summaryrefslogtreecommitdiff
path: root/Transport_Phenomena/ch15.ipynb
blob: 78d0dbbd414e51106474521073fb2a71c9955771 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
{
 "metadata": {
  "name": ""
 },
 "nbformat": 3,
 "nbformat_minor": 0,
 "worksheets": [
  {
   "cells": [
    {
     "cell_type": "heading",
     "level": 1,
     "metadata": {},
     "source": [
      "Chapter 15 : Non newtonian phenomena"
     ]
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 15.1 - Page No :760\n"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "# find the power law parameters\n",
      "\n",
      "%pylab inline\n",
      "\n",
      "import math \n",
      "from numpy import *\n",
      "from matplotlib.pyplot import *\n",
      "\n",
      "# Variables\n",
      "# given\n",
      "r = array([10, 20, 50, 100, 200, 400, 600, 1000, 2000])\n",
      "tau = array([2.2, 3.1 ,4.4, 5.8, 7.4, 9.8, 11.1, 13.9, 17.0])\n",
      "\n",
      "# Calculation and Results\n",
      "#tau = tau*(10**-4);\n",
      "plot(r,tau);\n",
      "plot(r,tau,'ro');\n",
      "suptitle(\"asic shear diagram for the fluid in\")\n",
      "xlabel(\"Shear rate, S**-1 \")\n",
      "ylabel(\"Shear streets, Nm**-2 \")\n",
      "\n",
      "# the data falls nearly on a straight line\n",
      "# from the graph the slope and the intercept are\n",
      "slope = 0.3841;\n",
      "intercept = 9.17046;\n",
      "# from the relation tau = K*(-r)**n;\n",
      "K = math.exp(intercept);\n",
      "n = slope\n",
      "print \"K = \",K\n",
      "print \"n = \",n\n",
      "print \" The fluid_ is pseudo plastic, since the slope is less than 1 \"\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Populating the interactive namespace from numpy and matplotlib\n",
        "K = "
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        " 9609.04383369\n",
        "n =  0.3841\n",
        " The fluid_ is pseudo plastic, since the slope is less than 1 \n"
       ]
      },
      {
       "metadata": {},
       "output_type": "display_data",
       "png": "iVBORw0KGgoAAAANSUhEUgAAAYcAAAEhCAYAAACUW2yNAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XlcVOX+B/DPsLqgkQvqFRIllW3YpbTAcQtcyEpLveKG\nmt7ulcxueW/aFTQzTTPF7Fbmkql1tdvNJBU3FvcFVNBMRVCgEpdUBEcY5vn9MT8GxhkcwNn5vF8v\nXzFnzjnP9xxovvOcZ5MIIQSIiIhqsDN3AEREZHmYHIiISAuTAxERaWFyICIiLUwORESkhcmBiIi0\nMDk0YnPmzMGePXse6RwuLi4GiqbuEhISsGTJEgCGuQZjeeWVV+Dv749ly5Y16Pi0tDQcOnRI/Xr8\n+PH47rvvGhzPt99+i27duqFfv35IS0tDTEyM3mOeeeYZndtri8WSfx9UPw7mDoDMJzEx8ZHPIZFI\nDBCJpsrKStjb29epTENcQ13KrK/ff/8dWVlZuHDhQp2PUSqVsLOr/r62b98+tGjRAj179gTw6Pd6\nzZo1WLt2LXr16oXU1NQ6HXPgwAGd2yUSic54DPX7IPNjzcHGPP/88wgLC0O3bt2wfPlyAIBCocCY\nMWMglUoREBCAjz76CIDmt78DBw4gLCwMQUFB6NGjB+7evatx3sLCQkRGRiI4OBhSqRT79+9Xvzd7\n9mwEBwcjODgYv/32GwDVh+OQIUMQGBiIoKAgpKWlAQCOHj2Knj17IjAwEKGhoTh79iwAYO3atXj+\n+ecRFRWF5557Tuu6/vWvf+HJJ5+ETCbDL7/8ov5gqnkNCQkJCA8Ph7e3N8aPHw+lUqm+Nm9vb4SH\nh+Ott96CVCrVWWZpaSn69OmD0NBQeHt7Y/PmzQCA/Px8eHt7Y+LEifD29sbo0aOxa9cuREZGonPn\nzjh48KBWvM899xyKiooQHByM/fv34+jRo+p7N3DgQNy8eRMAIJPJ8MYbb6Bnz57q31dVmZ999hmW\nLl2KkJAQ9f1OT09HZGQknnjiCWzcuFG9/9y5cxEQEAAfHx/885//1Ipn7ty5OHDgAOLi4vD2229r\nfLDXrIkBgL+/P65cuQKgumaoVCoxefJkdO/eHdHR0SguLoau8bM1fx+enp7q30n37t2Rk5OjtT9Z\nMEE25fbt20IIIcrKyoSPj4+4evWqOHLkiBg4cKB6n7t37wohhBg/frz47rvvhFwuFx07dhQnT55U\nH6tQKDTOu2jRIrFw4UKtc0gkErF9+3YhhBBvv/22mDNnjhBCiBdffFHs379fCCHE5cuXhZeXlxBC\niJKSEqFUKoUQQuzatUsMGTJECCHEmjVrhLu7u7hz547WNR08eFBIpVJRXl4uSktLxZNPPimWLFmi\ncQ01r10IIcaMGSO2bNkihBCia9eu4tixY0IIIWbNmiWkUqnOMhUKhSgtLRVCCHHt2jXh6ekplEql\nyMvLEw4ODuLnn38WSqVShIaGikmTJgkhhPjhhx/E4MGDtWLOz88X/v7+6tfdunUTBw4cEEIIkZiY\nKKZOnSqEEEImk4n4+Hit44UQIiEhQX2dQggxbtw4MXLkSCGEEGfPnhWdOnVSx/Dqq68KIYSorKwU\nQ4YMEbt27dI6n0wmEydOnBBCCLFv3z71vU9ISBCLFy9W7+fv7y8uX74shBDCxcVFCCHExo0bRXR0\ntBBCiKtXrwpXV1f1fa+p5u/D09NTfPrpp0IIIVauXCnGjRun8zrJMvGxko1ZsGABtm3bBnt7e/z6\n66+4ePEifH19cfHiRcTHxyM6OhoDBw5U7y+EwOnTp+Hp6YnAwEAAQNOmTbXO+/TTT2PixIm4d+8e\nYmJiEBISAgBwcnJCdHQ0ACA0NBQ7d+4EAOzevRt5eXnq4+/fv4+SkhJcv34dI0aMwOXLl2FnZwe5\nXK7e57nnnkOLFi20ys7IyMBLL70ER0dHODo64vnnn9d57du2bcOSJUugUChw48YNeHt7o7i4GOXl\n5QgLCwMAjBgxAj/88IPOMisqKjB9+nQcPHgQjo6OKC4uVteEOnfuDG9vbwCAn58f+vbtC0D1Lbug\noEArFlHjW3VxcTHkcjl69eoFAIiNjdW4huHDh+u8ngfPI5FI1Mf5+Pjg+vXrAICUlBSkpKQgODgY\nAFBaWor8/Pxaz9kQGRkZGDFiBADAzc1Nff36DB06FAAQEhKCLVu2GDQmMi4mBxuSkpKC/fv348SJ\nE3ByckKfPn2gUCjg6uqKrKws7Ny5E6tWrcKWLVuwevVq9XF1eZYdERGB9PR0JCcnY9KkSZg+fTrG\njh0LR0dH9T52dnbqRzkSiQTHjh2Dg4Pmn9iUKVMwePBgvPbaa7h8+TJkMpn6vWbNmuks287OTuND\nUuh4nHH37l1Mnz4dp0+fRvv27ZGYmAiFQqF1bQ8eW7PMr776Cnfu3EF2djYkEgk6d+4MhUIBAHB2\ndtaIx8nJSeua6+rBGJo3b17nY6vKBTR/b++++y7i4uLqFUeVB6+hZsKuuY+u+65P1X2zt7ev930i\n82Kbgw2Ry+V4/PHH4eTkhAsXLuDw4cMAgJs3b0IIgZdeeglz587F8ePH1cdIJBIEBAQgPz8fJ0+e\nBKD65llZWalx7sLCQri5uWHixImIi4vTOIcu/fv3x7///W/16zNnzqhjbN++PQDVh3FdPPvss/jf\n//6H8vJylJWVYdu2bVr7KBQK2NnZwdXVFffu3VO3F7Rt2xZOTk44ceIEAKi36yKXy+Hm5gaJRIL0\n9HRcvny5TvHp4+bmhqZNm6p7Hm3cuBG9e/fWe1zTpk1RVlamd7+oqCisWbNG/aF+9epVda2iLtzd\n3ZGZmQkAOHnypEaNr8qzzz6rvnfXrl3Dvn376nx+sk6sOdiQ6OhorFixAj4+PvDx8VH3cikoKMD4\n8ePV+y1YsEDjOCcnJ3z77beIi4uDUqlEkyZNsGfPHo1vtHv27MHixYvh6OiIFi1aqGseNb+91uzB\n8u9//xuTJk3CZ599BiEEevXqhc8//xx///vfERsbiwULFiA6Olq9f229XwDVI60XXngBvr6+cHd3\nR3h4uNY+rq6umDBhAry9vdGpUyc89dRT6vdWr16N2NhYtGzZEj179lQ/NnuwzNGjRyMqKgqBgYEI\nCwuDj4+PxrXV9OB161Jz+/r16zFlyhQoFAp07NhRozG5NjExMXjppZfw3//+F0lJSbWWGxMTg7Nn\nzyIkJAROTk5wdnbGN998gzZt2tR67prX/sorr2DdunXw9/fH008/je7du2uVMWLECOzZswfdu3dH\nly5d1I/I6uphv1+yTBLRkLoikRW5d++eOiF88MEHuHLlClauXGnmqIgsG2sOZPO2bt2KBQsW4N69\ne/Dw8KjTt3aixo41ByIi0sIGaSIi0sLkQEREWpgciIhIC5MDERFpYXIgIiItTA5ERKSFyYGIiLQY\nLTnExcWhXbt26rnzAdW8+kFBQfD390dgYKDOefCJiMj8jJYcJkyYgB07dmhsmzlzJhYuXIicnBx8\n8MEHmDlzprGKJyKiR2C05BAREYHHH39cY5uHhwdu374NALh16xY6depkrOKJiOgRGHX6jPz8fMTE\nxCA7OxsAcPnyZTz77LOQSCRQKpU4dOgQPDw8jFU8ERE1kEkbpCdOnIjly5fjypUrWLp0aYMXJyEi\nIuMyac3BxcVFvXC9EAItWrTQWsgeAJ588knk5uYaKywiIpvk5eWFixcvGuRcJq05dOrUCWlpaQCA\nvXv3onPnzjr3y83NhRCC/wz0b86cOWaPwZb+8X7yXlrqP0N+qTbaeg6jRo1CWloarl+/Dg8PD8yd\nOxdffPEFXnvtNVRUVMDZ2RlffvmlsYonIqJHYLTksGnTJp3bq9YpJiIiy8UR0o2ATCYzdwg2hffT\ncHgvLZdFrgQnkUhggWEREVk0Q352suZARERamByIiEgLkwMREWlhciAiIi1MDkREpIXJgYjIyqUn\nJ2N2VJRBz8murEREViw9ORk7X38d83NzIQEM9tnJ5EBEZKVu3AD+0S8KX5xKAQCDJgejTZ9BRESG\nVVICZGQAe/eq/l28CPR3uG+UstjmQERkoeRyYN8+YPZsoFcvoEMHYPFiwNUVWLFCVXPw7eFslLL5\nWImIyEJUVADHj1fXDI4eBfz9gb59gX79gJ49gaZNNY9hmwMRkY1RKoHTp6uTQUYG0KWLKhn07QtE\nRAAtW+o/T3pyMnYlJeG9nTuZHIiIrI0QwC+/VCeD1FSgTZvqZCCTqV43lCE/O5kciIiM6PLl6mSw\ndy/g4KB6RNS3L9CnD9Cxo+HKYnIgIrJQv/+uakSuSgZ371bXDPr2VT02kkiMUzaTAxGRhfjjDyAt\nrToZFBWpHg9VJQNfX+MlgwcxORARmUlpqeZYg/PnVd1Mq5JBcDBgb2+e2KwiOcTFxSE5ORlubm7I\nzs5Wb09KSsKqVaugVCoRHR2NDz/8UDsoJgcishD37wOHD1cng6wsIDS0ut0gPBxwcjJ3lCpWkRwy\nMjLg4uKCsWPHqpNDcnIyPv30U/zvf/+Dg4MDbty4gdatW2sHxeRARGaiUAAnTlQng8OHVY+GqmoG\nzzwDNGtm7ih1M+Rnp9Gmz4iIiEB+fr7GtlWrVmHmzJlwcFAVqysxEBGZklIJ5ORUJ4P0dOCJJ1Q1\ng/h4YMsW4LHHzB2l6Zl0bqVz585h586dmDZtGpo2bYolS5agV69epgyBiBo5IYALF6qTwb59wOOP\nq2oFsbHAqlWAm5u5ozQ/kyYHpVKJkpISnDx5EseOHcOwYcNw+fJlSEzVlE9EjVJBgeZYA0CVDIYM\nAZYsATw8zBufJTJpcvDw8MBLL70EAOjRowecnJxw9epVtG/fXmvfhIQE9c8ymQwymcxEURKRtSsu\n1hxrcOtWdZvB7NnAk0+arnupMaWmpiI1NdUo5zZqV9b8/HzExMSoG6SXLl2KW7duITExEefPn4dM\nJkNhYSHs7DQnh2WDNBHVx61bqraCqmRw5QoQGVndo8jPD3jgY8YmWUWD9KhRo5CWloYbN27Aw8MD\nc+fOxd/+9jfExcXB398fALB27VqtxEBEpE9ZGbB/f3Uy+Pln1Yylffuq2gxCQlTTVFDDcRAcEVm8\n8nLgyJHqZHDihGqwWVXN4KmnAGfjLGtgVaxinMOjYHIgatwqK1WDzfbsUSWDQ4eA7t2r2w2efRZo\n3tzcUVoeJgcisilCAGfOVNcM0tJUs5VWLXITGanqbkoPx+RARFZNCODSpeqawb59QIsW1TWDPn2A\ndu3MHaX1YXIgIqtTVKQ51kChqK4Z9OkDdOpk7gitH5MDEVm869c1xxrcuKFKAlW1g27dbGOsgSVh\nciAii3PnjuZYg7w81RrIVT2KpNLGMdbAnJgciMjs7t0DDh6sbjc4c0bVpbSqZhAaCjg6mjvKxoXJ\ngYhMrqICOHq0umZw7BgQGFjdbvD000CTJuaOsnFjciAio6usBE6dUiWCPXuAAweArl01xxq0aGHu\nKKkmJgciMjghVNNQVNUMUlOB9u2rawa9ewOtWpk7SnoYJgciMoi8PM3upU2bao416NDB3BFSfTA5\nEFGD/PqrZvdSubw6GfTtC3TubO4I6VEwORBRndy8qXo8VJUMrl4FZLLqZODtzbEGtoTJgYh0KikB\nMjKqk8HFi6qG46p2g4AAwN7e3FGSsTA5EBEA1WOhQ4eqk8Hp00CPHtU1gx49ONagMWFyIGqkFArV\n+IKqZHD0KODvX50MevVSNSpT48TkQNRIKJWq2kBVMsjIUDUaV01JEREBtGxp7ijJUjA5ENkoIYBf\nftEca9CmTXXNQCZTvSbShcmByIZcvqw51sDBobpm0KePatEborow5Gen0eZIjIuLQ7t27SCVSrXe\nW7JkCezs7HDz5k1jFU9ksX7/Hdi0CZg8GfDyAsLDgZQU1Wpn6elAfj6wejUQG8vEQOZjtJpDRkYG\nXFxcMHbsWGRnZ6u3FxQUYPLkyfjll19w4sQJtNIxHp81B7Ilf/yhWvayqmZQVKQ51sDXl2MNyDAM\n+dnpYJCz6BAREYH8/Hyt7TNmzMCiRYswdOhQYxVNZFalpZpjDc6fV/Ui6tsXWLsWCA7mWAOyfEZL\nDrr88MMPcHd3R0BAgCmLJTKI9ORkpCxfDof796FwdsZz8fGIHDwY9+8Dhw9XJ4OsLNVaBv36AR9/\nrHps5ORk7uiJ6sdkyaGsrAzvv/8+du3apd72sOpPQkKC+meZTAaZTGbE6IgeLj05GTtffx3zc3PV\n2147notZHsDJ3MHw9VXVDP71L+CZZ4BmzcwYLDUaqampSE1NNcq5jdpbKT8/HzExMcjOzkZ2djb6\n9++PZv//f01hYSE6duyIo0ePws3NTTMotjmQhZkdFYX3UlK0tk8JjsKifTvw2GNmCIroAVbR5vAg\nqVSKq1evql937ty51gZpIkty6xaQf+a+zvc6tJQzMZBNqrUra15eHl588UWEh4dj/vz5qKioUL/3\nwgsv6D3xqFGj0KtXL5w/fx4eHh5Ys2aNxvsSds8gC1dZCXz+uWrm0lKJs+59uC4m2ahaHytFRkbi\nz3/+M5555hl89tlnyMzMxNatW9GmTRsEBwcjKyvLeEHxsRKZ2f79QHy8qu1g+XLg7m/abQ7veHkh\netkyRA4ebMZIiaqZ5LHSzZs3MXXqVADAihUrsGHDBkRGRuLHH380SMFElqiwEHj7bVVX1EWLgJEj\nq8YgqBLAu0lJsJfLUdmkCaKnTWNiIJtVa83Bz88PmZmZcHaurk7v3r0bU6dORWlpKX777TfjBcWa\nA5mYXA4sWQIsXQpMnQr8859A8+bmjoqofkwyfcb48eNx9OhRjW39+/fH5s2b4e/vb5DCicxNCOB/\n/wP8/IATJ1RTYL/3HhMDESfeo0br7Fng9ddV6yovWwb072/uiIgejdkm3gsJCTFIoUTmdOsWMH06\n0Ls3EBMDnDzJxED0oHolB36bJ2tWs2vqvXuqmkN8PJfRJNKlXoPgBrNnBlmpml1Tf/oJYCWY6OEe\nWnOomgdp9+7dAID33nvP+BERGVBhIfDnPwOjRgFvvaXqosrEQKTfQ5NDWloaDhw4YLSJnYiMRS4H\n5s8HAgOBLl2Ac+dUCYID84nqptbkkJiYiPLycvTr1w/l5eVITEw0ZVxEDfJg19Rjx9g1laghHtqV\ndfXq1SguLoabmxvi4uJMFxS7slIDsGsqNXYm68p6584d/OMf/8Ddu3cNUhiRMbBrKpHhPTQ5+Pn5\nAQB8fX1NEgxRfbBrKpHxPLQra1paGpo1a4bU1FT051cxsiBVXVObNwe2b1ety0xEhsMGabIqD3ZN\nTU9nYiAyBjZIk1WomjX1o4+Av/yFs6YS6cIGaWo0qrqm+vqyayqRKdVpVlYhBG7fvg2lUqneZsy1\nn1lzIIBdU4nqy6SzsiYlJcHNzQ2BgYEIDQ1FaGgowsLCDFI4kS7smkpkfnqTw5IlS/Dzzz/j8uXL\nyMvLQ15eHi5dulSnk8fFxaFdu3aQSqXqbTNmzICvry98fX0xZMgQ3Lhxo+HRk01h11Qiy6E3Ofj4\n+MDFxaVBJ58wYQJ27NihsS0mJgY5OTk4e/Ys/P39OZkfAVB1Te3RA1i/XtU19bPPgLZtzR0VUeOl\nd8ru+fPnIzw8HD179oSTkxMA1XOt5cuX6z15REQE8vPzNbb16dNH/fMzzzyD9evX1zNksiWFhcDb\nb6tmS120CBg5kpPjEVkCvcnh1VdfRf/+/SGVSmFnZwchBCQG+r/3888/x8iRIw1yLrIuD3ZN/eIL\n9kAisiR1Wuzno48+MnjB8+fPh5OTE0aPHq3z/YSEBPXPMpkMMpnM4DGQ6QkB/PADMGMGEBSk6pra\npYu5oyKyTqmpqUZbUkFvV9ZZs2bB09MTQ4YMgbOzs3p7Xbuy5ufnIyYmBtnZ2ept69atw2effYa9\ne/eiSZMm2kGxK6tNYtdUIuMy5Gen3uTg6emp8zFSXl5enQp4MDns2LEDb775JtLS0tCmTRvdQTE5\n2JRbt4CEBGDDBuDdd1WPkdgDicjwTJocHsWoUaOQlpaG69evo127dkhMTMSCBQtQXl6urnn07NkT\nK1eu1AyKycEmVFYCX34J/OtfwNChqpHN7IFEZDwmSQ5paWkPbXiOjIw0SAA6g2JysHo1Z01dvpyT\n4xGZgkmSw5AhQ3Qmh9OnT6OwsBCVlZUGCUBnUEwOVqtm19QPPwRGjGDXVCJTMeRnZ629lbZt26bx\n+sCBA5g3bx46dOiAFStWGKRwsh01u6a+9hq7phJZO71dWXfv3q0exTxr1iwMGDDA6EGR9aiaNfXN\nN9k1lciWPLTmMH/+fLi6umLevHmIiIgwZVxkBWp2Tf38c3ZNJbIltbY52NnZwd3dHYGBgdoHSSTY\nunWr8YJim4NFY9dUIstkkjaHvXv31lqYoabPIMuXnpyMlOXL4XD/PiqcnKHsFo81WwZj6FBVzYFd\nU4lsk1HHOTQUaw6WIT05GTtffx3zc3PV28Y18YJs4TJMiB9sxsiISBeTLvZDjVfK8uUaiQEA1slz\ncemnJDNFRESmwuRAOl2/DuSfua/zPXu53MTREJGpMTmQhrIy4P33Vauxldk569ynUsdkiURkW+qd\nHN555x0sXLiQy3vaGIVCNXCta1fVms2HDgHTP43HLC8vjf3e8fLCgGnTzBQlEZlKvRukv//+e+Tm\n5uLUqVNGW8WNDdKmIwSwdSvwz38Cbm6q1djCw6vfT09Oxq6kJNjL5ahs0gQDpk1D5GA2RhNZIquZ\nlbWhmBxM4+BB1TxIt28DCxcCAwdyHiQia2bS3kozZsxAaWkpysvL0bdvX7i6umLNmjUGKZzM49w5\n4MUXVes1T56seow0aBATAxFV05sc9u7di+bNm+PHH39Ely5dcPnyZSxdutQUsZGB/for8OqrQEQE\n0KsXcP48MG4cYG9v7siIyNLoTQ4VFRUAgJ9++gnDhg3DY489Bnt+mliV27eBWbMAqRRwdVUlhbfe\nAtjpiIhqozc5DBo0CP7+/sjMzES/fv1w48YNODjoncyVLMD9+6q1mrt1U9UasrJUDc6PP27uyIjI\n0ultkJbL5bhz5w5atWoFBwcHlJaW4vbt2/jTn/5kvKDYIP1IlErgm2+A2bMBHx/ggw9UtQYism0m\n7a0UEhKCzMxMvdsMicmh4XbvBmbOBBwcVD2QZDJzR0REpmKSWVl/++03/PrrrygrK0NmZiaEEJBI\nJCgtLcWdO3f0njguLg7Jyclwc3NDdnY2AODmzZsYMWIErl69ig4dOuDbb7+Fq6urQS6kscvKUiWF\nvDzVCOfhw9n7iIgartaaw7p167B27VocP34cYWFh6u1NmzbFmDFjMGrUqIeeOCMjAy4uLhg7dqw6\nOUybNg1eXl6YPn06Pv74Y+Tl5WHZsmXaQbHmUGd5eao1FfbsUf138mSurUDUWJn0sdKWLVswfPjw\nBp08Pz8fMTEx6uTg5eWFo0ePonXr1rh+/TqefvppXLx4UTsoJge9rl8H5s8HvvoKiI9XLdPp4mLu\nqIjInEw6CK5nz56IjY1Vrx39yy+/4PPPP29QYdeuXUPr1q0BAG3atEFxcXGDztOY1ZwYr7xcteDO\nnDlMDERkWHr7pMbGxmLq1KmYP38+ANW3/2HDhuHVV181amAJCQnqn2UyGWSNrGW15gpsCmdn9Ptr\nPHKLByMhQTWA7dAh1SR5RNR4paamIjU11TgnF3pIpVIhhBBBQUHqbYGBgfoOE0IIkZeXJ/z9/dWv\nu3TpIq5duyaEEKK4uFh4eXnpPK4OYdm0tG3bxDteXkKo5sUTAhCxjl7iab9t4sgRc0dHRJbKkJ+d\neh8rNW/eXGN67qysLDg7657nX59Bgwbh66+/BgB8/fXXGDRoUIPOY+t0rcC2viIX/dyTNGZMJSIy\nFr2PlT766CM899xzuHTpEiIjI3HlyhVs3rxZ74lHjRqFtLQ0XL9+HR4eHpg7dy4SExMxYsQIrF69\nGu3bt8d//vMfg1yErXG4r3sFNgeuwEZEJqI3OfTs2ROHDx/G6dOnIYRAQEAAnJyc9J5406ZNOrfv\n2rWr/lE2MrcVXIGNiMxL72OlkpISJCYm4pNPPkFYWBgKCgrw448/miK2RuncOeD7n+MxzY0rsBGR\n+egd5zB06FD06tULX331Fc6cOQO5XI7w8HCcPn3aeEE10nEO584B/foBCxYAnq25AhsR1Y9JB8FJ\npVJkZ2cjODgYWVlZAICgoCCcPHnSIAHoDKoRJoeaiWHsWHNHQ0TWyKSD4JycnHDv3j316ytXrhik\nYKrGxEBElkZvg/ScOXPQr18/FBYWYuzYsdi3b1+DR0iTNiYGIrJED00OSqUScrkc33//PTIyMgAA\nixYtQvv27U0SnK1jYiAiS6W3zeGpp57CkSNHTBUPgMbR5sDEQESGZtI2hz59+mDp0qUoKCjAzZs3\n1f+o4ZgYiMjS6a05eHp6QqJj1Zi8vDzjBWXDNQcmBiIyFpN2ZZXL5WjywMhcXdsMyVaTAxMDERmT\nSR8r9erVq07b6OGYGIjImhhtDWmqxsRARNam1uSQkpKCtWvXoqioCG+++aZ6e9OmTTFv3jyTBGcL\nmBiIyBrpbXP47rvvMGzYMFPFA8B22hyYGIjIlEza5pCfn4/S0lIIIRAXF4eAgAAkJycbpHBbxsRA\nRNZMb3JYt24dmjdvju3bt+PWrVvYuHEjZs+ebYrYrBYTAxFZO73JoaqKsmPHDsTGxsLf39/oQVkz\nJgYisgV6k0NQUBAGDRqEHTt2IDo6Gnfv3jVFXFaJiYGIbIXeBmmFQoHMzEx069YNrq6uuHnzJgoK\nChAYGGi8oKywQZqJgYjMzaQjpI1hzpw52LRpE+zs7ODv74+vvvoKzZo1qw7KypIDEwMRWQKT9lYy\ntIsXL2L9+vXIycnBuXPnYG9vj02bNpk6DINhYiAiW6R3sR9Da9WqFRwdHVFaWgo7OzuUlZWhU6dO\npg7DIJgYiMhWPbTmUFlZCV9fX4MW2KpVK7z55pt44okn8Kc//Qmurq7o37+/QcswBSYGIrJlD605\n2Nvbo3sp4uxbAAAT/UlEQVT37igqKkLHjh0NUmBubi4+/vhj5Ofn47HHHsPLL7+MDRs2YPTo0Rr7\nJSQkqH+WyWSQyWQGKd8QmBiIyBKkpqYiNTXVKOfW2yAdERGBrKwshIeHo3nz5qqDJBJs3bq1QQVu\n2rQJe/bswapVqwAA69evx8GDB/Hpp59WB2XBDdJMDERkqQz52am3zcHQk+w9+eSTmD9/Pu7du4cm\nTZpg9+7dCAgIMGgZxsLEQESNhVm6siYkJGDDhg2ws7NDcHAw1q5dq7F4kCXWHJgYiMjSmXScQ1pa\nGqZNm4bz58+jsrISlZWVcHFxMeqaDpaWHJgYiMgamPSx0l//+ld8//33eOWVV3D8+HFs3LgRZ86c\nMUjhlio9ORkpy5fD4f593FY44/uf47Fg6WAmBiJqNPQmB0dHR3Tt2hXl5eWwt7fHmDFjEBoaig8+\n+MAU8ZlcenIydr7+Oubn5qq3Kdxy4dkaAAabLS4iIlPSmxxcXFxQUVEBf39/zJw5E+3atUNZWZkp\nYjOLlOXLNRIDACQV5+LdpCREDmZyIKLGQe/0GevXr0dlZSVWrlwJe3t7FBYWNrgbqzVwuH9f53Z7\nudzEkRARmY/emoOnpydKSkpw9epVvP/++6aIyawqnJ11bq+s0ZuKiMjW6a05bN68GcHBwRg0aBAA\nICcnB4Nt+PHK7Q7xGNfES2PbO15eGDBtmpkiIiIyPb1dWf38/HDgwAH06dMHWVlZAICAgACcPn3a\neEGZqStrRgbw8svAigXJOPVtEuzlclQ2aYIB06axvYGILJ5Ju7I6ODjA1dVVY5tCoTBI4Zbk2jXg\nz38GVq8GBg0ajOETmAyIqPHSmxx8fX2xYcMGKBQK5OXlYeXKlejRo4cpYjMZpVI1uG30aOD/n54R\nETVqetscvvjiC5w4cQJCCMTExECpVGpMkmcLFi0CSkoAA08jRURktcwyt5I+pmxzqGpnOHYM8PAw\nSZFEREZh0jaHnJwcLF68GAUFBVAqleoA9u7da5AAzKlmOwMTAxFRNb01h+7du2P69OkICQmBvb29\n6iCJBKGhocYLygQ1B6USGDwYCAwEbHQmECJqZEw6K2t4eDiOHj1qkMLqyhTJ4YMPgG3bgH37AEdH\noxZFRGQSJkkON2/ehBACSUlJaN++PYYOHQrnGqOHW7VqZZAAdAZl5OTAdgYiskUmSQ6enp6QSCS1\nBnDp0iWDBFDb+Y2VHK5dA0JCgM8+Y7dVIrItJn2sZA7GSg5sZyAiW2bIz85axzkcPXoUv//+u/r1\nqlWrMHDgQLz66qu4evWqQQo3NY5nICKqm1qTw+TJk9GsWTMAwJ49e/Duu+9i0qRJcHNzw6RJk0wW\noKFkZAAffwxs2sQGaCIifR46Qrply5YAgC1btmDKlCkYNmwY3nvvPVy8ePGRCr116xZefvllBAYG\nwsfHB4cOHXqk8+nD8QxERPVTa3KQy+WoqKgAAKSmpiIyMlL9noOD3rFzDzV58mS89NJLOHXqFM6c\nOQM/P79HOt/DcN4kIqL6q/VT/pVXXkHv3r3Rtm1bODg4oHfv3gCA/Px8NG/evMEF3rhxAydPnsTm\nzZsBAHZ2duoaijEsXMh2BiKi+npob6XU1FRcu3YNUVFR6g/wCxcuoKSkBCEhIQ0q8PDhw5gxYwbc\n3d1x9uxZhISEYOXKlXBxcakOykAt7hzPQESNiVV3ZT148CB69+6NgwcPokePHpg+fTqcnZ2xcOHC\n6qAkEsyZM0f9WiaTQSaT1en86cnJSFm+HMqS+0jPdMaL/4jHmwlcm4GIbE9qaipSU1PVrxMTE603\nORQUFCAiIgL5+fkAgP3792PevHnYuXNndVANzH7pycnY+frrmJ+bq942y8sLUcuWcSU3IrJ5Jhnn\nYCweHh5o06YNzp8/DwDYvXs3fHx8DHLulOXLNRIDAMzPzcWupCSDnJ+IqLF4tG5HDfTll19i9OjR\nKCsrQ6dOnbBhwwaDnNfh/n2d2+3lcoOcn4iosTBLcggMDMSxY8cMfl5FjYkBa6ps0sTgZRER2TKT\nP1Yypufi4zHO2Utj2zteXhgwbZqZIiIisk5mqTkYS/P2g5HREpgVnATH+3JUNmmC6GnT2BhNRFRP\nNjUr6/jxgI8PMHOm4WMiIrJ0Vj3OoS4acoHFxUD37sDFi0Dr1kYKjIjIgll1V1Zj+fxzYPhwJgYi\nIkOwiZpDRQXg6Qls3w4EBBgvLiIiS8aawwP++1+ga1cmBiIiQ7GJ5LB8ORAfb+4oiIhsh9UnhxMn\ngMJC4PnnzR0JEZHtsPrkkJQEvPYa8IjrDxERUQ1W3SDN7qtERNXYIP3/2H2ViMg4rLbmwO6rRESa\nWHMAu68SERmT1SWH9ORkzI6KwobJMnS9FYX05GRzh0REZHOsqo+P1jKgp4BZr6t+5syrRESGY1U1\nBy4DSkRkGlaVHLgMKBGRaVhVcuAyoEREpmG25FBZWYng4GDExMTU+Zjn4uMx5TEuA0pEZGxma5Be\ntmwZfH19UVJSUudjIgcPxl9aAvE+SWjlzGVAiYiMxSzJobCwED/99BNmzZqFjz76qM7HFRQAxfcG\nY+n+wbC3N2KARESNnFkeK73xxhv48MMPYWdXv+JTUoD+/cHEQERkZCavOWzbtg1ubm4IDg5Gampq\nrfslJCSof5bJZJDJZNi5Exg0yPgxEhFZg9TU1Id+jj4Kk8+t9M4772D9+vVwcHCAXC7HnTt3MGzY\nMHz11VfVQemYH6SyEmjbFsjOBjp2NGXERETWwZBzK5l14r20tDQsXrwYP/74o8Z2XRd45AgwaZIq\nORARkTabmnhPIpHUab+dO4GoKCMHQ0REAKxoyu5nngESEoABA8wTExGRpbOZx0q1efACb90CnnhC\ntfIbB0MTEelmU4+V6mLPHlXNgYmBiMg0rCI5sL2BiMi0LD45CMHkQERkahadHNKTkzEjIgrev8vw\n9XSu+kZEZCoWuxJc1apvS6sW90kBZuVy1TciIlOw2JoDV30jIjIfi00OXPWNiMh8LDY5cNU3IiLz\nsdjk8Fx8PGZ05KpvRETmYNEjpOfMSEbWpiSEdFet+jaAq74REdWq0UyfkZCgmqp73jxzR0REZPka\nzfQZly4BXbqYOwoiosaHyYGIiLQwORARkRaLbXMoLRVo1QooLQXs7c0dERGR5WsUbQ75+YCnJxMD\nEZE5WGxy+Dg2Cr7FMsyO4oR7RESmZpaJ9woKCjB69Gj88ccfKC8vx8SJE/H2229r7PN5VorqB064\nR0RkcmapOTg5OWHlypXIzs7GiRMnsGrVKpw6darW/Tnh3qNJTU01dwg2hffTcHgvLZdZkkO7du3g\n7+8PAHBxcUFAQAB+/fXXhx7DCfcajv8DGhbvp+HwXlous7c55Ofn49ixY3j22Wcfuh8n3CMiMh2z\nJoe7d+/i5ZdfxrJly9CiRYta9+OEe0REpmW2cQ4VFRUYMmQIoqOj8cYbb2i817FDB/z6++/mCIuI\nyGp5eXnh4sWLBjmXWZKDEALjxo1D69atsXTpUlMXT0REepglOezfvx+RkZEICAiARCIBACxYsADR\n0dGmDoWIiHSwyOkziIjIvMzeW+lBO3bsgFQqha+vLxYuXGjucKyCp6cnAgICEBwcjPDwcADAzZs3\nMWDAAAQEBCAqKgq3bt1S779gwQL4+vpCKpUiJSXFXGFbjLi4OLRr1w5SqVS9rSH378SJEwgODoaf\nnx9ef/11k16DpdB1LxMSEuDu7o7g4GAEBwdj+/bt6vd4Lx+uoKAAkZGRkEql6N69OxYtWgTARH+f\nwoLI5XLh6ekpCgsLRUVFhQgLCxOZmZnmDsvieXp6ihs3bmhs+9vf/iaWLl0qhBBi6dKlIj4+Xggh\nxPHjx0VYWJhQKBSisLBQeHp6ivv375s8ZkuSnp4uMjMzhb+/v3pbfe5feXm5EEIIqVSq/nsdOnSo\n+O9//2viKzE/XfcyISFBLFmyRGtf3kv9fv/9d5GdnS2EEKKkpER07dpVnDx50iR/nxZVczhy5Aj8\n/PzQsWNHODg4YMSIEUjmvEp1Ih54OvjTTz9hzJgxAIDY2Fj1fUxOTsbIkSNhb2+Pjh07ws/PD0eP\nHjV5vJYkIiICjz/+uMa2+ty/I0eO4MqVK1AqlQgODtY6pjHRdS8B7b9PgPeyLnQNGC4qKjLJ36dF\nJYfCwkJ4eHioX7u7u6OwsNCMEVkHiUSirmKuWLECAHDt2jW0bt0aANCmTRsUFxcDAIqKiuDu7q4+\nlvdYt/rev6KiIo2/3Y4dO/K+1vDJJ5/Ax8cHsbGxuHnzJgDey/qqOWDYFH+fFpUcqnouUf0cPnwY\nmZmZ2LNnD9asWYPdu3ebOyQitb/+9a/Izc3F2bNn4eXlhfj4eHOHZHXu3r2L4cOHY9myZWjZsqVJ\nyrSo5ODu7o6CggL164KCAo1sR7q5ubkBANq2bYvhw4fj2LFjaNu2La5fvw5A9S24ap8H7/GDtTVS\nqe/907W95je4xqxNmzaQSCSQSCSYMmUKjh07BoD3sq4qKiowbNgwjB49Gi+88AIA0/x9WlRy6NGj\nB3JyclBUVISKigr85z//wcCBA80dlkUrKytDWVkZAKC0tBQ7duyAn58fBg0ahK+//hoA8PXXX2PQ\noEEAgEGDBuHbb7+FQqFAYWEhcnJy1D2cqFp975+Hhwfs7OyQlZUFANiwYYP6mMau6pEHAHz33Xfw\n8/MDwHtZF0IITJw4Eb6+vhozSZjk79MoTeyP4KeffhJ+fn7Cx8dHvP/+++YOx+JdunRJBAQEiMDA\nQNG1a1fx7rvvCiGEuHHjhujfv7+QSqViwIAB4o8//lAfM3/+fOHj4yP8/PzEjh07zBW6xRg5cqTo\n0KGDcHR0FO7u7mL16tUNun/Hjx8XQUFBwtfXV0ybNs0cl2J2D97LL7/8UsTGxoqAgADh7e0toqKi\nRGFhoXp/3suHy8jIEBKJRAQGBoqgoCARFBQktm/fbpK/Tw6CIyIiLRb1WImIiCwDkwMREWlhciAi\nIi1MDkREpIXJgYiItDA5EBGRFiYHsijvvvsuunfvjsDAQAQGBqonBfT09FTPyWMJ1q1bh99++63B\nxxcVFWHAgAHw8/ODv7+/1kJXiYmJWsfo2lYlPT0dISEhcHR0xHfffdfguIiqOJg7AKIqqamp2LNn\nD3JycuDo6Ig7d+6oR39LJBKdM3s+isrKStjb29f6vlKphJ2d7u9Pa9euhb+/Pzp06NCgsmfNmoXn\nn38e06ZNAwCcO3cOAPDxxx+jZcuWKC0txezZs9G7d2+cOXNGa9uAAQM0ztepUyesW7cOixcvblA8\nRA9izYEsxrVr19C2bVs4OjoCAFq2bIn27dur309KSkJ4eDi6d++OnJwcAKoJyUaNGoXAwED4+flh\n8+bNAFQzWEZERCA4OBj+/v5IS0sDoEpAERERePHFFzUWpKni4uKCv//97wgLC8Phw4eRmJiI8PBw\neHt7Y/z48VAqldiyZQuOHz+O0aNHIyQkBHK5HIcOHULPnj0REBCAPn36oKioSO+1duzYUf3a29sb\nADB9+nQUFxdj+fLlGDhwIAYMGKBz24M6deoEqVRaazIjqjfDD/gmapjbt28Lf39/4e3tLaZOnSp2\n796tfs/T01N8+umnQgghVq5cKcaNGyeEEOKNN94QX3/9tRBCiD/++EN4eXmJO3fuiHv37qkXOTl/\n/ryQSqVCCCH27dsnmjdvrjGFQ00SiURjEZTbt2+rfx4zZozYsmWLEEIImUwmTpw4IYQQ4v79+yI0\nNFRcv35dCCHEN998I0aPHv3Qa922bZt47LHHRN++fcXcuXNFQUGBEEKIZcuWiS+//FK89dZbYtas\nWWLXrl06t9Vm/Pjx6hiJHgUfK5HFaNmyJU6ePIm0tDSkp6cjNjYW8+bNw6RJkwAAQ4cOBQCEhIRg\ny5YtAICUlBTs2rVL/ThFoVCgoKAA7dq1w2uvvYacnBw4OTnh/Pnz6nLCw8M1vrXXZG9vr575EgC2\nbduGJUuWQKFQ4MaNG+pv+ED1AjanT5/GhQsX0L9/fwCqx1Xt2rV76LUOHjwYFy9exK5du7B9+3aE\nhIQgOztbPZ11YmIi5syZAwDq89bcRmRsTA5kUezt7dG3b1/07dsXUqkUq1atUicHZ2dn9T5KpVJ9\nzNatW9G5c2eN87zzzjvw9PTEt99+i8rKSjRp0kT9XvPmzWstv0mTJup1Re7evYvp06fj9OnTaN++\nPRITE6FQKNT7Vu0nhEBgYCDS09Prda1t2rTBqFGjMGrUKMTExCA1NRUjRowAAJ1JoOa22bNnIzk5\nGRKJBJmZmRr7cV0UMgQ+oCSLceHCBeTn56tfZ2Vl6V1rIioqCitXrlS/rmqLkMvl6m/vGzduRGVl\nZb3jUSgUsLOzg6urK+7du6duzwCApk2borS0FAAQEBCAK1euqKdDVigU+OWXXwAAK1aswCeffKJ1\n7oyMDMjlcgBASUkJcnNz67WuxnvvvYesrCytxCCEMHjDPTVOTA5kMUpKSjBy5EhIpVL4+Pjg1KlT\nmDdvHgDNb8NVC8cAwLx581BcXAxfX18EBARg5syZAIC//OUv+OKLLxAaGoozZ87AxcVF4/ja1HzP\n1dUVEyZMgLe3N6Kjo/HUU0+p3xszZgwmTJiAkJAQCCGwefNmTJ06FUFBQQgKClI3gJ87dw5t2rTR\nKufQoUMIDQ1FYGAgwsLCMHr0aPTq1ashtw0AcOzYMXh4eGDLli2YMmWKzsZ2ovrglN1ERhQTE4Pv\nv/8eDg58gkvWhcmBiIi08LESERFpYXIgIiItTA5ERKSFyYGIiLQwORARkRYmByIi0sLkQEREWv4P\nM9j4VumJG2wAAAAASUVORK5CYII=\n",
       "text": [
        "<matplotlib.figure.Figure at 0x24156d0>"
       ]
      }
     ],
     "prompt_number": 1
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 15.2 - Page No :774\n"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "# find the parameters in Eq. (10.5). The literature value of n\u2019 using 25 points is 0.887\n",
      "\n",
      "# Variables\n",
      "a = array([651, 1361, 2086, 5089, 7575, 11140, 19270, 25030])\n",
      "tau = array([3.71, 7.49, 11.41, 24.08, -35.21, 46.25, 77.50, 96.68])\n",
      "\n",
      "# from the graph\n",
      "betao = -4.3790154;\n",
      "beta1 = 0.8851;\n",
      "\n",
      "# Calculations\n",
      "K = math.exp(betao);\n",
      "n = beta1;\n",
      "plot(a,tau);\n",
      "suptitle(\"Capillary shear diagram for polyisobutylene L-80 in cyclohexane.\")\n",
      "xlabel(\"Pseudoshear rate\")\n",
      "ylabel(\"Wall shear stress \")\n",
      "\n",
      "# Results\n",
      "print \" The final rheological model_ is  tauw  =  %f*8*Uz,avg/do)**%f\"%(K,n);\n",
      "\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        " The final rheological model_ is  tauw  =  0.012538*8*Uz,avg/do)**0.885100\n"
       ]
      },
      {
       "metadata": {},
       "output_type": "display_data",
       "png": "iVBORw0KGgoAAAANSUhEUgAAAZIAAAEhCAYAAABV3CYhAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XlcVPX6wPHPgPuSlriUmCipbMOmoigSpmTill5LvWq5\nlXZT0+re1O79oZbZZultuVcrrdTKLZdEyRUVt9wFLXcULBVxQTZh4Pv748RcUBAQZg4zPO/Xy5cw\nzDnf53CGeea7G5RSCiGEEOI+OegdgBBCCNsmiUQIIUSpSCIRQghRKpJIhBBClIokEiGEEKUiiUQI\nIUSp2GwiuXTpEgMHDsTLywtvb2+6du3KiRMn7utcL7zwAr/99hsALi4uXLt2DYBatWqVWbxFCQkJ\n4cCBA1YrDyAqKopevXoB8NNPP/Hee+9Ztfzi+vjjj2nVqhVDhw61Wpl5XwcF+f3333nmmWdKfN64\nuDiMRmOJjtm2bRu7d+8u8nnDhg1jxYoVJY6pJIrzNxEeHk7Lli1xc3Ojf//+pKWlAXDt2jVCQ0Px\n9vamW7du3Lhx465j7/f3WlpF3e/7uW8ViU0mkuzsbJ566il69uxJbGwsR48e5aOPPiIxMfG+zvfF\nF1/g5uYGgMFgMD+e9+uiKKUozZSckpRVXCWJqVevXrzxxhtWLbO45s2bx9atW1m4cGGxnp+dnV3q\nMou6H4888gjLli0rdTnFsXXrVnbt2lXk8wwGg0VeR3eWcS+nT59m4cKFxMbG8ttvv+Ho6Mj3338P\naAmmR48eHD16lO7duxMeHn7X8db8veZl6d+bvbPJRLJhwwYaNGjAkCFDzI95e3sTFBREamoqnTt3\npnXr1ri5uZlflHFxcbi5ufHcc8/h5eVFz549zZ+UQkJCOHjwYKHlpaSkFHrOVq1aMWzYMHx9fXn7\n7beZOHGi+bgvvviCV199Nd+5TCYTQ4cOxWg04u3tzUcffWT+2bJly+jQoQPNmjVjy5Yt5uePHTsW\nHx8f3N3d+fe//12imC5evJiv/NWrV9OiRQvatWvHypUrzY9//fXXjBs3DoA1a9bQrl07jEYjwcHB\n/PHHHwBcvnyZoKAgfH19efHFF82f4u4sMyEhgTFjxtC2bVtatmzJpEmTzOW4uLjw5ptv0qZNG9q0\nacPBgwfp3r07Li4ufPLJJ3f97seMGcPZs2d56qmnmD17NlevXqVbt24YjUZat25tvm9Tp05l6NCh\nhISEMGzYsHzniIqKIjg4mN69e9OqVSuGDx9uTnYLFizAw8MDDw8PJkyYkO84pRTh4eHMmTPH/Nib\nb77Jv//9b+Li4vDy8gLgyJEjtGvXDj8/P7y9vTlz5gwAM2bMwN3dHXd393y1PZPJVODrMO+n4v37\n99O5c2fOnz/P3Llz+fjjj/H39yc6OprmzZtjMpkASE5Ozvd97nXt3r2bwMBAvL296dy5s/l1EBIS\nwqRJk4r9Oiuphx56iMqVK5OamorJZCItLY2mTZsCsG7dOnOtcsiQIURERNx1fN5P/l9//TX9+vWj\nZ8+eNG/e/K77k2vnzp20adMGX19fAgICSElJ4fHHH+fIkSPm5wQFBRETE8OtW7cYOHAgnp6e+Pj4\nFFiDK+y+ZWdnM2bMGLy8vAgJCSE1NRWAEydO0LlzZ3x8fGjXrh3Hjh3DZDIREBDAtm3bAJg8eTL/\n/Oc/Ae21GhAQgJubG8OGDSMnJwew/L2xKGWD3n33XTVp0qQCf2YymVRqaqpSSqnExETl4uKicnJy\n1Llz55TBYFB79+5VSin1wgsvqHfeeUcppVRISIg6cOCAUkopFxcXlZSUpJRSqlatWkWe08HBQe3f\nv18ppVRKSopydXVVJpNJKaVUhw4dVGxsbL749u7dq7p3727+PiUlxRzDG2+8oZRSat26derxxx9X\nSik1Z84c9fbbbyullMrIyFD+/v7q5MmTxY4pr7S0NNWoUSN17tw5pZRSgwYNUr169VJKKbVgwQI1\nduxYpZRSN2/eNB/zxRdfmB8fNWqU+uCDD5RSSm3cuFEZDAaVlJRUYJm55zCZTCokJMT8MxcXFzVv\n3jyllFITJ05URqNRpaenq8TEROXk5HRXzHfek7z3bdu2bcrd3V0ppVR4eLhq06aNysrKuuv4rVu3\nqmrVqqkLFy6onJwc1a1bN/Xdd9+p8+fPq8aNG6vr16+r7Oxs1bVrV/XDDz/kKzMuLk75+/srpZTK\nzs5Wrq6u6tq1a+rcuXPKy8tLKaXU3/72N7VkyRLzc9LT09XOnTuV0WhUt2/fVunp6crT01Pt2bPn\nnq/DvNe5b98+FRISopRSaurUqWrWrFnm6xk+fLhatWqVUkqpuXPnqtdff10ppdSwYcPUihUr1O3b\nt5W/v7+6evWqUkqpH374QQ0ePFgpVfLX2Z1y/ybuZe7cuapWrVqqfv365nKVUqp27dr5nnfn90qp\nfL/XBQsWqObNm6vU1FSVkZGhHn30UXX27Nl8z8/IyFCNGzdWhw8fVkppr3GTyaS++eYbNWHCBKWU\nUidOnFBt2rRRSik1fvx48+9Lqf+9TnN/9/e6b5UqVVIxMTFKKaWeffZZtWDBAqWU9nd+6tQppZRS\ne/bsUR07dlRKKXXs2DHl7u6uNm7cqPz8/Myvzbx/X0OHDlXLly9XSpX+3ujJJmsk96qGZmVlMWHC\nBLy8vAgNDeXKlSvmT9RNmjQhICAAgEGDBhEdHV2s8u51zqZNm9K6dWsAatasyRNPPMFPP/3Eb7/9\nRlZWFp6envnO1bJlS06fPs348eNZt24dNWrUMP+sT58+APj7+xMfHw9ota9vv/0WPz8/2rdvz40b\nNzh79iwmk6lYMeUVExNDy5YtcXFxMf8OVAHNUKdPnyYkJASj0ciHH35o7nvatWuXuf26a9euPPjg\ng+Zj7izzq6++wsfHh9atW3Ps2LF8/Vc9e/YEwGg0EhgYSLVq1XBycqJGjRoFtpvntXPnTgYNGgRA\ncHAwKSkpXL16FYPBQO/evalUqVKBxwUEBNCkSRMMBgMDBgwgOjqavXv30qVLF+rWrYuDgwODBg1i\nx44d+Y5r2rQp9erV4/Dhw2zYsAF/f/981w3ap923336b9957j1OnTlGtWjWio6Pp168fVapUoVq1\navTr148dO3ZgMBju63WY9z6NGjWKBQsWANqn9uHDh+d73tGjRzl9+jRdu3bFz8+PGTNmcPnyZfNz\nSvI6K6kzZ84we/Zs4uLi+P3330lNTWXx4sUlPk+uLl26UKNGDapWrYqnpycJCQn5fn706FFcXFzw\n8fEBoHr16jg6OtK/f3/Wrl2LyWRi/vz55t/R5s2bGTNmjPn4Bx54wPy1Uuqe961Zs2bmWmjr1q2J\nj48nKSmJgwcP8swzz+Dn58eYMWO4evUqAB4eHgwZMoRevXqxYMEC82tz7dq1tG7dGh8fH7Zs2ZLv\nb8OS98aSCv6rK+eMRiOzZ88u8GfffvstycnJxMTEmG9+brU/bwJSShW7XfRe56xZs2a+544aNcpc\nNR4xYsRd56pbty6HDx8mMjKSL7/8kuXLlzN//nwAqlatCoCjo6O5ugvw3//+l86dO+c7z7x584od\nUy4Hh/yfGwpKIgBjx47ln//8J2FhYWzbto2pU6cWeUzeMk+cOMFnn33G4cOHqVWrFsOHDzfHlvc6\nHRwcqFKlSr748l53YQqLIW9SvlNx7n1hj+e+cV++fLnAezpo0CDat29PREQEvXr1Yu7cuRgMhnxx\n5j13YbHkvf6MjIxCr6VDhw7ExcURFRVFdnY2Hh4edz3Hx8eH7du3F3h8SV5nRUlISDAP2BgzZgx1\n6tShQ4cO1KtXD4B+/foRHR3N4MGDqV+/PlevXsXJyYnExEQaNGhQ5PlzY82N9857X9jfcI0aNQgN\nDWXVqlUsW7YsX9N1Ya+f3PMVdt/ujCUnJwelFPXr1+fQoUMFni8mJoYHH3zQnMhTUlKYMGECR48e\npVGjRkybNq3Av42yuDfWZJM1kieffJJLly7l+6QTExNDdHQ0GRkZNGjQAIPBwPbt2zl//rz5ORcu\nXGDfvn0ALFmyhKCgoGKVd69z3ikgIICEhAS+++478yfnvK5du0ZOTg79+vVj+vTp7N+//55ld+vW\njblz55pfVOfOnSM9Pb1EMeXy9PTk5MmT5ucuWbKk0Ott1KgRoCXRXB06dDC3KW/evJnr168Xenyt\nWrWoWbMmV69eZf369QU+715/0IXp1KkTP/zwAwA7duygdu3aODk5FXmuX375hfj4eJRSLFu2jKCg\nIAIDA9myZQs3btwgJyeHpUuXEhwcfNexffv2JTIykv3799OtW7e7fn7+/HmaNWvG2LFj6dOnD4cO\nHSIoKIhVq1aRmZlJRkYGq1atIjg4GKVUoa9DZ2dn8+shb/9V9erVzf0ouZ577jkGDx58V2IzGAx4\ne3tz4cIF85ubyWQqckRjYa+zojg7O3Po0CEOHTrE6NGjcXV1Zc+ePaSnp6OUYtOmTTz22GMAhIWF\nsWjRIgAWLVpEWFhYkee/05332Wg0EhcXx+HDhwFITU01D7YYNWoU48ePJyAggDp16gAQGhrK3Llz\nzccnJyebvzYYDPe8bwVxcnKifv36rF271hzf8ePHAfjxxx+5ceMG27ZtY9y4cdy8eROTyYSDgwN1\n69YlPT29WAML7vfeWJNNJhJHR0ciIyNZs2YNXl5e+Pj48Prrr9OwYUMGDx7Mrl278PHx4ZtvvsHd\n3d18XKtWrfjkk0/w8vLi4sWLvPLKK/csJ/eTyL3OWdAnomeffZagoCDzizev+Ph4OnXqhJ+fH0OH\nDmXmzJn3LPvll1+mcePG5s7B3E/3JY0JtDekuXPn0rVrV9q1a0f9+vXzfUrO/fpf//oXffv2pV27\ndtSrV8/8+FtvvcXKlSvx9fVl6dKlNGzYkGrVqt1Vpo+PD0ajkRYtWjB48OBCE/ado4wKizvv4zNm\nzCAqKgpvb28mTJhgHsl1rxFLBoOBtm3bMnbsWNzc3Hj44YcZOHAgzs7OTJ8+ncDAQDw9PXF3dzc3\n3eU9V+XKlXniiSd49tlnC4x38eLFGI1G/Pz8OHbsGM8//zyBgYEMGDAAHx8f871u27YtUPjrMDw8\nnJdeeon27dvj4OBgPn+vXr347rvv8PX1NTeD/fWvf+X69esFflipUqUKy5YtY8yYMfj6+uLr62vu\n9C3sd1vQ6ywrK+uu56elpdGkSRPzvztbBtq2bUv//v3x9vbGzc2N27dv8/LLLwMwbdo0IiIi8Pb2\nZv369UyfPv2eMRV0T+/8vmrVqixZsoQRI0bg6+tLly5dzLU5f39/6tSpk6/p76233uLChQt4eHjg\n6+vL5s2b853vXvetsFiWLFnCrFmz8Pb2xsvLi2XLlpGUlMTkyZP58ssvadGiBWPHjuWVV16hbt26\nDB8+HDc3N5566inatWtX4O8g7/kLew8A8PPzK/R4q7JWZ4ze8nbiWVrv3r3Vpk2brFKWNd2+fVtl\nZ2crpZTatWuX8vDw0Dmi4tm6davq2bPnfR+fk5Oj/Pz8zB2q5cGKFSvUkCFD9A6jXPv999/VY489\npncYFYJN9pHcL0uPFb9x4wYdO3bEw8ODLl26WLQsPZw/f55nn30Wk8mEwWDgyy+/1DukYinN/Irj\nx4/Tt29fevToYW6i0dv48ePZuHEjq1ev1juUcuvbb79l2rRphdb4RdkyKCUbWwkhhLh/NtlHIoQQ\novyQRCKEEKJUJJEIIYQoFUkkQgghSkUSiRBCiFKRRCKEEKJUJJEIIYQoFYsnkhEjRtCwYcN8u4vd\na6e0mTNn4uHhgdFoZMOGDZYOTwghRClZPJEMHz6cyMjIfI8VtlPagQMH+PHHH4mJiSEyMpLRo0eT\nmZlp6RCFEEKUgsUTSadOne7av6GwndIiIiIYOHAgjo6O5kXKfvnlF0uHKIQQohR06SNJTEw071fg\n5OTElStXALh48SLOzs7m5zk7O9+1kY0QQojyRTrbhRBClIouq/8WtlOas7OzeXtJ0HZfa9KkyV3H\nP/bYY5w5c8Zq8QohhD1wdXXl9OnTZX5eXWokhe2UFhYWxpIlSzCZTCQkJBAbG2ve2zqvM2fOoJSy\n23/h4eG6xyDXJ9dXEa/Pnq9NKWWxD+AWr5EMGjSIbdu2cfXqVZo0acL06dOZNm0aAwYMYP78+TRq\n1IilS5cC0Lp1a/r27Yu3tzcODg7MnTuXypUrWzpEIYQQpWDxRPL9998X+PjGjRsLfHzKlClMmTLF\nkiEJIYQoQ9LZXg6FhIToHYJFyfXZNnu9vitX4PTpEGJj9Y7E9tjkDokGgwEbDFsIUQ5duAAffgiL\nFsHAgTBlCuSZhWBXLPXeKTUSIUSFdOIEjBgBfn5QrRocOwaff26/ScSSdBn+K4QQejl0CGbOhKgo\nGDcOTp+GOxbfECUkNRIhRIWwYwd07w69ekFgIJw9C//6lySRsiA1EiGE3VIK1q/XaiB//AGTJsGq\nVVC1qt6R2RdJJEIIu5OdDStWwDvvaMlk8mTo3x8qyTueRcivVQhhNzIzYeFCeO89cHKCGTMgLAwM\nBr0js2+SSIQQNi81Fb78UhvG6+EBX3wBwcGSQKxFEokQwmbduAGffQb//jd06qT1f7RurXdUFY+M\n2hJC2JzLl7WOc1dXOHVKG8q7fLkkEb1IIhFC2Iy4OBg7FtzdISUFDhyAr7/Wvhf6kUQihCj3fv0V\nnn9eq3HUrq19/+mn4OKid2QCpI9ECFGO7d+vzQGJjobx4+HMGahbV++oxJ0kkQghyhWlYNs2bQ7I\nr7/C3/+uDemtUUPvyERhJJEIIcoFpSAiQksgSUnwxhswZAhUqaJ3ZKIokkiEELoymWDZMnj3XXBw\n0JZx79cPHB31jkwUlyQSIYQubt+Gb7/VZqE//LCWSJ56SiYR2iJJJEIIq0pJgXnzYNYs8PGBBQu0\nyYTCdkkiEUJYxbVr2pDdTz+FkBBYu1bbVErYPplHIoSwqD/+0EZetWihTSjcsQOWLpUkYk8kkQgh\nLOLsWXjpJfD01FblPXQI5s+HVq30jkyUNUkkQogydewYDB0KAQFQr562N/qcOfDoo3pHJixF10QS\nHh5Oy5YtcXNzo3///qSlpXHt2jVCQ0Px9vamW7du3LhxQ88QhRDFtHcvPP00dOmi1ULOnIG334b6\n9fWOTFiabonk9OnTLFy4kNjYWH777TccHR35/vvvCQ8Pp0ePHhw9epTu3bsTHh6uV4hCiCIoBZs3\na8nj2Weha1etSWvSJKhTR+/ohLXolkgeeughKleuTGpqKiaTibS0NB599FHWrVvH0KFDARgyZAgR\nERF6hSiEKERODqxeDe3bw8svw3PPwenT2sq8spRJxaPb8N+HHnqI1157jUcffZTq1avTrVs3QkND\nSUxMpF69egA4OTlx5coVvUIUQtzBZIIlS7SFFKtW1WahP/20zEKv6HRLJGfOnGH27NnExcVRp04d\nnnnmGRYtWlTs46dOnWr+OiQkhJCQkLIPUggBQEaGtu/H++9rneYffQShoTILvbyLiooiKirK4uUY\nlFLK4qUU4Pvvv2fz5s18+eWXACxcuJBdu3axYcMG9u7di5OTE4mJiQQGBnL69On8QRsM6BS2EBXK\nrVswd66WOPz9YfJk6NhR76jE/bLUe6dufSSPPfYYe/bsIT09HaUUmzZtwtXVlbCwMHPNZNGiRYSF\nhekVohAVVlIShIdD8+baniDr1mkz0SWJiILo1rTVtm1b+vfvj7e3Nw4ODvj5+TF27FjS0tIYMGAA\n8+fPp1GjRixdulSvEIWocC5e1GofCxbAX/4Cu3ZpM9KFuBfdmrZKQ5q2hChb169r+4B89ZW2pe1r\nr4Gzs95RibJmd01bQgj93b6t1UBatYKbN7VZ6R9/LElElIys/itEBZSTow3jnTIFvLwgKgo8PPSO\nStgqSSRCVDBRUdpqvEppfSEycl6UliQSISqI48e1fdCPHdP6Q559VtvaVojSkpeREHbujz/gxRe1\nmkfnzvDrrzBwoCQRUXbkpSSEnUpJ0eaCeHlpCyieOAGvvqotbSJEWZJEIoSdMZngv//V5n+cOQMH\nDsAHH8CDD+odmbBX0kcihJ1QCtas0ZZwf/hhbSZ669Z6RyUqAkkkQtiBvXu1kVjXrsGsWdC9uyyo\nKKxHmraEsGFnzsCAAdCvnzYj/cgRCAuTJCKsSxKJEDYoKQkmTND2RTca4eRJGDlS9gUR+pBEIoQN\nSU/X9gRxc4OsLG1uyD//CTVr6h2ZqMikj0QIG5CTA4sXa0mjdWuIjtbWxxKiPJBEIkQ5t2mT1pFe\nrZqWTIKC9I5IiPwkkQhRTh09Cv/4B5w+De++q+0PIp3oojySPhIhypmEBBgxQtsTvUcPrR+kf39J\nIqL8kkQiRDmRnAxvvgk+PtCokTYSa9w4qFJF78iEuDdJJELoLDMTPv0UWraE33+Hw4e11Xnr1NE7\nMiGKR/pIhNCJUvDjj9qSJq6u8PPPWm1ECFsjiUQIHezaBa+/Dmlp8PnnWn+IELZKEokQVnTyJEye\nDPv2wdtvw+DBMhtd2D7pIxHCCq5cgbFjoWNHbVmTEyfgueckiQj7IIlECAtKS4MZM8DDAypV0nYn\nfOMNqF5d78iEKDu6JpIbN27wzDPP4OPjg7u7O3v27OHatWuEhobi7e1Nt27duHHjhp4hCnFfsrNh\n/nxtJNaRI9oy77Nng5OT3pEJUfZ0TSQvvPAC/fr148iRIxw7dgwPDw/Cw8Pp0aMHR48epXv37oSH\nh+sZohAlohSsXw++vrBgAaxYAUuXaqOyhLBXBqWU0qPgpKQk2rdvz6lTp/I97urqyi+//EK9evW4\nevUq7du35/Tp0/meYzAY0ClsIQp18KC2pElCArz3HvTuLbPRRfliqfdO3Wokp06don79+jz77LN4\neXnx3HPPcevWLRITE6lXrx4ATk5OXLlyRa8QhSiW8+dh6FBtOZP+/SEmBvr0kSQiKg7dhv/m5OSw\nb98+5syZQ9u2bZkwYQJvvfVWsY+fOnWq+euQkBBCQkLKPkgh7uHGDW0G+ldfaSOyTp6E2rX1jkqI\n/4mKiiIqKsri5ejWtBUfH0+nTp2Ii4sDIDo6munTp3P27Fn27NmDk5MTiYmJBAYGStOWKFdu39Ym\nEc6cqdU8pk2DRx7ROyohimZ3TVtNmjTBycmJkydPArBp0ybc3d3p3r07ixYtAmDRokWEhYXpFaIQ\n+SgFP/wA7u6weTNs3QpffCFJRAjdaiQAR44cYdSoUaSlpdG0aVMWL16MUooBAwZw+fJlGjVqxNKl\nS6lbt26+46RGIqxt+3ZtSZOcHPjgA+jcWe+IhCg5S7136ppI7pckEmEtuRMIY2K0/pABA8BBpvEK\nG2V3TVtClGeXLsHo0RAcDI8/Dr/9BoMGSRIRoiDyZyFEHikpMHUqeHpqI7BOnIDXXoOqVfWOTIjy\nq8hEcvr0aTIyMgDYunUrH330EUlJSRYPTAhrMplg3jxtSZNTp2D/fvjwQ3joIb0jE6L8KzKR9OvX\njypVqnDixAlGjx7NH3/8wdChQ60RmxAWpxT89BN4e8P338OaNbB4MTRrpndkQtiOIickOjo64uDg\nwKpVqxg/fjxjx47Fz8/PGrEJYVH79sHf/w6JidpIrLAwmY0uxP0oskZSpUoVli5dyuLFi+nRowcA\nJpPJ4oEJYSlnz2od508/DUOGaKvz9ughSUSI+1VkIpk3bx7btm1j8uTJNGvWjAsXLvDXv/7VGrEJ\nUaaSkmDiRGjbVtsf5ORJGDVK2ydECHH/SjSP5Nq1a8TFxeHv72/JmIok