "#output5\n",
      "print '(1)Without using IGV\\n    (a)The air angle at inlet of inducer blade is %3.2f degree\\n    (b)The inlet relative mach number is %3.3f\\n(2)With using IGV\\n    (a))The air angle at inlet of inducer blade is %3.2f degree\\n    (b)The inlet relative mach number is %3.3f'%(b1,Mr11,a1,Mr12)"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "(1)Without using IGV\n",
        "    (a)The air angle at inlet of inducer blade is 61.23 degree\n",
        "    (b)The inlet relative mach number is 0.377\n",
        "(2)With using IGV\n",
        "    (a))The air angle at inlet of inducer blade is 61.23 degree\n",
        "    (b)The inlet relative mach number is 0.332\n"
       ]
      }
     ],
     "prompt_number": 6
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Ex 3.7 Page 105"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#input data\n",
      "Cr2=28#Radial component of velocity at impeller exit in m/s\n",
      "ss=0.9#The slip factor\n",
      "U2=350#The impeller tip speed in m/s\n",
      "A=0.08#The impeller area in m**2\n",
      "nc=0.9#Total head isentropic efficiency\n",
      "T01=288#The ambient air temperature in K\n",
      "P01=1#The ambient air pressure in bar\n",
      "r=1.4#The ratio of specific heats of air\n",
      "R=287#The universal gas constant in J/kg.K\n",
      "Cp=1005#The specific heat of air at constant pressure in J/kg.K\n",
      "\n",
      "#calculations\n",
      "Cx2=ss*U2#outlet absolute velocity of air in tangential direction in m/s\n",
      "C2=((Cx2**2)+(Cr2**2))**(1/2)#Axial velocity component at the outlet in m/s\n",
      "T=(ss*(U2**2))/Cp#Total change in temperature in K\n",
      "T02=T+T01#The final ambient air temperature in K\n",
      "T2=T02-((C2**2)/(2*Cp))#The actual final air temperature in K\n",
      "M2=(C2)/(r*R*T2)**(1/2)#Exit absolute mach number\n",
      "P=((1+(ss*T/T01))**(r/(r-1)))#The overall pressure ratio\n",
      "P02=P*P01#The final ambient pressure in bar\n",
      "P2=P02*(T2/T02)**(r/(r-1))#The absolute final pressure in bar\n",
      "d2=(P2*10**5)/(R*T2)#The final density of air at exit in kg/m**3\n",
      "m=d2*A*Cr2#The mass flow rate in kg/s\n",
      "\n",
      "#output\n",
      "print '(a)The exit absolute mach number is %3.4f\\n(b)The mass flow rate is %3.4f kg/s'%(M2,m)"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "(a)The exit absolute mach number is 0.8458\n",
        "(b)The mass flow rate is 3.9423 kg/s\n"
       ]
      }
     ],
     "prompt_number": 7
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Ex 3.8 Page 107"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#input data\n",
      "Dh=0.175#Hub diameter of the eye in m\n",
      "Dt=0.3125#Tip diameter of the eye in m\n",
      "m=20#Mass of the air handled in kg/s\n",
      "N=16000#Speed of the compressor in rpm\n",
      "T01=288#The ambient air temperature in K\n",
      "P01=100#The ambient air pressure in kPa\n",
      "Ca=152#The axial component of inlet velocity of eye in m/s\n",
      "r=1.4#The ratio of specific heats of air\n",
      "R=287#The universal gas constant in J/kg.K\n",
      "Cp=1005#The specific heat of air at constant pressure in J/kg.K\n",
      "\n",
      "\n",
      "#calculations\n",
      "A=(3.14/4)*((Dt**2)-(Dh**2))#Annulus area of flow at the impeller eye in m**2\n",
      "Ut=(3.1415*Dt*N)/60#Impeller eye tip speed in m/s\n",
      "Uh=(3.1415*Dh*N)/60#Impeller eye hub speed in m/s\n",
      "a1=90-20#Blade angle at inlet in degree \n",
      "C1=Ca/sin(a1*pi/180)#The air entry velocity into the impeller eye in m/s\n",
      "T1=T01-((C1**2)/(2*Cp))#The actual inlet air temperature in K\n",
      "P1=P01*(T1/T01)**(r/(r-1))#The actual inlet air pressure in kPa\n",
      "d1=P1/(R*T1)#The initial density of air at entry in kg/m**3\n",
      "b1h=degrees(atan(Ca/(Uh-(Ca/tan(a1*pi/180)))))#Impeller angle at the hub in degree\n",
      "b1t=degrees(atan(Ca/(Ut-(Ca/tan(a1*pi/180)))))#Impeller angle at the tip of eye in degree\n",
      "Cx1=Ca/tan(a1*pi/180)#Inlet absolute velocity of air in tangential direction in m/s\n",
