1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
|
{
"metadata": {
"name": ""
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Chapter 6 : Turbulent Flow"
]
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 6.1 - Page No :200\n"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"'''\n",
"determine\n",
"whether the flow is laminar, turbulent, or transitional. At M\u2019F, the viscosity of\n",
"water is 0.8007 cP, and the density of water is 0.99568 g cmm3.\n",
"'''\n",
"\n",
"import math \n",
"\n",
"\n",
"# Variables\n",
"# given\n",
"q = 50.; \t\t\t #[gal/min] - volumetric flow rate\n",
"d = 2.067/12; \t \t\t #[ft] - diameter\n",
"A = 0.02330; \t\t #[ft**2] - flow area\n",
"p = 0.99568*62.43; \t\t\t #[lb/ft**3] - density of water at 86degF\n",
"mu = 0.8007*6.72*10**-4; \t\t #[lb/ft*sec] - viscosity of water at 86degF\n",
"u = q/(60.*7.48*A);\n",
"\n",
"# Calculations\n",
"# using the formula Nre = d*u*p/mu;\n",
"Nre = round((d*u*p)/mu,-2);\n",
"\n",
"# Results\n",
"print \"Nre = \",Nre\n",
"print \"Hence the flow is turbulent. Note also that Nre is dimensionless\";\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Nre = 95100.0\n",
"Hence the flow is turbulent. Note also that Nre is dimensionless\n"
]
}
],
"prompt_number": 4
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 6.2 - Page No :202\n"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"'''\n",
"Calculate the location along a flat plate (Fig. 6.2) where transition\n",
"would be expected to occur for a free stream velocity of 4.78fts-\u2019 for water at\n",
"86\u00b0F.\n",
"'''\n",
"# Variables\n",
"# given\n",
"p = 0.99568*62.43; \t\t\t #[lb/ft**3] - density of water at 86degF\n",
"mu = 0.8007*6.72*10**-4; \t\t #[lb/ft*sec] - viscosity of water at 86degF\n",
"u = 4.78; \t\t\t #[ft/sec] - free stream velocity \n",
"Nre = 5.*10**5; \t\t\t # the lower limit for the transition reynolds number range is substituted\n",
"\n",
"# Calculations\n",
"x = (Nre*mu)/(p*u);\n",
"\n",
"# Results\n",
"print \"x = %.1f\"%x\n",
"print \"Thus the transition could star at about %.2f ft. \\\n",
"\\nThe reynolds number at the upper end of the transition range is %.0e .\\\n",
"\\nThe value of x at this location is ten times then the value obtained above i.e %.1f ft\"%(x,Nre*10,x*10)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"x = 0.9\n",
"Thus the transition could star at about 0.91 ft. \n",
"The reynolds number at the upper end of the transition range is 5e+06 .\n",
"The value of x at this location is ten times then the value obtained above i.e 9.1 ft\n"
]
}
],
"prompt_number": 5
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 6.3 - Page No :212\n"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"# Calculate the mean velocity for the flow data in Table 6.2.\n",
"\n",
"# Variables\n",
"# given\n",
"t = [0, 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.10, 0.11, 0.12];\n",
"Ux = [3.84, 3.50, 3.80, 3.60, 4.20, 4.00, 3.00, 3.20, 3.40, 3.00, 3.50, 4.30, 3.80];\n",
"Uy = [0.43, 0.21, 0.18, 0.30, 0.36, 0.28, 0.35, 0.27, 0.21, 0.22, 0.23, 0.36, 0.35];\n",
"Uz = [0.19, 0.16, 0.17, 0.13, 0.09, 0.10, 0.16, 0.15, 0.13, 0.18, 0.17, 0.18, 0.17];\n",
"# using the formula AREA = [deltat/2]*[U1+U13+2*[U2+U3+U4+U5+U6+U7+U8+U9+U10+U11+U12]]\n",
"# for Uxmean\n",
"deltat = 0.01;\n",
"T = t[12]-t[0];\n",
"\n",
"# Calculation and Results\n",
"AREA = (deltat/2)*(Ux[0]+Ux[12]+2*(Ux[1]+Ux[2]+Ux[3]+Ux[4]+Ux[5]+Ux[6]+Ux[7]+Ux[8]+Ux[9]+Ux[10]+Ux[11]));\n",
"Uxmean = AREA/T;\n",
"print \"Uxmean = %.2f m s**-1\"%Uxmean\n",
"\n",
"# for Uymean\n",
"deltat = 0.01;\n",
"AREA = (deltat/2)*(Uy[0]+Uy[12]+2*(Uy[1]+Uy[2]+Uy[3]+Uy[4]+Uy[5]+Uy[6]+Uy[7]+Uy[8]+Uy[9]+Uy[10]+Uy[11]));\n",
"Uymean = AREA/T;\n",
