1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
|
{
"metadata": {
"name": ""
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Chapter 9 : Agitation"
]
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 9.3 - Page No :389\n"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"# Calculate the power per unit volume and the torque per unit volume\n",
"\n",
"import math\n",
"\n",
"# Variables\n",
"Nblades = 4.; \t\t\t # no. of blades\n",
"d = 9/12.; \t\t\t #[ft] - diameter of the impeller\n",
"dt = 30/12.; \t\t\t #[ft] - diameter of the math.tank\n",
"Nbaffles = 4. \t\t\t # no. of baffles\n",
"h = 30.; \t \t\t # [inch] - height of unit\n",
"mu = 10.; \t\t\t #[cP] - vismath.cosity of fluid_\n",
"sg = 1.1; \t\t \t # specific gravity of fluid_\n",
"s = 300. \t\t\t #[rpm] - speed of agitator\n",
"CbyT = 0.3; \n",
"\n",
"# Calculations\n",
"V = (math.pi*dt**3)/4; \t #volume of math.tank in ft**3\n",
"V1 = V*7.48; \t\t\t #[gal] - volume of math.tank in gallons\n",
"mu = mu*(6.72*10**-4); #[lb/ft*sec]\n",
"p = sg*62.4; \t\t\t #[lb/ft**3] - density of fluid_\n",
"N = s/60.; \t\t\t #[rps] - impeller speed in revolutions per second\n",
"Nre = ((d**2)*N*p)/mu;\n",
"\n",
"# Results\n",
"print \"Nre = %.2e\"%Nre\n",
"print \" Therefore the agitator operates in the turbulent region\"\n",
"Npo = 1.62;\n",
"gc = 32.174;\n",
"P = (Npo*(p*(N**3)*(d**5)))/(gc*550);\n",
"Cf = 63025.;\n",
"Tq = (P/s)*Cf;\n",
"PbyV = P/V;\n",
"PbyV1 = P/V1;\n",
"TqbyV = Tq/V;\n",
"TqbyV1 = Tq/V1;\n",
"print \" The power per unit volume and the torque per unit volume is \\nP/V = %.2ef hp/ft**3 = %.2e \\\n",
"hp/gal \\nTq/V = %.2f in*lb/ft**3 = %.3f in*lb/gal\"%(PbyV,PbyV1,TqbyV,TqbyV1);"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Nre = 2.87e+04\n",
" Therefore the agitator operates in the turbulent region\n",
" The power per unit volume and the torque per unit volume is \n",
"P/V = 1.52e-02f hp/ft**3 = 2.03e-03 hp/gal \n",
"Tq/V = 3.19 in*lb/ft**3 = 0.427 in*lb/gal\n"
]
}
],
"prompt_number": 6
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 9.4 - Page No :391\n"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"# designing a reactor of capacity\n",
"\n",
"# Variables\n",
"Tpilot = 30.;\n",
"Tlab = 10.;\n",
"N1 = 690.;\n",
"N2 = 271.;\n",
"D2 = 3.;\n",
"D1 = 1.;\n",
"\n",
"# Calculations\n",
"n = (math.log(N1/N2))/(math.log(D2/D1));\n",
"V = 12000/7.48; \t\t\t #[ft**3]\n",
"T = ((4.*V)/math.pi)**(1./3); \t\t\t #[ft]\n",
"R = 12.69/(30/12.);\n",
"N3 = N2*(1./R)**n; \t\t\t #[rpm] - impeller speed in the reactor\n",
"\n",
"# Results\n",
"print \"impeller speed in rpm = %f\"%round(N3,4)\n",
"D3 = 0.75*R; \t\t\t #[ft] - reactor impeller diameter\n",
"print \"reactor impeller diameter in ft = %.3f\"%D3\n",
"P = 0.1374*((N3/N2)**3)*(R**5);\n",
"print \"power in hp = %.3f\"%P\n",
"Cf = 63025.;\n",
"Tq = (P/N3)*Cf; \t\t\t #[inch*lb]\n",
"print \"torque in inch*lb = %.0f\"%Tq\n",
"print \"At this point, the design is complete. \\nA sarc ard size impeller would be chosen as \\\n",
" well as a tan ard size motor7.5 hp or 10 hp\"\n",
"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"impeller speed in rpm = 68.044500\n",
"reactor impeller diameter in ft = 3.807\n",
"power in hp = 7.329\n",
"torque in inch*lb = 6789\n",
"At this point, the design is complete. \n",
"A sarc ard size impeller would be chosen as well as a tan ard size motor7.5 hp or 10 hp\n"
]
}
],
"prompt_number": 19
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 9.5 - Page No : 393\n"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"'''\n",
"Suppose the pilot plant data in Table 9.8 never existed. Use the\n",
"laboratory data only from Example 9.4 to design the 12 000-gal reactor.\n",
"'''\n",
"\n",
"from numpy import *\n",
"\n",
"\n",
"# Variables\n",
"# given\n",
"n = array([0.5, 0.6, 0.7, 0.8, 0.9, 1.0]);\n",
"D2 = 3.806;\n",
"D1 = 0.25;\n",
"R = D2/D1;\n",
"N1 = 690.;\n",
"\n",
"# Calculations\n",
"N2 = N1*((D1/D2)**n);\n",
"P1 = 9.33*10**-3; \t\t\t #[hp]\n",
"P2 = P1*R**(5.-3*n);\n",
"\n",
"# Results\n",
"print \" n N,rpm P,hp\"\n",
"for i in range(6):\n",
" print \" %f %4.0f %4.0f\"%(n[i],N2[i],P2[i]);\n",
"\n",
"\n",
"# Answers may be differ because of rounding error."
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
" n N,rpm P,hp\n",
" 0.500000 177 128\n",
" 0.600000 135 57\n",
" 0.700000 103 25\n",
" 0.800000 78 11\n",
" 0.900000 60 5\n",
" 1.000000 45 2\n"
]
}
],
"prompt_number": 29
}
],
"metadata": {}
}
]
}
|