      "Wx1=Ut-Cx1#Relative whirl component of velocity at inlet in m/s\n",
      "W1=((Wx1**2)+(Ca**2))**(1/2)#Relative velocity at inlet in m/s\n",
      "Mr1=W1/(r*R*T1)**(1/2)#Maximum mach number at the eye\n",
      "\n",
      "#output\n",
      "print '(a)\\n    (1)The impeller eye tip speed is %3.2f m/s\\n    (2)The impeller eye hub speed is %3.2f m/s\\n    (3)The impeller angle at the hub is %i degree\\n    (4)Impeller angle at the tip of eye is %3.2f degree\\n(b)The maximum mach number at the eye is %3.2f'%(Ut,Uh,b1h,b1t,Mr1)"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "(a)\n",
        "    (1)The impeller eye tip speed is 261.79 m/s\n",
        "    (2)The impeller eye hub speed is 146.60 m/s\n",
        "    (3)The impeller angle at the hub is 59 degree\n",
        "    (4)Impeller angle at the tip of eye is 36.36 degree\n",
        "(b)The maximum mach number at the eye is 0.77\n"
       ]
      }
     ],
     "prompt_number": 8
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Ex 3.9 Page 109"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#input data\n",
      "P1=100#The air in take pressure in kPa\n",
      "T1=309#The air in take temperature in K\n",
      "H=0.750#Pressure head developed in mm W.G\n",
      "P=33#Input power to blower in kW\n",
      "nb=0.79#Blower efficiency\n",
      "nm=0.83#Mechanical efficiency\n",
      "r=1.4#The ratio of specific heats of air\n",
      "R=287#The universal gas constant in J/kg.K\n",
      "Cp=1005#The specific heat of air at constant pressure in J/kg.K\n",
      "g=9.81#Acceleration due to gravity in m/s**2\n",
      "dw=1000#Density of water in kg/m**3\n",
      "\n",
      "#calculations\n",
      "d=(P1*10**3)/(R*T1)#Density of air flow at inlet in kg/m**3\n",
      "dP=dw*g*H#Total change in pressure in N/m**2\n",
      "IW=dP/d#Ideal work done in J/kg\n",
      "Wm=IW/nb#Actual work done per unit mass flow rate in J/kg\n",
      "W=P*nm#Actual power input in kW\n",
      "m=(W*10**3)/Wm#Mass flow rate in kg/s\n",
      "Q=m/d#Volume flow rate in m**3/s\n",
      "P2=P1+(dP/10**3)#The exit pressure of air in kPa\n",
      "T2=T1+(Wm/(Cp))#The exit temperature of air in K\n",
      "\n",
      "#output\n",
      "print '(a)The mass flow rate of air is %3.3f kg/s\\n(b)The volume flow rate of air is %3.2f m**3/s\\n(c)\\n    (1)The exit pressure of air is %3.2f kPa\\n    (2)The exit temperature of air is %3.2f K'%(m,Q,P2,T2)"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "(a)The mass flow rate of air is 3.316 kg/s\n",
        "(b)The volume flow rate of air is 2.94 m**3/s\n",
        "(c)\n",
        "    (1)The exit pressure of air is 107.36 kPa\n",
        "    (2)The exit temperature of air is 317.22 K\n"
       ]
      }
     ],
     "prompt_number": 9
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Ex 3.10 Page 110"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#input data\n",
      "H=0.075#Pressure developed by a fan in m W.G\n",
      "D2=0.89#The impeller diameter in m\n",
      "N=720#The running speed of the fan in rpm\n",
      "b22=39#The blade air angle at the tip in degree\n",
      "b2=0.1#The width of the impeller in m\n",
      "Cr=9.15#The constant radial velocity in m/s\n",
      "d=1.2#Density of air in kg/m**3\n",
      "r=1.4#The ratio of specific heats of air\n",
      "R=287#The universal gas constant in J/kg.K\n",
      "Cp=1005#The specific heat of air at constant pressure in J/kg.K\n",
      "g=9.81#Acceleration due to gravity in m/s**2\n",
      "dw=1000#Density of water in kg/m**3\n",
      "\n",
      "#calculations\n",
      "IW=(dw*g*H)/d#Ideal work done in J/kg\n",
      "U2=(3.1415*D2*N)/60#The impeller tip speed in m/s\n",
      "Wx2=Cr/tan(b22*pi/180)#Relative whirl component of velocity at outlet in m/s\n",
      "Cx2=U2-(Wx2)#Outlet absolute velocity of air in tangential direction in m/s\n",
      "Wm=U2*Cx2#Actual work done per unit mass flow rate in J/kg\n",
      "nf=IW/Wm#Fan efficiency\n",
      "Q=3.1415*D2*b2*Cr#The discharge of the air by fan in m**3/s\n",
      "m=d*Q#Mass flow rate of the air by the fan in kg/s\n",
      "W=m*Wm*10**-3#Power required to drive the fan in kW\n",
      "R=1-(Cx2/(2*U2))#Stage reaction of the fan\n",
      "sp=2*Cx2/U2#The pressure coefficient\n",
      "\n",
      "#output\n",
      "print '(a)The fan efficiency is %0.1f %%\\n(b)The Discharge of air by the fan is %3.3f m**3/s\\n(c)The power required to drive the fan is %3.4f kW\\n(d)The stage reaction of the fan is %0.2f %%\\n(e)The pressure coefficient of the fan is %3.3f'%(nf*100,Q,W,R*100,sp)"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "(a)The fan efficiency is 82.1 %\n",
        "(b)The Discharge of air by the fan is 2.558 m**3/s\n",
        "(c)The power required to drive the fan is 2.2919 kW\n",
        "(d)The stage reaction of the fan is 66.84 %\n",
        "(e)The pressure coefficient of the fan is 1.326\n"
       ]
      }
     ],
     "prompt_number": 10
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Ex 3.11 Page 111"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#input data\n",
      "\n",
      "b22=30#The blade air angle at the tip in degrees\n",
      "D2=0.466#The impeller diameter in m\n",
      "Q=3.82#The discharge of the air by fan in m**3/s\n",
      "m=4.29#Mass flow rate of the air by the fan in kg/s\n",
      "H=0.063#Pressure developed by a fan in m W.G\n",
      "pi2=0.25#Flow coefficient at impeller exit\n",
      "W=3#Power supplied to the impeller in kW\n",
      "r=1.4#The ratio of specific heats of air\n",
      "R=287#The universal gas constant in J/kg.K\n",
      "Cp=1005#The specific heat of air at constant pressure in J/kg.K\n",
      "g=9.81#Acceleration due to gravity in m/s**2\n",
      "dw=10**3#Density of water in kg/m**3\n",
      "\n",
      "#calculations\n",
      "IW=Q*dw*g*H*(10**-3)#Ideal work done in kW\n",
      "nf=IW/W#Fan efficiency\n",
      "U2=(((W*10**3)/m)/(1-(pi2/tan(b22*pi/180))))**(1/2)#The impeller tip speed in m/s\n",
      "Cr2=pi2*U2#The radial velocity at exit in m/s\n",
      "Cx2=U2-(Cr2/tan(b22*pi/180))#Outlet absolute velocity of air in tangential direction in m/s\n",
      "sp=2*Cx2/U2#Presuure coefficient of the fan\n",
      "R=1-(Cx2/(2*U2))#Degree of reaction of the fan\n",
      "N=(U2*60)/(3.141592*D2)#Rotational speed of the fan in rpm\n",
      "b2=Q/(3.14*D2*Cr2)#Impeller width at the exit in m\n",
      "\n",
      "#output\n",
      "print '(a)The fan efficiency is %0.1f %%\\n(b)The pressure coefficient is %3.3f\\n(c)The degree of reaction of the fan is %0.1f %%\\n(d)The rotational speed of the fan is %3.1f rpm\\n(e)The impeller width at exit is %0.1f cm'%(nf*100,sp,R*100,N,b2*100)"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "(a)The fan efficiency is 78.7 %\n",
        "(b)The pressure coefficient is 1.134\n",
        "(c)The degree of reaction of the fan is 71.7 %\n",
        "(d)The rotational speed of the fan is 1439.3 rpm\n",
        "(e)The impeller width at exit is 29.7 cm\n"
       ]
      }
     ],
     "prompt_number": 11
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Ex 3.12 Page 113"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#input data\n",
      "N=3000#The running speed of the blower in rpm\n",
      "D2=0.75#The impeller diameter in m\n",
      "Cr2=57#The radial velocity at exit in m/s\n",
      "Cx1=0#Inlet absolute velocity of air in tangential direction in m/s\n",
      "DR=0.58#Degree of reaction of the blower\n",
      "nc=0.75#Total-to-total efficiency\n",
      "r=1.4#The ratio of specific heats of air\n",
      "R=287#The universal gas constant in J/kg.K\n",
      "Cp=1.005#The specific heat of air at constant pressure in J/kg.K\n",
      "T01=298#The inlet stagnation temperature in K\n",
      "P01=1*101.325#The inlet stagnation pressure in kPa\n",
      "\n",
      "#calculations\n",
      "U2=(3.1415*D2*N)/60#The impeller tip speed in m/s\n",
      "Cx2=2*(1-DR)*U2#Outlet absolute velocity of air in tangential direction in m/s\n",
      "Wx2=U2-Cx2#Relative whirl component of velocity at outlet in m/s\n",
      "b22=degrees(atan(Cr2/Wx2))#The blade air angle at the tip in degree\n",
      "Wm=U2*Cx2*10**-3#Actual work done per unit mass flow rate when Cx1=0 in kW/(kg/s)\n",
      "T=Wm/Cp#Total change in temperature in blower in K\n",