"print \"Uymean = %.2f m s**-1\"%Uymean\n",
"\n",
"# for Uzmean\n",
"AREA = (deltat/2)*(Uz[0]+Uz[12]+2*(Uz[1]+Uz[2]+Uz[3]+Uz[4]+Uz[5]+Uz[6]+Uz[7]+Uz[8]+Uz[9]+Uz[10]+Uz[11]));\n",
"Uzmean = AREA/T;\n",
"print \"Uzmean = %.2f m s**-1\"%Uzmean\n",
"U = (Uxmean**2+Uymean**2+Uzmean**2)**(1./2);\n",
"print \"U = %.3f m s**-1\"%U\n",
"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Uxmean = 3.61 m s**-1\n",
"Uymean = 0.28 m s**-1\n",
"Uzmean = 0.15 m s**-1\n",
"U = 3.624 m s**-1\n"
]
}
],
"prompt_number": 2
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 6.4 Page no : 218"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"# Express the cross term as a ratio to the r.m.s. values\n",
"\n",
"import math\n",
"\n",
"# Variables\n",
"#Following values are taken from example 6.3\n",
"U_dash_z2 = 8.917*10**-4 #m**2s**-2 square velocity\n",
"Uz2 = .02340 #m**2s**-2\n",
"U_dash_x2 = 8.947 * 10**-4 #m**2s**-2\n",
"Ux22 = .02409 #m**2s**-2\n",
"U = 3.634\n",
"U2x = 3.63 #m**2s**-2\n",
"U2x2 = .41 #m**2s**-2\n",
"Ix = 11.37 #percent\n",
"U2y = .0288 #m**2s**-2\n",
"U2y2 = .069 #m**2s**-2\n",
"Iy = 1.92 #percent\n",
"dt = .01108\n",
"\n",
"# Calculation\n",
"rmsUz = math.sqrt(U_dash_z2)\n",
"rmsUx = math.sqrt(Uz2)\n",
"rmsUx2 = math.sqrt(U_dash_x2)\n",
"rmsUx2 = math.sqrt(Ux22)\n",
"I = 100*rmsUz/U\n",
"Ux = 3.84 - 3.61\n",
"Uy = .43 - .28\n",
"UxUy = Ux*Uy\n",
"ratio = dt/(U2x2*U2y2)\n",
"\n",
"\n",
"# Results\n",
"print \"I = %.2f percent\"%I\n",
"print \"U'xU'y = %.4f m**2s**-2\"%UxUy\n",
"print \"The ratio = %.2f \"%ratio"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"I = 0.82 percent\n",
"U'xU'y = 0.0345 m**2s**-2\n",
"The ratio = 0.39 \n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 6.5 - Page No :232\n"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"# prepare a graph of E./v versus (1 - r/To).\n",
"\n",
"%pylab inline\n",
"\n",
"from numpy import *\n",
"from matplotlib.pyplot import *\n",
"import math \n",
"\n",
"\n",
"# Variables\n",
"# given\n",
"UzmaxbyU = 24.83;\n",
"roUbyv = 2312.;\n",
"Re = 100000.;\n",
"\n",
"# using the formula Et/v = 95.5*((r/ro)/slope)-1\n",
"# from fig 6.6 at Re = 100000\n",
"rbyro = [0, 0.040, 0.100, 0.200, 0.300, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.960, 1]\n",
"slope = [0, 0.105, 0.112, 0.126, 0.144, 0.168, 0.201, 0.252, 0.336, 0.503, 1.007, 2.517, 94.59]\n",
"\n",
"# Calculations\n",
"Etbyv = zeros(13)\n",
"for i in range(1,13):\n",
" Etbyv[i] = 95.5*((rbyro[i])/slope[i])-1;\n",
"\n",
"# Results\n",
"plot(rbyro,Etbyv);\n",
"suptitle(\"Eddy viscosity ratio (E,/v) versus dimensionless radius.\")\n",
"xlabel(\"r/ro\")\n",
"ylabel(\"Er/v\")\n",
"\n",
"show()\n",
"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Populating the interactive namespace from numpy and matplotlib\n"
]
},
{
"metadata": {},
"output_type": "display_data",
"png": "iVBORw0KGgoAAAANSUhEUgAAAYgAAAEhCAYAAABlUDcAAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XlcVFUfBvBnwH17VRRMMBc0jWHHUBQUNUVcckkEtzeX\nctfMbFErMcutzLSslzIz10A0tVTUStwVRFJcsjQwQBFcEgWR7bx/nBhBB2WZmTszPN/Ph48wy52H\nyzi/e8859xyVEEKAiIjoIRZKByAiIuPEAkFERFqxQBARkVYsEEREpBULBBERacUCQUREWrFAFMPS\n0hJubm6ar8WLFz/ymMjISPTt21fr85s1a4abN2+WK8OVK1cQEBBQrm08SUxMDF599VUAwP79+3H0\n6FG9vM6pU6ewa9cuzc8//vgjFi1aVKpt/PTTTwgODgYABAcHw87Orsjf6Pbt21qf5+/vjytXrhS7\n3W7duuHOnTulymIMCr//yrI/daG871Fd/D/RpeDgYCxZsgQAMGfOHPzyyy8KJ1JWJaUDGKsaNWog\nNja2zM9XqVTlztC4cWNs2rSp3Nt5HA8PD3h4eAAA9u3bh9q1a8PLy6tM28rPz4eFhfZjjtjYWMTE\nxMDf3x8A0Ldv32KLa3GWLFmC77//HoDcv9OnT8f06dMf+5x79+7h5s2baNy4cbGPCQoKwtdff/3E\nbZXW4/aHrpVlf+pCed+juvh/8iR5eXmwtLQs0WML55k7d66+IpkMnkGU0rZt29CqVSu0a9cOP/zw\ng+b2tLQ0+Pj4wNXVFWPHjoUQAkIIzJkzB8uWLdM8bvbs2Vi+fHmRbc6cORNffPGF5ueCo5jLly/D\n0dERgDwCb9euHdzc3ODs7IxLly4BAEJCQuDg4AA3NzcMHz4cAHDp0iV06NABLi4u8Pb2RkJCAgBg\n48aNcHJygpubGzp16gTgwVHo5cuXERISgqVLl8Ld3R2HDh1CixYtkJubCwBIT09HixYtkJeXVyT7\nyJEjMX78eHTs2BFvvfUWoqOj4eXlBRcXF3h4eODcuXPIzs7Ge++9h9DQULi5uSEsLAyrV6/GlClT\nHpu3sMTERGRnZ8PGxkZzW0mu8YyMjISvry92796NwYMHF7m94AO1b9++msJTWEhICN58803Nz4Uz\nf/3113BxcYFarcbo0aM1+6lWrVqYMWMG2rZti2PHjuGNN96AWq2Gq6srXn/9dc0+27x5s2a7tWrV\nAgAkJSWhU6dOcHNzg5OTEw4ePPhIpuLef4WzjRw5EhMnToS3tzfs7e0RGRmJUaNGoU2bNhg6dKjm\nOdu3b4eHhwecnJzQr18/zVlUs2bNEBwcDE9PT7Ru3RpnzpwBAPzyyy9Fztju3r2LhIQEODk5AZDF\neMiQIVCr1XBycsLu3bs12QYOHIg+ffqgRYsWmDZtmta/lbZ9mpubixEjRsDJyQnOzs745JNPAABL\nly7V7NfAwMBHtrV69Wq88MIL8PPzQ48ePZCRkYEuXbrAw8MDbdq0KVLU3nvvPbRs2RK+vr64cOGC\npkgU/jsVPtM5ceIEunTponWfmOKZ6GMJ0srS0lK4urpqvsLCwkRmZqZo1KiRiI+PF0IIMWTIENG3\nb18hhBBjx44V8+fPF0IIsXv3bqFSqcSNGzdEQkKCcHd3F0IIkZeXJ+zt7cXNmzeLvFZsbKzo3Lmz\n5mcHBweRlJQk4uPjhaOjoxBCiIkTJ4rQ0FDNdu7duydiYmJEq1atxO3bt4UQQvNv9+7dxYYNG4QQ\nQnz33XeiZ8+emu2mpqYKIYS4e/euEEKIffv2iT59+gghhAgODhZLlizR5Bg1apTYunWrEEKIkJAQ\nMWPGjEf208iRI0X//v01P9+5c0fk5+cLIYTYu3evZturV68WU6ZM0Tyu8M/F5S1s48aNYvLkyZqf\n58yZI2xtbTV/n65duz7yHCGEmDJliti3b5/Izc0VTz/9tMjMzBRCCDF+/Hixfv16zeOaN2+u2ScF\n0tLSRMuWLTU/+/v7i8OHD4vffvtN9O7dW+Tm5gohhJgwYYL4+uuvhRBCqFQqsWXLFiGEENeuXRNq\ntVrz/ILtjxw5UoSHh2tur1WrlhBCiEWLFolFixY98vgCj3v/ffvtt5r989JLL4lhw4YJIYTYtm2b\nqF27tjh//rzIz88XHh4eIjo6WqSkpAgvLy/N/li4cKGYPXu2EEKIZs2aiS+//FIIIcQXX3whXnrp\nJSGEEL169RJRUVFCCCGysrJEbm5ukffohx9+KMaOHSuEEOLPP/8UjRo1Evfu3RPffvutaNGihcjI\nyBBZWVni6aef1vwOzZo1Ezdu3Ch2n0ZFRQl/f/9H9knjxo1Fdna21v1UsD/s7OxEenq6EEKI3Nxc\nkZGRIYSQf9dmzZqJ/Px8ceTIEeHk5CSys7NFRkaGaNmypeb/wMiRI8XmzZuL5BRCiOjoaOHr61vs\nPjEnPIMoRvXq1REbG6v5CggIQFxcHJ555hk0a9YMADBkyBDNUeyhQ4cwZMgQAECPHj1Qr149AEDT\npk1hZWWF3377DXv27IG7u7vmvgKurq5ITU3F1atXcerUKdSrVw+2trZFHuPt7Y0PPvgAixYtwp9/\n/olq1arhl19+QWBgIOrUqQMAmn+PHj2qOVoeMmQIDh8+DADo1KkThg8fjq+++gr37t3T+nuLQkfl\nL7/8Mr799lsA8ohs1KhRWp8zcOBAzfdpaWno06cPHB0dMX36dFy4cEGzXfHQEX/Bz8XlLezvv//G\nU089pfm5oImp4O9TXFvxkSNH4O3tDUtLS/Ts2RPbt29Hbm4udu7ciX79+mkeZ2Njg8TExCLPbdCg\nAVq0aIHjx4/jxo0b+P3339GhQwfs3bsXsbGxaNu2Ldzc3PDrr79qnmtpaYn+/fsDAOrXr4/KlStj\nzJgx2Lx5MypXrqw1YwEvLy+sXLkSc+fOxcmTJ1GzZs0i9z/u/VeYSqVC7969AQCOjo5o1KgR2rRp\nA5VKBbVajcTERBw8eBB//vknOnToADc3N6xZs6ZIP03BvnF3d9f8bp06dcLUqVOxfPlypKamPtJs\nc/jwYc3/gZYtW6JVq1Y4c+YMVCoVunXrhho1aqBq1apQq9VISkrSPE8IUew+bdWqFS5evIipU6di\n586dqFGjBgDA2dkZw4cPx9q1a4vdBz169EDt2rUBADk5OZg2bRocHR3RvXt3pKam4sqVKzh48CAG\nDhyIypUro0aNGnjhhRce+zd62JP2ialjgSiFh9uTC78xVSpVsU0eBR+0q1evxujRo7U+JiAgAOHh\n4QgLC0NQUNAj9w8ZMgTbtm1DzZo10bdvX+zbt6/Y1yyuXffLL7/EvHnzcPXqVXh4eDyxc7BDhw5I\nSEhAZGQk8vLy4ODgoPVxBf9pAdmE1rt3b5w5cwY//vgjcnJyit1+Qc6StkMXV2CK89dff6FJkyao\nVEl2tQUFBSEsLAz79u1D27Zti3wACyG05ih4zpYtW4oUwjFjxmiK0++//65pr65WrZpmO5UqVcLx\n48cxaNAg7Nq1Cz179gQg30f5+fkAZD9FdnY2AMDHxwcHDhyAnZ0dXn75ZaxZs6ZIlse9/x5WpUoV\nzXOqVq1aZBsFr+3v76/5Hc6ePYtVq1ZpHlfwHEtLS83j33rrLaxcuRL379+Ht7e3pvg/LlPBviic\nofA2C9O2T+vWrYvffvsNvr6+WLlyJcaMGQMA2LFjByZMmIBTp07hueeee6TpEyj6vlyzZg3S09MR\nFxeH2NhYWFtbIzc3FxYWFkUyF7dPC++3rKwsze0l2SemjAWiFNRqNf744w9cvnwZABAaGqq5z9vb\nW/Pz3r17cevWLc19AwYMQEREBE6cOAE/Pz+t2w4MDMTGjRsRHh6udVTI5cuX0bx5c0yePBn9+vVD\nbGwsunXrhrCwMM3onYJ/O3TogLCwMADA999/Dx8fHwBAQkICPD09MWfOHNjY2DzS1l+9enVkZmYW\nue2///0vhg0bVmxhe1hWVhYaNWoEAEU+4GrUqFFk24XPKIrLW1jTpk2RkpLyxNdPTk7G888/DwDY\ntWuXplMcADp37oyTJ0/i66+/1hzpFrh27Rrs7Owe2d6AAQOwdetWbNy4UVO4u3fvjrCwMM3fOD09\nvcgRcYGMjAzcuXMH/v7+WLJkCU6ePAkAsLOzQ0xMDAD5QVdQRJOSkmBtbY0xY8ZgzJgxOHHiRJHt\nPe79VxoqlQo+Pj7Yt28f/v77bwDy71bQr1WchIQEqNVqvPHGG/D09MTZs2eL3O/j46PJdOnSJfz5\n559wdHR8YiFXqVTF7tObN28iPz8fAwcOxPvvv4/o6GgIIZCcnAxfX18sWLAA6enpj4xge/g1s7Ky\nYG1tDZVKhQMHDuDy5ctQqVTw9vbG1q1bkZ2djczMTPz0009aM9rZ2Wn+HoX7fp60T0wdC0Qx7t27\nV6TzadasWahevTpCQkLw/PPPo127dmjYsKHmCGnevHnYuXMnXF1dER4ejqZNm2q2VblyZXTt2hWD\nBw8u9mjZwcEBd+/ehZ2dXZGO2ILHr1+/XtPBfPbsWbz00ktwc3PD66+/jvbt28PNzQ1Tp04FAKxY\nsQKff/45nJ2dERISghUrVgAAXnvtNbi4uMDJyQnt27eHu7s7VCqV5jX69u2LDRs2wNXVFYcOHQIA\nDB06FLdu3XrkA7Wwwr/TjBkzMGPGDDz33HPIzs7W3NelSxfExMTAxcUFYWFhRV63uLyFdezYUfMB\nW2Dp0qVF/kaXL1/G1atXNU05ERERmqN2QB4F9unTBxEREejTp4/m9pSUFFhZWT3SpAMAdevWhYOD\nA/7++2+0bdsWAODi4oKZM2dqBiX4+vpqmmcK74v09HT07NkTbm5u8PHxwdKlSwEA48ePx+7du+Hm\n5oYjR45oOql//vlnuLi4wN3dHWFhYZrhxwUe9/4rvD8fzqHtPWdjY4OvvvoKL7zwAlxdXeHp6Ylz\n58498rjCz//444/h7OwMFxcXVKpUSdOMVXD/tGnTcPv2bajVavTv3x/fffcdqlat+kg2bYrbp4mJ\nifDx8YGbmxtGjBiBhQsXIi8vD0FBQXB1dYW7uzsmTZqE+vXrP5K58GsOGzYMR44cgYuLC7777js8\n++yzAID27dujf//+cHBwQK9eveDp6ak135w5czBhwgS0b98eFhYWT9wnbm5uj/19TYVKPKm8U7kJ\nIeDh4YGwsDC0bNlS6TilsmXLFvzwww9Yu3at0lHQtWtXrF+/vkhfxMNWrFiBpk2bokePHujYsSOi\no6OfuN2vvvoKGRkZeO2113QZl8jksUDo2blz5zBgwAD07t1bM0TPVEydOhV79+7Ftm3b8Mwzzygd\nBzt37sTx48d1Pj69W7du2LZtm+ZInogkFggiItKKfRBERKQVCwQREWnFAkFERFqxQBARkVYsEERE\npBULBBERacUCQUREWumtQCQmJqJTp05wcnJC69atNSuyPbwSWOFVxhYsWAAHBwc4OTlhz549+opG\nREQloLcL5a5du4a0tDQ4Ojri7t27cHd3x6ZNm7B161bUrl37kdW7YmJiMH78eBw7dgwpKSmamREL\nZqUkIiLD0tsZhI2NjWY1tFq1asHZ2RnJyckAtE+pu2PHDgQFBcHS0hK2trZQq9WIiorSVzwiInoC\ng/RBJCQkIDo6WjON84oVK/Dss89i+PDhmjUJkpOTi0y3bGdnp3UKZSIiMgy9F4i7d+8iICAAy5Yt\nQ+3atTFp0iRcunQJ586dg729vWaKaiIiMi6V9LnxnJwcvPjiixg6dKhmGcYGDRpo7h83bpxm8W87\nO7siSz4mJSWhSZMmj2yzZcuWT1zYhIiIirK3t8fFixdL9Ry9nUEIITBmzBg4ODgUmWc/NTVV8/3m\nzZuhVqsBAL169UJoaChyc3ORlJSEM2fOaF2849KlS5rVyCr615w5cxTPYCxf3BfcF9wXj/8qy4G1\n3s4gDh8+jHXr1sHZ2VmzutL8+fOxYcMGnD59GtnZ2WjatCm++eYbAICHhwcGDBgAZ2dnWFhYICQk\n5ImLvBMRkf7orUB4e3trXZi88BrBD5s1axZmzZqlr0hERFQKvJLahPn6+iodwWhwXzzAffEA90X5\nmNyKciqVCiYWmYhIcWX57OQZBBERacUCQUREWrFAEBGRViwQRESkFQsEERFppdepNojMWX4+cPo0\nsHcvsGcPcOUK0KUL0L27/LdOHaUTEpUPh7kSlcKVKw8Kws8/yyLQvTvQowdgawvs2yfvO34ccHGR\nt3fvDjz3HFCJh2OkoLJ8drJAED1GRgZw4ID80N+7VxaIrl0ffPA3b679eZmZwMGDD4pJYqI8q+jR\nQ361aGHY34OIBYKonPLzgdjYBx/sUVGAu/uDgtC2LWBpWfrtXr0qzzgKtluz5oNtdu0K1K2r+9+F\nqDAWCKIySEx88MH9yy9Agwbyg7t7d8DXF6hdW7evJwRw5syDs5LDhwFHxwcFo107gPNUkq6xQBCV\nwJ07wP79Dz6g09KA559/8AGtZRkSvcrKkkWiIM9ffwGdOz/I06oVoFIZNhOZHxYIIi3y8oATJ+SH\n7969QEwM4On54APYzQ2wMKIB36mp8kymoGBUqvSgI7xbN6B+faUTkiligSD6V3z8g2ajX38FGjd+\nUBA6dZJ9AKZACOD8+Qe/y8GDQJs2DwqGlxdQpYrSKckUsEBQhXX79oMhpnv3AunpD/oRnn9eDkE1\nB/fvA0ePPigYFy7IgldQMNq0YXMUaccCQRXO1avA2LFAZKQ8mi74oHRyMq5mI325cUM2RxUUjPx8\n4OOPgcBApZORsWGBoApl3z5g2DBZIN56C6heXelEyhJCXqA3bBjQsyfwySdA1apKpyJjwQJBFUJ+\nPjB/PrBiBbBmjTxroAdu3wZGjwYuXwY2bSr+Yj6qWLhgEJm9tDSgVy/ZnBITw+KgzX/+A4SHAyNG\nyGsqtm1TOhGZKhYIMhmHD8urmt3cHoxMIu1UKuDVV4Ht2+W/r78O5OQonYpMDZuYyOgJASxZAnz0\nEbBqFdC7t9KJTMuNG8BLLwE3bwKhoYa/EJCMA5uYyOzcugX07y+bTKKiWBzKwspKnkn06ydnld21\nS+lEZCpYIMhoRUfLJqUWLeSMqk2bKp3IdFlYyJFeYWHAK68A77wD5OYqnYqMHZuYyOgIIUcovf8+\n8OWXwIsvKp3IvKSmyqGwubnAhg3AU08pnYgMgU1MZPLS04GgINnXcPQoi4M+WFsDERFyploPD9nh\nT6QNCwQZjVOn5HoL9eoBR44A9vZKJzJflpbAnDnyOpJhw4B58+T1JUSFsYmJFCcE8M03wMyZwKef\nyg8sMpwrV+RZW40awNq1QMOGSicifWATE5mcjAw5BPPTT+VMpSwOhte4sWxmcnOTgwIOH1Y6ERkL\nFghSzPnzcl0GCws5h1CbNkonqrgqVQIWLAD+9z9g4EA54R9P1IlNTKSIdeuA114DFi8GRo1SOg0V\ndvmynA3W2hr47jvZJ0Smj01MZPTu3ZOzr86bJ6epZnEwPk2byutO7O1lk1N0tNKJSCksEGQwFy8C\nHTrIoazR0YCzs9KJqDhVqgBLl8qmpt69gc8/Z5NTRcQCQQYRHi6LwyuvABs3AnXqKJ2ISuLFF+X1\nKKtWyWan9HSlE5EhsUCQXmVny9lE33xTzgE0cSKXxDQ19vbyuhQrK3lh3alTSiciQ2GBIL1JSAB8\nfGSnZ0yM/HAh01Stmpz2ZO5cucb3ypVscqoI9FYgEhMT0alTJzg5OaF169ZYvHgxAODmzZvo3r07\nnJ2d4efnh3/++UfznAULFsDBwQFOTk7Ys2ePvqKRAfz0k1ysJjAQ+OEHjoQxF0OHyutVPv1UXr+S\nkaF0ItInvQ1zvXbtGtLS0uDo6Ii7d+/C3d0dmzZtwsqVK2Fvb49p06bh008/RXx8PJYtW4aYmBiM\nHz8ex44dQ0pKCry9vXHhwgVUqVKlaGAOczVqOTlyptCNG4Hvv5f9DmR+MjKASZPkYINNmwAHB6UT\n0ZMY1TBXGxsbODo6AgBq1aoFZ2dnJCcnY+fOnRgxYgQAYPjw4dixYwcAYMeOHQgKCoKlpSVsbW2h\nVqsRFRWlr3ikB8nJQNeuwOnTwMmTLA7mrGZNYPVqYMYMoHNneV0LmR+D9EEkJCQgOjoa3t7eSEtL\ng5WVFQCgQYMGSE1NBQAkJyfDzs5O8xw7OzskJSUZIh7pwN69cqI9f39gxw6gQQOlE5EhjBolr2eZ\nN09e33LvntKJSJcq6fsF7t69i0GDBmHZsmWoo6OxjcHBwZrvfX194evrq5PtUunl5cl1G1aulM1K\n/FNUPM7Osqlp7FjAy0s2ObVqpXQqioyMRGRkZLm2odcCkZOTgxdffBHDhg1D//79AQANGzbE9evX\n0aBBA6SlpcHa2hqAPGNITEzUPDcpKQlNilk8t3CBIOXcugUEBMhpomNigEaNlE5ESqlTRx4gfPkl\n0LGjPGB44QWlU1VsDx88z507t9Tb0FsTkxACY8aMgYODA1577TXN7b169cK6fxss161bh169emlu\nDw0NRW5uLpKSknDmzBl4enrqKx6VU16eHNHSqpVsXmJxIJVKXueyYwfw8svAiRNKJ6Ly0tsopkOH\nDqFTp05wdnaG6t8roxYsWABPT08EBgbi2rVraNSoEcLCwlC3bl0AwPz587Fu3TpYWFhgyZIl8PPz\nezQwRzEZhXfekdNC790rZwIlKmzLFjkZY3S0nPSPlFeWz07O5kqltnUrMHWqPELkf34qzjvvAIcO\nyYOIypWVTkMsEKR3v/8OdOokL4RjCyA9Tl4e0Lcv0Lq1nPiPlGVU10GQ+UlPBwYMkAvLsDjQk1ha\nAuvXAz/+yOskTBXPIKhEhJAzezZsCISEKJ2GTMmZM0CXLsCePXJZU1IGzyBIbxYuBK5eBZYvVzoJ\nmRpHR+CLL+RSptevK52GSoNnEPREe/YAI0fKESm2tkqnIVP19ttyYENEBEe+KYGd1KRz8fFA+/by\n6thOnZROQ6YsLw/o1Uteef3RR0qnqXjYxEQ6lZkpO6Vnz2ZxoPKztJRXW2/eLGf6JePHMwjSSghg\nxAh5deyaNVwFjnTn1Cm56NDPPwMuLkqnqTh4BkE689lnwNmzcsQSiwPpkouLHOwwcCBw86bSaehx\neAZBjzhwABg8WC5W37y50mnIXM2YAcTFATt3yuYn0i+eQVC5JScDQUGyWYnFgfRp4UIgN1dOyUHG\niQWCNO7flxfDTZkC9OihdBoyd5UqAaGhsuN60yal05A2bGIijXHjgLQ0OcqE/Q5kKCdPAn5+wL59\n8qI60g82MVGZrVwp+x5Wr2ZxIMNydwc++UQOqb51S+k0VBjPIAhRUUCfPsDBg3LmTSIlTJsG/PGH\nnNyPnda6xzMIKrXUVGDQIOCrr1gcSFkffSQvzuSKwsaDBaICy80FAgOB//4X+HfJcCLFVK4MhIXJ\nEXQ//KB0GgLYxFShTZ8OnD8vF//hKT0Zi+hooHdvYP9+4NlnlU5jPtjERCW2cSOwbZtc0IXFgYzJ\nc88BixbJs9rbt5VOU7HxDKICOn0a6NaNc+GQcZs0CUhMlGugW/BQttx4BkFPdPOmHE64fDmLAxm3\npUvl+3XePKWTVFw8g6hA8vLkcNZnn5XjzomMXUoK0LYt8L//yfculR0XDKLHevddea3D3r1yxAiR\nKTh2DHjhBeDQIeCZZ5ROY7rYxETF2rYN+O47OYyQxYFMSfv2wIcfyk7rO3eUTlOx8AyiArhwAfDx\nkcNZPT2VTkNUNgVzhYWHs9O6LHgGQY+4c0d2Ss+fz+JApm35cuDqVTlNOBkGzyDMmBByGo0GDeTK\ncESm7soVeZ3EypWAv7/SaUwLzyCoiEWL5AJAy5crnYRINxo3lv1oI0cCFy8qncb88QzCTO3ZI/8T\nRUUBdnZKpyHSrS+/BL74Qi6LW6uW0mlMA4e5EgAgPh7w8pJHWp06KZ2GSPeEAF5+WfaxhYZyDZOS\nYBMTITMTGDgQmDWLxYHMl0oFrFgBJCTIacJJP3gGYUaEkFN3CwGsXcujKjJ/iYlAu3ZyJUSuo/54\nPIOo4D7/HDhzRi7+w+JAFUGTJsD33wMjRgB//aV0GvPDMwgzcfAgEBAgO+2aN1c6DZFhffaZHPp6\n5AhQs6bSaYwTO6krqORkeRHcqlWAn5/SaYgMTwg5ai8nR65xwjPoR7GJqQK6f19eDDd5MosDVVwq\nlZzx9cIFOU046YZeC8To0aNhY2MDJycnzW3BwcGws7ODm5sb3NzcsGvXLs19CxYsgIODA5ycnLBn\nzx59RjMbr74KPPUU8PbbSichUlb16sCWLXJU06+/Kp3GPOi1QIwaNQoRERFFblOpVJg+fTpiY2MR\nGxsL/3+vl4+JicGWLVsQFxeHiIgIjBs3DtnZ2fqMZ/K++Uau27t6NU+piQCgaVNgwwZg6FDg8mWl\n05g+vRYIHx8f1KtX75HbtbWD7dixA0FBQbC0tIStrS3UajWioqL0Gc+kRUcDM2cCP/wA1KmjdBoi\n49GlC/DWW3KSyqwspdOYNkX6IFasWIFnn30Ww4cPx82bNwEAycnJsCs0J4SdnR2SkpKUiGf0srOB\nYcPkdANt2iidhsj4TJsmh8CyP6J8Khn6BSdNmoT33nsPgOyPmDp1KtatW1eqbQQHB2u+9/X1ha+v\nrw4TGr8vvgBatgRefFHpJETGSaUCliyRiw2NHg3Y2CidyPAiIyMRGRlZrm3ofZhrQkIC+vbti7i4\nuEfuu3LlCrp06YILFy5g3rx5qF69OmbMmAEA6NOnD2bOnImOHTsWDVzBh7neuCHXlN6/X/5LRMV7\n/XXg7l1Odw+YyDDX1NRUzfebN2+GWq0GAPTq1QuhoaHIzc1FUlISzpw5A0+ucPOIuXOBwYNZHIhK\n4p13gK1bAS3Hp1QCem1iGjJkCPbv34/r16+jSZMmmDt3Lvbt24fTp08jOzsbTZs2xTfffAMA8PDw\nwIABA+Ds7AwLCwuEhISgMhdPLuL334GNG4Hz55VOQmQa6tUD3n0XmD5dToHP0X6lwyupTUjfvoCv\nrzxtJqKQPNdbAAAY1ElEQVSSyckBnJyATz4BevVSOo1yTKKJicrm55/lmcPkyUonITItlSsDH38s\nD6xycpROY1pYIExAXp48Rf7oI6BqVaXTEJme3r0BW1s50zGVHJuYTMBXX8mrQ/ftYxsqUVmdPg10\n7y7na6pbV+k0hsfZXM1QejrQujWwYwfg7q50GiLT9sorsjhUxFXoWCDM0MyZQEoK8O23SichMn0p\nKYCjI3D8OGBvr3Qaw2KBMDMJCUDbtvLUuHFjpdMQmYf584GTJ4HwcKWTGBYLhJkJDATUauDfmUmI\nSAfu3ZNzmK1bB/j4KJ3GcFggzMiRI0BQkLw4rkYNpdMQmZcNG+REfsePAxYVZCwnr4MwE/n5wGuv\nyVNhFgci3QsKkoVh/Xqlkxi3JxaIkydPGiIHFbJxo1xjd+hQpZMQmScLC3kGMWsWkJmpdBrj9cQm\nJl9fX6SkpCAgIACBgYFwdHQ0VDatzL2JKTNTto9u2AB4eyudhsi8BQbKUU3vvqt0Ev3TWx/E1atX\nERYWhrCwMKSnp2Pw4MF4V6E9au4F4oMP5KilsDClkxCZv/h4OVIwLs78RwrqvZM6Li4OixYtQmho\nKHIUmtTEnAvElSuAs7NcTrR5c6XTEFUMb70FpKUBq1YpnUS/9FIgzp07h7CwMISHh8PKygqBgYEY\nNGgQrK2tyxW2rMy5QIweDVhbAwsXKp2EqOK4fVvOVrBrF+DmpnQa/dFLgfDy8kJgYCACAgJga2tb\nroC6YK4F4uRJOaHYhQtAnTpKpyGqWP73P9ms+8sv5jvfmU4LxNixY+Hv749u3bqhjhF9YpljgRAC\n6NIFGDIEGDdO6TREFU9uLuDqCnz4IdCvn9Jp9EOnBeLYsWPYtWsXfv31V1SuXBl+fn7o2bMnXFxc\ndBK2rMyxQGzdKkdRxMYClfS6xh8RFWf3bmDKFODMGaBKFaXT6J7eOqmvX7+OPXv2ICIiAqdPn4ab\nmxv8/f0xePDgMoctK3MrENnZcjqNL76QUxETkXL8/YGePYFXX1U6ie7pvEDk5+dj8+bNCAgI0Nwm\nhEBMTAx2796N2bNnlz1tGZlbgfjkE9nuuWOH0kmI6OxZ2dz7++9A/fpKp9EtvZxBtGvXDsePHy9X\nMF0ypwJx/Trw7LPAgQPyXyJS3oQJcuXGTz9VOolu6aVAvP3227CxscGgQYNQs2ZNze31FSqv5lQg\npkyR/372mbI5iOiB1FTAwUFOmPnMM0qn0R29FIhmzZpBpWXcV3x8fOnS6Yi5FIjz54FOneSprJWV\n0mmIqLDFi2WB2LpV6SS6w+m+TUjv3kC3bsD06UonIaKHZWXJs4hvvpF9EuZAp9N9L168WPP9pk2b\nitw3a9asUkajwvbsAf74A5g8WekkRKRNtWrAokXyAC4vT+k0yim2QGzcuFHz/fz584vct2vXLv0l\nMnO5ufJN99FH5jnWmshcDBok12NZs0bpJMrhgkEG9s03QMOG5nu1JpG5UKnkMPR33gHu3lU6jTJY\nIAzo9m1gzhz5pjPX+V6IzEm7doCvr+y0roiK7aS2tLREjX/Xu7x37x6qV6+uue/evXvIzc01TMKH\nmHIndUWZVpjInPz9t5zl9bffgCZNlE5TdhzFZMTi44HnnpMLkzz1lNJpiKg03nlHFgpT7o9ggTBi\ngwfLxYDeeUfpJERUWnfuyDUjtm+XK9CZIhYII3XoEDB0qLwo7t9WOyIyMStXAt99J6fGMcU+RJ1e\nB0G6kZ8PvPYasGABiwORKRs1CkhPB7ZsUTqJ4bBA6Nn69YCFhVwMiIhMl6UlsGQJ8OabwP37Sqcx\nDDYx6VFmpmy3DA0FOnRQOg0R6ULfvkDnzsCMGUonKR32QRiZ99+X88uHhiqdhIh05cIFoGNHOeFm\nw4ZKpyk5o+uDGD16NGxsbODk5KS57ebNm+jevTucnZ3h5+eHf/75R3PfggUL4ODgACcnJ+zZs0ef\n0fQuORlYtkzO50JE5qN1aznoZO5cpZPon14LxKhRoxAREVHktjlz5qB37944ffo0/P39MWfOHABA\nTEwMtmzZgri4OERERGDcuHHIzs7WZzy9mj0bGDsWaNZM6SREpGtz5siWgfPnlU6iX3otED4+PqhX\nr16R23bu3IkRI0YAAIYPH44d/661uWPHDgQFBcHS0hK2trZQq9WIiorSZzy9iYmRC6DPnKl0EiLS\nBysr+f/b1PohSsvgo5jS0tJg9e8KOQ0aNEBqaioAIDk5GXZ2dprH2dnZISkpydDxyk0IOVvr3LlA\nnTpKpyEifZk8WU7bb+Kt4Y/FYa469sMPwK1bwJgxSichIn2qUkVO4vf66+a7ZkQlQ79gw4YNcf36\ndTRo0ABpaWmwtrYGIM8YEhMTNY9LSkpCk2JmxgoODtZ87+vrC19fX31GLrH794E33gBCQuSYaSIy\nb/37A59+KifgfOUVpdMUFRkZicjIyHJtQ+/DXBMSEtC3b1/ExcUBAKZMmQJ7e3tMmzYNS5cuRXx8\nPJYvX46YmBiMHz8eR48eRUpKCry9vfHnn3+icuXKRQMb8TDXJUuAyEjgxx+VTkJEhhITA/TpI4e/\nGnOzstFdBzFkyBDs378f169fh42NDd5//33069cPgYGBuHbtGho1aoSwsDDUrVsXgFy5bt26dbCw\nsMCSJUvg5+f3aGAjLRBpaXIN24MHgTZtlE5DRIY0ciTQuDHw0OKbRsXoCoQ+GGuBmDRJNistX650\nEiIytORkOVvzyZNA06ZKp9GOBUIh587JVafOn5fD34io4gkOls1MGzcqnUQ7FgiF+PsDfn7AtGlK\nJyEipWRkyKusN20CvLyUTvMoo5tqoyKIiAAuXQImTlQ6CREpqWZN4MMP5XVQRnYMW2YsEOWQmyvH\nQH/0kRwTTUQV24gRQHY2EBamdBLdYIEoh6+/BmxsgBdeUDoJERkDCwvgk0+At94CsrKUTlN+7IMo\no3/+ke2Nu3cDrq5KpyEiYzJwIODpCbz9ttJJHmAntQG9+SZw4wbwzTdKJyEiY/Pnn7Kj+uxZ2cpg\nDFggDOSvv+TRQVwc8NRTikYhIiM1fbpcVfJ//1M6icQCYSCDBgFubnLNByIibW7dkrMq/PwzUGjN\nNMWwQBjA8eNAQIC8IKZ6dcViEJEJWL5cFojt25VOwgJhEAMHAl27yrngiYge5949oHlz4Ndf5Vxt\nSmKB0LM//gC8vYH4eHlRDBHRk3zwgey3XLVK2RwsEHo2bhzQqFHFWKyciHTj5k2gZUs5qMXWVrkc\nLBB6lJIiTxEvXAAaNjT4yxORCZs27cEKdEphgdCj2bPlxXErVhj8pYnIxF2+DLi7y6am//xHmQws\nEHpy547saDp+HLC3N+hLE5GZGDZMzrrwxhvKvD4LhJ4sXQocOwaEhhr0ZYnIjPz2G9C7tzyLqFrV\n8K/P6b71ICdHFgilqj4RmQdXV8DREdiwQekkJccC8QShoXIEQtu2SichIlP3xhvAxx8D+flKJykZ\nFojHEEKOOnjzTaWTEJE56NZNNi/t3Kl0kpJhgXiM3bvlv35+yuYgIvOgUskDTiWHu5YGC8RjFJw9\nqFRKJyEiczFoEJCYKAe+GDsWiGJERwMXLwKBgUonISJzUqmSnAr8o4+UTvJkHOZajMGD5YIfr72m\n95ciogomI0NeW3XoEPDMM4Z5TV4HoSOXLgHt2slJ+WrX1utLEVEFNWeOnMInJMQwr8cCoSOTJgF1\n6wIffqjXlyGiCiwtTZ49/P67YZYlZYHQgbQ0oHVr4Nw5OXMrEZG+TJwI1K8vpwTXNxYIHZgzB7h6\nFfjqK729BBERADkQxstLNmfXqqXf12KBKKeMDKBZM9lx1Lq1Xl6CiKiIwYOBDh3klOD6xLmYymnV\nKsDHh8WBiAznjTfkfG85OUoneRQLxL9yc4FPPuG0GkRkWM89B7RoAYSFKZ3kUSwQ/woPB5o0Adq3\nVzoJEVU0BdNvGFuDPwsEOCkfESmrZ085w+vevUonKYoFAsAvvwBZWUCvXkonIaKKSKWSfRHGNokf\nCwTkH+WNNwAL7g0iUkhQEHDhAhATo3SSByr8R2JsLHD2LDB0qNJJiKgiq1JFzv1mTJP4KXYdRLNm\nzVCnTh1YWlqicuXKiIqKws2bNxEYGIhr167hqaeeQmhoKOrWrVs0sI6vg1B6IXEiogJ37shJ/KKj\n5b+6ZFIXyjVv3hwxMTGoX7++5rYpU6bA3t4e06ZNw6effor4+HgsW7asyPN0WSASEgAPD7mI+H/+\no5NNEhGVy8yZwN27wGef6Xa7JlcgTpw4ASsrK81t9vb2iIqKgpWVFa5fv4727dvj4sWLRZ6nywLx\n6qty+T9j6xgioorr6lVArQb++ANo0EB32zWpAtGiRQvUrVsXubm5GDt