      "P=(1+(nc*(T/T01)))**(r/(r-1))#Total pressure ratio in the blower\n",
      "P02=P*P01#The outlet stagnation pressure from blower in kPa\n",
      "\n",
      "#output\n",
      "print '(a)The exit blade angle is %3.1f degree\\n(b)The power input to the blower is %3.3f kW/(kg/s)\\n(c)The exit stagnation pressure is %3.2f kPa'%(b22,Wm,P02)"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "(a)The exit blade angle is 71.7 degree\n",
        "(b)The power input to the blower is 11.658 kW/(kg/s)\n",
        "(c)The exit stagnation pressure is 112.06 kPa\n"
       ]
      }
     ],
     "prompt_number": 12
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Ex 3.13 Page 114"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#input data\n",
      "D1=0.18#The impeller inner diameter in m\n",
      "D2=0.2#The impeller outer diameter in m\n",
      "C1=21#The absolute velocity at the entry in m/s\n",
      "C2=25#The absolute velocity at the exit in m/s\n",
      "W1=20#The relative velocity at the entry in m/s\n",
      "W2=17#The relative velocity at the exit in m/s\n",
      "N=1450#The running speed of the fan in rpm\n",
      "m=0.5#The mass flow rate of the air in fan in kg/s\n",
      "nm=0.78#The motor efficiency of the fan \n",
      "d=1.25#The density of the air in kg/m**3\n",
      "r=1.4#The ratio of specific heats of air\n",
      "R=287#The universal gas constant in J/kg.K\n",
      "Cp=1.005#The specific heat of air at constant pressure in J/kg.K\n",
      "\n",
      "#calculations\n",
      "U1=(3.14*D1*N)/60#Peripheral velocity of impeller at inlet in m/s\n",
      "U2=(3.14*D2*N)/60#The impeller tip speed in m/s\n",
      "dH=(((U2**2)-(U1**2))/2)+(((W1**2)-(W2**2))/2)#The actual total rise in enthalpy in kJ/kg\n",
      "dH0=dH+(((C2**2)-(C1**2))/2)#The stage total isentropic rise in enthalpy in kJ/kg\n",
      "dP0=d*dH0#The stage total pressure rise in N/m**2\n",
      "dP=d*dH#The actual total rise in pressure in N/m**2\n",
      "R=dP/dP0#The degree of reaction of the  fan\n",
      "W=m*(dH0)#The work done by the fan per second in W\n",
      "P=W/nm#The power input to the fan in W\n",
      "\n",
      "#output\n",
      "print '(a)The stage total pressure rise is %3.1f N/m**2\\n(b)The degree of reaction of the fan is %3.3f\\n(c)The power input to the fan is %3.1f W'%(dP0,R,P)"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "(a)The stage total pressure rise is 211.7 N/m**2\n",
        "(b)The degree of reaction of the fan is 0.457\n",
        "(c)The power input to the fan is 108.6 W\n"
       ]
      }
     ],
     "prompt_number": 13
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Ex 3.14 Page 116"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#input data\n",
      "dH=0.14#Rise in static pressure of the air by fan in m of water\n",
      "N=650#The running speed of the fan in rpm\n",
      "P=85*0.735#Power consumed by the fan in kW\n",
      "H1=0.75#The static pressure of the air at the fan in m of Hg\n",
      "T1=298#The static pressure at the fan of air in K\n",
      "m=260#Mass flow rate of air in kg/min\n",
      "dHg=13590#Density of mercury in kg/m**3\n",
      "dw=1000#Density of water in kg/m**3\n",
      "g=9.81#Acceleration due to gravity in m/s**2\n",
      "R=287#The universal gas constant in J/kg.K\n",
      "\n",
      "#calculations\n",
      "P1=dHg*g*H1*10**-3#The inlet static pressure in kPa\n",
      "dP=dw*g*dH*10**-3#The total change in static pressures at inlet and outlet in kPa\n",
      "P2=P1+dP#The exit static pressure in kPa\n",
      "d1=(P1*10**3)/(R*T1)#The inlet density of the air in kg/m**3\n",
      "Q=m/d1#The volume flow rate of air in fan in m**3/min\n",
      "\n",
      "#output\n",
      "print '(a)The exit static pressure of air in the fan is %3.2f kPa\\n(b)The volume flow rate of the air is %3.1f m**3/min'%(P2,Q)"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "(a)The exit static pressure of air in the fan is 101.36 kPa\n",
        "(b)The volume flow rate of the air is 222.4 m**3/min\n"
       ]
      }
     ],
     "prompt_number": 14
    }
   ],
   "metadata": {}
  }
 ]
}