2LCZPnow6deogPT1d85iH\nfwZ0VyBu3ABatgTOnAFsbcu9OSIinXnlFcDOTs4Npytl+eyspLuXL51jx47B2toaaWlp6NmzJ9q0\naVPi5wYHB2u+9/X1ha+vb6lf/4svgAEDWByIyPi8/jrQubPsG61Ro2zbiIyMRGRkZLlyGMVkfQsW\nLAAArFy5EsePH0eDBg2QlpYGLy8vvTQx3bsnJ+Xbtw9wcCjXpoiI9KJ/f6BHDzkluC6YzGR9mZmZ\nyMzMBABkZGQgIiICarUavXr1wrp16wAA69atQy89Xbn23XdyxTgWByIyVm++CSxZAuTlKZdBkTOI\n+Ph49O/fHyqVCpmZmQgKCsL7779fZJhro0aNEBYWpvNhrnl5crbWb7+VM7cSERkrb285mCYgoPzb\nMqlO6rIqb4EID5dV+cgReXk7EZGx2rYNmDdPXhdR3s8rk2liUkrhSflYHIjI2PXtK6+JKGdfc5lV\nqAKxfz9w+zbwwgtKJyEiejILC2Un8atQTUy9esmhra+8ouNQRER6cv++nHYjIgJwdi77dtgH8Rhx\ncXLIWHw8UK2aHoIREenJwoXAuXPAmjVl3wYLxGO89JIcvTRrlh5CERHp0T//yGVJf/sNePrpsm2D\nBaIYiYmAiwtw6RJQr56eghER6dGMGXLVuU8+KdvzWSCK8frrcgRTWXcsEZHSkpLkge7Fi2U70GWB\n0OLWLcDevnynZkRExqA8TeUsEFp8/LFcNW79ej2GIiIygLg4oGdPuZZN5cqley4vlHtIXh6wYgUw\ndarSSYiIys/JCWjVCvjhB8O8nlkXiJ07gYYN5cR8RETmYMoU3a82VxyzLhCffQZMnqx0CiIi3enX\nTzYx/fab/l/LbAvE778Dp04BgwcrnYSISHcqVQImTAA+/1z/r2W2ndRTpgB16gAffmiAUEREBpSa\nKkczXboE1K9fsudwFNO/0tPlinGnTgFNmhgmFxGRIf33v3JuphkzSvZ4jmL615o1QNeuLA5EZL6m\nTJGjNPW54pzZFQghZNvclClKJyEi0p/nngOsreVoTX0xuwLx88/yApJOnZROQkSkX/oe8mp2BaLg\n7IErxhGRuQsIAE6flqM29cGsOqnj44G2bYG//wZq1jRwMCIiBbz7rpwO/ElnEhV+FNObb8oOmyVL\nDByKiEghSUlyNFNCghzaX5wKXSAyM+VsrcePy9lbiYgqioAAwNcXmDSp+MdU6GGuGzcC7duzOBBR\nxTNliux/1fXhvlkUCCFk+xuHthJRReTjI0dv/vKLbrdrFgXi8GHZxNS9u9JJiIgMT6XSz5BXs+iD\nCAwEOnbkug9EVHFlZABNmwInTsiphh5WITupk5MBR0fZg/+f/yiXi4hIaTNmABYWwOLFj95XIQvE\ne+8BN27IOUmIiCqyS5fkYJ3Ll4EaNYreV+FGMd2/D3z11eOHdhERVRT29nIFze+/1832TLpAhIfL\n5iUHB6WTEBEZh4LOal20DZl0gfj8cy4pSkRUWPfussP6yJHyb8tkC8SJE8CVK0DfvkonISIyHhYW\n8sBZF0NeTbaTeuRI4NlngbfeUjoREZFxuX0baN4cOHMGaNxY3lZhRjGlpgo88wxw8SJgZaV0IiIi\n4zNpEtCgATB3rvy5whSIDz8UuHgRWLVK6TRERMbp3DmgWzc55LVKFTMZ5hoREQEnJyc4ODhg0aJF\nWh/z5ZfsnCYiehwHB/m1eXPZt2FUBeL+/fuYMGECIiIicPr0aYSHhyM2NvaRxz39NODurkBAIxMZ\nGal0BKPBffEA98UDFX1flHd+JqMqEMePH4darYatrS0qVaqEwMBA7Nix45HHcdZWqaK/+QvjvniA\n++KBir4v+vSR0xHFxJTt+UZVIJKSktCkSRPNz3Z2dkhKSnrkcQMHGjIVEZFpqlQJmDhRXjNWpufr\nNk75qFSqEj2uShU9ByEiMhNjxgCtWpXxycKIHDhwQPTu3Vvz8+LFi8UHH3xQ5DH29vYCAL/4xS9+\n8asUX/b29qX+TDaqYa5ZWVlo06YNDh8+DGtra3To0AEhISFwZ480EZHBGVUTU7Vq1fDll1/Cz88P\n+fn5GDFiBIsDEZFCjOoMgoiIjIdRjWIqrCQXzE2dOhVqtRru7u5ar5cwF0/aF2vXroWzszOcnJzQ\ntm1bxJR1TJuRK8l7AgCio6NRqVIlbNmyxYDpDKsk+yIyMhKenp5wdXVF586dDZzQcJ60L1JSUtCt\nWzeo1Wq0bt0aISEhCqQ0jNGjR8PGxgZOTk7FPqZUn5vl6lXWk6ysLNGsWTORlJQkcnJyRNu2bcXJ\nkyeLPCY8PFz069dPCCHEyZMnhYuLixJR9a4k++L48eMiPT1dCCHErl27hKurqxJR9aok+0EIIXJz\nc0WXLl1E7969RXh4uAJJ9a8k++Lq1atCrVaLa9euCSGEuHHjhhJR9a4k+2L27Nni7bffFkIIkZaW\nJurWrSuysrKUiKt3Bw4cECdPnhSOjo5a7y/t56ZRnkGU5IK5nTt3YsSIEQAANzc35Obmar1mwtSV\nZF94enqidu3aAICOHTsiOTlZiah6VdKLKD/77DMMGjQIDRs2VCClYZRkX3z//fcIDAyEtbU1AKB+\n/fpKRNW7kuyLJk2aID09HQCQnp6Ohg0bomrVqkrE1TsfHx/Uq1ev2PtL+7lplAWiJBfMlfSiOlNX\n2t8zJCQE/fr1M0Q0gyrJfkhOTsa2bdswYcIEACW/rsbUlGRfXLhwAVeuXIGXlxecnZ2xcuVKQ8c0\niJLsi1deeQVnz55F48aN4eLigmXLlhk6ptEo7eeJUY1iKlDS/9jiof51c/xAKM3vFBkZiVWrVuHw\n4cN6TKSMkuyHadOmYeHChZpZKx9+f5iLkuyLvLw8nDlzBr/++isyMzPRvn17eHl5Qa1WGyCh4ZRk\nX8yfPx+urq6IjIzEpUuX0L17d5w6dUpz1l3RlOZz0yjPIOzs7JCYmKj5OTExsUjV0/aYpKQk2NnZ\nGSyjoZRkXwDA6dOn8fLLL2P79u2PPcU0VSXZDzExMQgKCkLz5s2xefNmTJw4Edu3bzd0VL0ryb54\n+umn0aNHD1SvXh1WVlbo3LkzTp8+beioeleSfXHo0CEEBAQAAOzt7dG8eXOcP3/eoDmNRak/N3Xa\nQ6Ij9+7dE02bNhVJSUkiOztbtG3bVsTExBR5THh4uOjfv78QQoiYmBjh7OysRFS9K8m+uHz5srC3\ntxdHjx5VKKX+lWQ/FDZy5EixefNmAyY0nJLsi5MnT4pu3bqJ3NxckZGRIRwcHERsbKxCifWnJPti\n4sSJIjg4WAghREpKimjUqJGm894cxcfHP7aTujSfm0bZxFTcBXMFw9PGjRuHF198Efv27YNarUbV\nqlXx7bffKpxaP0qyL95//33cunVL0/ZeuXJlREVFKRlb50qyHyqKkuwLNzc39OzZE87OzsjJycHL\nL78MV1dXhZPrXkn2xXvvvYfhw4fDwcEBeXl5+OCDDzSd9+ZmyJAh2L9/P65fv44mTZpg7ty5yMnJ\nAVC2z01eKEdERFoZZR8EEREpjwWCiIi0YoEgIiKtWCCIiEgrFggiItKKBYKIiLRigSAqh4ULF2LD\nhg1KxyDSCxYIojIQQiA/Px979uyBn59fkfvy8/MVSkWkW0Z5JTWRMUpISICfnx+8vLwQGxuLn376\nCdnZ2bCyssLIkSNRrVo1xMXFoWPHjhg0aBDGjRuH3Nxc2NnZYf369WY75TaZL55BEJXCxYsXMWXK\nFJw6dQrR0dF4/vnnNfddu3YNhw8fxuLFizFixAisWLECcXFx8PLywuzZsxVMTVQ2LBBEpdC0aVN4\neHgAAHbv3g1/f38AcsrkgQMHAgBSU1ORlZWFDh06AACGDx+OgwcPKhOYqBxYIIhKoWbNmprvo6Ki\n4Onpqfm5Ro0aWp/D6c7IVLFAEJXB2bNn0aZNG62LrVhbW6N69eo4evQoAGDDhg3o3LmzoSMSlRs7\nqYlKoaAg7Nq1S9O89PB9ALB27VpNJ7WtrS2HwpJJ4nTfRGXQo0cPrF27FjY2NkpHIdIbFggiItKK\nfRBERKQVCwQREWnFAkFERFqxQBARkVYsEEREpBULBBERacUCQUREWv0f7H5+wWyWJFYAAAAASUVO\nRK5CYII=\n",
"text": [
"<matplotlib.figure.Figure at 0x392ca50>"
]
}
],
"prompt_number": 2
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 6.7 page no : 246"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"# Calculate the velocity distribution by the various methods available\n",
"# for the flow of cyclohexane at 2.778 ft s- \u2019 (0.8467 m s-\u2018) and 25\u00b0C in a 2-inch I.D.\n",
"\n",
"import math\n",
"\n",
"# variables\n",
"do = .0508\n",
"Uz = .8467 # cyclohexane\n",
"aveP = 774.9 # the density of cyclohexane\n",
"u = 8.892*10**-4 # the viscosity\n",
"aveF = .00570\n",
"\n",
"# Calculation\n",
"Nre = do*Uz*aveP/u\n",
"rw = (1./2)*aveP*(Uz**2)*aveF\n",
"U = math.sqrt(rw/aveP)\n",
"\n",
"# for y = .001\n",
"y001 = (2.54*10**-5)*U*aveP/u\n",
"ratio = 1 + (U)*(-0.1775)/(1.029)\n",
"\n",
"Uz = U*22.77\n",
"# Results\n",
"print \"Nre = %.2e \"%Nre\n",
"print \"The wall shear stress rw = %.3f N m**-2\"%rw\n",
"print \"The friction velocity U* = %.5f m s*-1\"%U\n",
"print \"Universal velocity Distribution :\" \n",
"print \"for y = 0.001 = %d \"%y001\n",
"print \"Velocity ratio = %.3f\"%ratio\n",
"print \"Uz = %.3f m s**-1\"%Uz"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Nre = 3.75e+04 \n",
"The wall shear stress rw = 1.583 N m**-2\n",
"The friction velocity U* = 0.04520 m s*-1\n",
"Universal velocity Distribution :\n",
"for y = 0.001 = 1 \n",
"Velocity ratio = 0.992\n",
"Uz = 1.029 m s**-1\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 6.8 Pageno :250"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"# Estimate the temperature distribution in water\n",
"\n",
"import math\n",
"\n",
"# variables\n",
"Cp = 4184. # lg-K-=4184Jkg-K-*\n",
"P = 1000. # g cm**-3\n",
"k = 0.628 # wm**-1\n",
"Nre = 1.2*10**5\n",
"v = 1*10**-6\n",
"do = 2*0.05\n",
"\n",
"# calculation\n",
"alpha = k/(P*Cp)\n",
"qa = (1.7*10**4)/(P*Cp)\n",
"Uz = Nre*v/(do)\n",
"U = Uz*math.sqrt(.0045/2)\n",
"y = (5*v)/U\n",
"\n",
"# Results\n",
"print \"A = %.3e m**2s**-2\"%alpha\n",
"print \"The average velocity = %.2f m s**-1\"%Uz\n",
"print \"U* = %.5f m s**-1\"%U\n",
"print \"the value of y = %.3e cm\"%y\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"A = 1.501e-07 m**2s**-2\n",
"The average velocity = 1.20 m s**-1\n",
"U* = 0.05692 m s**-1\n",
"the value of y = 8.784e-05 cm\n"
]
}
],
"prompt_number": 33
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 6.9 - Page No :258\n"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"# Compute the Fanning friction factor.\n",
"\n",
"# Variables\n",
"p = 0.84*62.4; \t\t\t #[lbf/ft**3] - density\n",
"dP = 80.*144; \t\t\t #[lbf/ft**2] - pressure\n",
"dz = 2000.; \t\t\t #[ft] - length of pipe\n",
"gc = 32.174; \t\t\t #[(lbm*ft)/(lbf*sec**2)] - gravitational conversion consmath.tant\n",
"dpbydz = -dP/dz;\n",
"do = 2.067/12; \t\t\t #[ft]\n",
"\n",
"# Calculations\n",
"U = 2000*(1./24)*(1./3600)*(42)*(1./7.48)*(1./0.02330);\n",
"# using the formula f = ((do/2)*(-dp/dz)*gc)/(p*(U)**2)\n",
"f = ((do/2)*(-dpbydz)*gc)/(p*(U)**2)\n",
"\n",
"# Results\n",
"print \"f = %.5f (dimensionless)\"%f\n",
"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"f = 0.00979 (dimensionless)\n"
]
}
],
"prompt_number": 19
}
],
"metadata": {}
}
]
}
|