80hESWRkwCefwPvvwzPP\nQHg4NGyod1RCWJ9u80iCg4NJTU3l6tWr+Pn5MWbMGMaPH1/mgQhR1nJyYNEiaNUKdu2C6GhtjSxJ\nIkKUrSIr9bdu3aJmzZosXryYESNGEB4ejtFotEZsQty3zZu1jvQqVbRk0qmT3hEJYb+KrJGYTCYS\nExNZsWIF3bt31w6S6b2inIqJ0UZfjR4NkyfD7t2SRISwtCIzwpQpUwgJCaF58+YEBAQQFxdH8+bN\nrRGbEMV28SKMHAldu8JTT8Hx41p/iIzEEsLyZNFGYdOSk7VO9P/8B158UVtg8Y7FooUQf9Kts/3Y\nsWMEBQXh5uYGwPHjx5k2bVqZByJESWRlwWefaUuaJCTA4cPaRlOSRISwviITyYgRI5g1axbVq1cH\nwN3dnaVLl1o8MCEKohT8+KO2qOLq1RAZCV9/DU2a6B2ZEBVXkaO2MjIyaNeunfl7g8GAo6OjRYMS\noiC7dmkjsVJS4NNP4ckn9Y5ICAHFSCQPPfRQvj3T165dS7169SwalBB5nT0L//gH7N0Lb7+tLWsi\nn2WEKD+K7Gw/ceIEI0aM4ODBg9SvX5/69euzZMkSHnvsMWvFeBfpbK9Y2rTRRmK9+Sb82cIqhLgP\nlnrvvGeNJCcnh6+++oqdO3dy9epVlFLUr1+/zIMQojDx8RAXp202JWtiCVE+3fNP08HBgZ07dwLg\n5ORklYCEyOunn7QJhpJEhCi/ivzzNBqN9O3bl379+lGjRg1Aqx7169fP4sEJsXo1vPCC3lEIIe6l\nyD6SYcOGYShgevCCBQssFlRRpI+kYkhOBmdnbdZ67dp6RyOE7dOljwRg1KhRBAUF5XssOjq6zAMR\n4k6RkdCxoyQRIcq7IickFrRk/Lhx48osgOzsbPz8/OjVqxeg7XkSGhqKt7c33bp148aNG2VWlrAt\na9ZA7956RyGEKEqhNZLdu3eza9curly5wkcffWSuDqWlpZGRkVFmAcyZMwcPDw9u3boFQHh4OD16\n9GDChAnMnj2b8PBw5syZU2blCduQlQXr1sG77+odiRCiKIXWSDIzM7l16xbZ2dncunWLlJQUUlJS\nqFq1Kj/++GOZFJ6QkMC6desYNWqUOVGtW7eOoUOHAjBkyBAiIiLKpCxhW6KjoXlzrY9ECFG+FVoj\nefzxx3n88ccZPnw4TZs2BbRmqBs3bpTZzPaJEyfywQcfkJycbH4sMTHRfH4nJyeuXLlSJmUJ27Jm\nDfTpo3fh6dBHAAAgAElEQVQUQojiKLKz/Y033uCrr75CKUXbtm1JTk7m5ZdfZsqUKaUqeO3atTRo\n0AA/Pz+ioqJKfPzUqVPNX4eEhBASElKqeET5oZQ27HflSr0jEcK2RUVF3df7a0kVOfzX19eXw4cP\ns3DhQo4cOcLMmTPx9/cnJiamVAVPmTKFhQsXUqlSJTIyMkhOTqZfv37s2rWLvXv34uTkRGJiIoGB\ngfnW+gIZ/mvvYmOhZ084d042phKiLOm2H0lWVhZZWVmsXbuWnj17Urly5TJZ/fedd94hPj6ec+fO\n8cMPP/DEE0+wcOFCwsLCWLRoEQCLFi0iLCys1GUJ27J6tTZaS5KIELahyEQyatQoXFxcSE5OJjg4\nmPj4eGrWrFnmgeROepw2bRoRERF4e3uzfv16pk+fXuZlifJNhv0KYVtKvNWuUors7Gwq6bj4kTRt\n2a/ff9c2rbpyBSpX1jsaIeyLbk1bBQWiZxIR9m3tWm3JeEkiQtiOEicSISxJhv0KYXvumUhycnLY\nvXu3tWIRFVxKCmzfrtVIhBC2456JxMHBoUzX1RLiXjZuhHbtoG5dvSMRQpREkU1bISEhrFy5Ujq3\nhcXlDvsVQtiWIkdt1apVi7S0NBwdHalWrZp2kMGQb1kTa5NRW/YnOxsaNYL9++HPFXmEEGVMt/1I\nUlJSyrxQIe60ezc0bixJRAhbVKxxvImJiZw6dQqTyWR+LDg42GJBiYpHmrWEsF1FJpJ///vf/Pe/\n/+X333/Hz8+PPXv2EBgYyJYtW6wRn6gg1qyB777TOwohxP0osrP9008/5cCBA7i4uLB161aOHj1K\nXRlWI8rQb79Bair4++sdiRDifhSZSB544AGqV69OdnY2mZmZtGjRgl9//dUasYkKIndtLVmkUQjb\nVGTT1iOPPEJycjI9e/akS5cuPPjggzRp0sQasYkKYvVq+Ne/9I5CCHG/SrRo44YNG8jIyOCpp56i\nSpUqlozrnmT4r/24cgVatoTLl6FqVb2jEcK+6Tb8F2DTpk3ExcUxatQorl69ysWLF2nWrFmZByMq\nnogICA2VJCKELSuyj2Ty5MnMmTOH999/H9D2bR84cKDFAxMVgwz7FcL2FZlIVq1axerVq82bWTVs\n2JDbt29bPDBh/9LTYcsW6NFD70iEEKVRZCKpXLkyDg7/e1pGRgaZmZkWDUpUDJs2aUN+H3pI70iE\nEKVRZCLp378/o0eP5saNG8yfP5/Q0FCef/55a8Qm7JzsPSKEfSjWqK01a9awYcMGALp160avXr0s\nHti9yKgt25eTA488Ajt3gqur3tEIUTFY6r2zxHu2lweSSGzfnj0wciQcO6Z3JEJUHLrt2f7dd9/h\n4uJCrVq1qF27NrVr1+aBBx4o80CEJiMDpk+HMWP0jsSypFlLCPtRZI3k0Ucf5eeff8bd3d1aMRXJ\nXmsk69fDuHFgNGod0Rcvgr3mbE9P+OoraN9e70iEqDh0q5G4uLiUqyRij86fh759Yfx4+OQTWLkS\nOnbUtp61R6dPQ1ISBAToHYkQoiwUOrN9xYoVAPj5+TFo0CB69+5tXhbFYDDQr1+/UhUcHx/P4MGD\nuX79OpmZmYwcOZJ//OMfXLt2jQEDBnD58mUefvhhlixZYrerDd++DbNmwUcfwYQJ8P338OcmlPTo\nAWvXwl/+om+MlrBmDfTqBQ5FfowRQtiCQpu2hg0bhuHP5ViVUuavcy1YsKBUBV++fJnExES8vLxI\nSUnB39+fZcuW8eWXX+Lq6sqECROYPXs2586dY86cOfmDtoOmrQ0bYOxYcHeH2bPhzhVnzp6FDh3g\n99/t7w03JARee01LJkII67H7UVv9+/dnxIgRjBs3jl9++YV69epx9epV2rdvz+nTp/M915YTSXw8\nTJwIhw7BnDnQs2fhz3V3h2+/hbZtrRefpSUlaUnz8mWoXl3vaISoWHTrI3nttddITU0lMzOTJ554\ngrp165a6NnKnuLg49u3bR1BQEImJidSrVw8AJycnrly5UqZl6SUzE957D/z8wMsLYmPvnURAa96K\niLBOfNaybh088YQkESHsSZGr/27evJlZs2axYsUKmjdvzsqVK+nUqRPDhw8vkwBSUlLo378/c+bM\nKdGw4qlTp5q/DgkJISQkpEzisYTNm7VmrObNYe/e4k/A69ED/vEPyHOpNk+G/QphPVFRUURFRVm+\nIFUEDw8PpZRSI0aMUOvWrVNKKeXr61vUYcWSmZmpnnzySfXRRx+ZH2vevLlKTExUSil15coV5erq\netdxxQi7XEhIUGrAAKWaNlVq1SqlcnJKdnxmplJ16yr1xx8WCc/qMjKUqlNHqcuX9Y5EiIrJUu+d\nRTZthYWF4eXlxcGDB+nSpQtJSUlUqlSsbUyKSmCMHDkSDw8PJk6cmK+8RYsWAbBo0SLCwsJKXZa1\nZWVpo7F8fKBFCzh+XPsUXtKtZCtX1vbqWL/eMnFa29atWrNegwZ6RyKEKEvF6my/cuUK9erVw9HR\nkdTUVJKTk3n44YdLVXB0dDTBwcF4e3ubR4TNnDmTgIAA8/DfRo0asXTp0ruG/5bnzvaoKHj5ZWjS\nRJsT0qJF6c73zTdac9Cfo7Ft2ksvaR3t//iH3pEIUTHZ/aitkiiPieSPP+Dvf4cdO+Djj7UJhiWt\ngRQkdyvaK1dAx92NS00pcHbW+ovc3PSORoiKSbdRW+LeTCZtHojRqNVCjh+Hfv3KJomA1gzUqpWW\noGzZgQNQq5YkESHsUek7Oyqw6Gj429+gYUPta0u9SeYOA+7SxTLnt4Y1a2RLXSHsVaFNWwcOHLhr\nNnte/v7+FguqKHo3bV2+rLXzb9miLW/Sv3/Z1UAKcuAA/PWvcOKE5cqwNF9f+PRTCArSOxIhKi5L\nvXcWWiN57bXX7plItm7dWubBlHcmE/z3vzBtGgwfDr/+qjXXWJqfHyQna4sdPvaY5csra3Fx2krG\ngYF6RyKEsIRCE4lVJrHYkN27tWasunVh2zbw8LBe2Q4O/2veeuUV65VbVn76SZvF7+iodyRCCEu4\n5+q/96qRlHb1X1uRmAiTJkFkJHz4IQwcaNlmrML06AGff26biWT1am1ItBDCPhVr9d+ClPV6WyVh\njT6S7GyYNw/Cw2HoUO1/PTeZunVL2+P899+hdm394iipGzfg0Ue1uK3RDCiEKJzV+0i+/vrrMi/M\nVvzyi9aMVbOm1qHu5aV3RFryaN9e2zmxb1+9oym+yEgIDpYkIoQ9K3L4b05ODitXruTEiROYTCbz\n4//3f/9n0cD0kJ4Or7+u7VD4/vsweLA+zViFye0nsaVEsnq1DPsVwt4VOSFxxIgRrF69ms8//xyl\nFEuXLuX8+fPWiM2qzp7VtrdNStImFQ4ZUr6SCGiJZN06bZa4LcjM1GoksoGVEPatyESyZ88evv32\nW+rVq0d4eDj79u27a6MpW7d2rTY0dfhwbbvb8rqzb4sWWhPRoUN6R1I827dry7uUclk2IUQ5V2Qi\nyd0jpFKlSly6dAmDwWA3NZLsbHjzTW0xwZUrYdy48lcLuVPPnraz2ZXsPSJExVCsZeSTk5N57bXX\n8Pb2xsXFhUGDBlkjNou6cgW6dYM9e7SZ4x066B1R8djKrolKSf+IEBVFocN/P/74Yzp27Ii/v795\n/5GUlBRMJtNdy7pbW2mHsO3eDQMGwHPPabPUbWmiXGamtpDjyZPle1+PI0e0QQFnzpT/Wp4QFYXV\nV/9NSEhgwoQJ1K9fn+DgYKZMmUJUVBQ5OTllHoS1KKXtEfL009rkvrfftq0kAtpS8l26lP/NrnKb\ntSSJCGH/ityP5Pbt2+zfv5/du3eza9cudu/eTd26dfn111+tFeNd7ierJifDqFHaelXLl2v7p9uq\n+fO10VBLl+odSeHatIEPPoDOnfWORAiRS7f9SNLT00lOTubmzZvcvHmTRx55hPbt25d5IJZ05Ij2\nxlavHuzaZdtJBCAsDDZu1Lb0LY8SEuDcOVnpV4iKotAJiS+88ALHjx+ndu3aBAQE0KFDB1599VUe\nfPBBa8ZXavPnwxtvwJw52lLs9qBRI3B1hZ07ISRE72ju9tNP0L27tue8EML+FVojuXDhArdv36ZR\no0Y0btyYxo0b697JXhJpadq8kFmztPkM9pJEcpXnYcAy7FeIiuWefSQ5OTkcO3bM3D8SExNDvXr1\naN++PdOnT7dmnPkU1c534oS22ZSfH/znP9qaWfZm3z54/nltFn55kru45MWL+i5yKYS4m6X6SIrs\nbAeIj49n165d7Ny5k7Vr15KUlMTNmzfLPJjiutcvY8kSGDsW3nlH61y311FDOTnaG3Z56/NZvhy+\n+AJ+/lnvSIQQd7J6Z/ucOXMYMGAAjz76KI8//jg//fQT7u7urFy5kmvXrpV5IGXl119hwwZ44QX7\nTSKgbXbVvXv5a96SZi0hKp5CayQTJ04kKCiIwMBAHnnkEWvHdU9679leXixfDl9+qQ0FLg9MJm0g\nwKFD0KSJ3tEIIe6ka9OWtUVGRvL3v/+d7Oxsnn/+ed544418P5dEorl5E5yd4dKl8tEPtG0bvPqq\ntuSMEKL80W0eibXdvn2bl156icjISI4ePcry5cs5ZCvL3VpZnTrQti1s3qx3JBpZW0uIiqncJZK9\ne/fi6elJ48aNqVSpEgMGDCCivHUElCPlZRiwUtI/IkRFVe4SSUJCAk3yNLA7OzuTkJCgY0TlW3nZ\n7Or4cW1BSR8ffeMQQlhfkVvtWpuhmEOtpk6dav46JCSEkPI4xdsKWraEqlXh6FF938TXrNGatex5\npJwQtiYqKoqoqCiLl1PuEomzszPx8fHm7+Pj4/PVUHLlTSQVmcGg1UrWrtU/keg4R1UIUYA7P2RP\nmzbNIuWUu6attm3bEhsby8WLF8nKymLp0qV0795d77DKNb03u7p0CX77DR5/XL8YhBD6KXc1kmrV\nqvGf//yHbt26kZOTw9ChQ/H399c7rHLt8cfh2DG4ehWcnKxf/tq12m6TVapYv2whhP7K5TySosg8\nkrs9/bS2vtiQIdYvu1cvGDTI/hbGFMLeVJh5JOL+6DUMODVVm4gorY9CVFySSOxEWJi2xpjJZN1y\nN23SJkXa2DY1QogyJInETjzyCDRtCrt3W7dcmc0uhJBEYkdyhwFbS3a2Vp4kEiEqNkkkdsTaw4D3\n7NFW+23WzHplCiHKH0kkdqRtW7hyBc6ft055sraWEAIkkdgVR0d46inr1Uqkf0QIAZJI7I61hgGf\nOKHtz966teXLEkKUb5JI7MyTT8KOHZCWZtlyfvpJm4joIK8gISo8eRuwM3Xrgr8/bN1q2XKkWUsI\nkUsSiR2y9DDgxERt2fonnrBcGUII21HuFm0Updejh9bprpRl9geJiICuXaFatbI/txDC9kiNxA65\nu2sjuGJjLXN+GfYrhMhLEokdyt3syhKjt9LTYfNmbW0vIYQASSR2y1KJZMsW8PXVZ98TIUT5JInE\nTnXuDEeOwLVrZXve3L3ZhRAilyQSO1WtGoSEwM8/l905c3IkkQgh7iaJxI6VdfPW/v3aviMtWpTd\nOYUQtk8SiR0LC4PISG2597IgkxCFEAWRRGLHmjSBxo215d7Lggz7FUIURBKJnSur5q2zZ7Ul6gMC\nSn8uIYR9kURi58oqkaxZoy3S6OhY+nMJIeyLJBI71749XLwI8fGlO4+M1hJCFEaXRPLqq6/i4eGB\nh4cHPXv2JCkpyfyzmTNn4uHhgdFoZMOGDXqEZ1dyN7tat+7+z3HtmjZiq2vXsotLCGE/dEkkvXr1\nIjY2luPHj+Pl5cXbb78NwIEDB/jxxx+JiYkhMjKS0aNHk5mZqUeIdqW0zVvr12sTHGvUKLuYhBD2\nQ5dE0rlzZxz+3BGpY8eOXLx4EYCIiAgGDhyIo6MjjRs3xtPTk19++UWPEO1Kt24QFaWtk3U/ZNiv\nEOJedO8jmTdvHn3+HFN68eJFnJ2dzT9zdnYmISFBr9DsxkMPgY+PlkxK6vZt2LBB28JXCCEKYrH9\nSEJDQ7l06dJdj7/zzjv06tULgBkzZlClShUGDx5c4vNPnTrV/HVISAghISH3G2qFkNu81b17yY6L\nigIPD2jY0CJhCSEsKCoqiqj7+QRZQgallLJ4KQX45ptvmDt3Llu2bKHanzskvfXWW1SvXp3XX38d\ngJ49ezJ58mQ6duyY71iDwYBOYdusmBiteers2ZJtdvXyy9rExkmTLBebEMI6LPXeqUvTVmRkJO+/\n/z5r1qwxJxGAsLAwlixZgslkIiEhgdjYWAJkBlyZ8PLSFl389dfiH6OUzGYXQhRNl612x40bR2Zm\nJqGhoQAEBgby+eef07p1a/r27Yu3tzcODg7MnTuXypUr6xGi3cm72ZWHR/GOOXRIW0XYzc2ysQkh\nbJtuTVulIU1b9yciAj74oPid7lOnQkoKfPihJaMSQliLXTVtCX107gwHD8L168V7vgz7FUIUhySS\nCqRGDejUSRvOW5QLF7RlVTp0sHxcQgjbJomkginuLPefftKeW0mXXjQhhC2RRFLB9OihLXlS1GZX\n0qwlhCguSSQVTNOm0KgR7NtX+HNu3oTdu7WlVYQQoiiSSCqgopq3IiO1vpRatawXkxDCdkkiqYCK\nSiQyCVEIURIyj6QCMpm0tbOOHtX2dM8rK0v7WWwsPPKIPvEJISxD5pGIMlOpEjz5ZMGbXe3YAY89\nJklECFF8kkgqqMKat2RLXSFESUnTVgV19Sq4usKVK1C1qvaYUtC8uTb019tb3/iEEGVPmrZEmXJy\n0lYE3rbtf4/Fxmr/G436xCSEsE2SSCqwO5u3cichlmS/EiGEkERSgeUmktyargz7FULcD+kjqcCU\ngkcfhU2boHZtranr8mWQLWCEsE+Weu+UJfkqMIMBwsJg7VptFnv37pJEhBAlJ4mkguvRA2bPhurV\n4bnn9I5GCGGLpGmrgktN1RZxNBi0/Ufq1NE7IiGEpUjTlrCImjUhKEhbVl6SiBDifkgiEUya9L+R\nW0IIUVLStCWEEBWEzGwXQghRLumaSGbNmoWDgwPXrl0zPzZz5kw8PDwwGo1s2LBBx+iEEEIUh26J\nJD4+no0bN9K0aVPzYwcOHODHH38kJiaGyMhIRo8eTWZmpl4h6iYqKkrvECxKrs+22fP12fO1WZJu\nieTVV1/l/fffz/dYREQEAwcOxNHRkcaNG+Pp6ckvv/yiU4T6sfcXs1yfbbPn67Pna7MkXRLJ6tWr\ncXZ2xvuOtcovXryIs7Oz+XtnZ2cSEhKsHZ4QQogSsNjw39DQUC5dunTX4zNmzGDmzJn5+j9kBJYQ\nQtgwZWUxMTGqQYMGysXFRbm4uKhKlSqppk2bqkuXLqnp06erDz74wPzcHj16qOjo6LvO4erqqgD5\nJ//kn/yTfyX45+rqapH3dd3nkTRr1owDBw7w0EMPceDAAcaMGcPu3bu5dOkSQUFBnDp1isqykqAQ\nQpRbus9sN+TZRal169b07dsXb29vHBwcmDt3riQRIYQo53SvkQghhLBtNjezPTIyEqPRiIeHB++9\n957e4RSbi4sL3t7e+Pn5ERAQAMC1a9cIDQ3F29ubbt26cePGDfPzC5uYeeDAAfz8/PD09OSVV16x\n+nXkGjFiBA0bNsSYZ4P3srye27dvM2DAAIxGIx07duT8+fPWubA/FXR9U6dOxdnZGT8/P/z8/Fi/\nfr35Z7Z0ffHx8QQHB2M0GmnVqpV5GL693L/Crs9e7l9GRgZt27bFz8+Pli1bMnHiREDn+2eRnhcL\nycjIUC4uLiohIUFlZWWpNm3aqIMHD+odVrG4uLiopKSkfI+NHTtWffzxx0oppT7++GM1fvx4pZRS\n+/fvV23atFEmk0klJCQoFxcXlZmZqZRSymg0mq+5T58+6scff7TiVfzP9u3b1cGDB5WXl5f5sbK8\nng8//FC98sorSimlVq5cqXr37m21a1Oq4OubOnWqmjVr1l3PtbXru3TpkoqJiVFKKXXr1i3VokUL\ndfjwYbu5f4Vdn73cP6WUSktLU0oplZWVpdq1a6e2bNmi6/2zqRrJ3r178fT0pHHjxlSqVIkBAwYQ\nERGhd1jFpu5oRVy3bh1Dhw4FYMiQIeZrKWhi5t69e7lw4QI5OTn4+fnddYy1derUiQcffDDfY2V5\nPXnP1bt3b3bt2mXVYeIFXR/cfQ/B9q6vYcOGeHl5AVCrVi28vb25ePGi3dy/wq4P7OP+AVSvXh2A\nzMxMsrOzadCgga73z6YSSUJCAk2aNDF/b0sTFg0Gg7na+emnnwKQmJhIvXr1AHBycuLKlStA4RMz\nL168mO/6GzduXK6uvyyvJ++9dnBwoF69eubz6emzzz7D3d2dIUOGmNeIs+Xri4uLY9++fQQFBdnl\n/cu9vk6dOgH2c/9ycnLw9fWlYcOGdO7cGU9PT13vn00lkrwjvGzNnj17OHjwIJs3b2bBggVs2rRJ\n75BECb388sucOXOG48eP4+rqyvjx4/UOqVRSUlLo378/c+bM4YEHHtA7nDKXkpLCM888w5w5c6hd\nu7Zd3T8HBwcOHz5MQkIC27dvZ+vWrfrGo2vpJeTs7Ex8fLz5+/j4+HwZtTxr0KABAPXr16d///7s\n27eP+vXrc/XqVUD7NJ/7nDuvM/fTQUGP5/2kobeyuJ7c++ns7MyFCxcA7dNXUlIS9evXt9alFMjJ\nyQmDwYDBYGD06NHs27cPsM3ry8rK4i9/+QuDBw/m6aefBuzr/uVe31//+lfz9dnT/ctVp04devTo\nwd69e3W9fzaVSNq2bUtsbCwXL14kKyuLpUuX0r17d73DKlJaWhppaWkApKamEhkZiaenJ2FhYSxa\ntAiARYsWERYWBkBYWBhLlizBZDKRkJBAbGwsAQEBNGnSBAcHBw4dOgTA4sWLzceUB2VxPbn3M++5\nVq9eTWBgIA4O+r5c81btV6xYgaenJ2B716eUYuTIkXh4eJhH/NwZky3fv8Kuz17uX1JSErdu3QIg\nPT2djRs3YjQa9b1/ZTWKwFrWrVunPD09lbu7u3rnnXf0DqdYzp49q7y9vZWPj49q0aKF+te//qWU\nUiopKUl17dpVGY1GFRoaqq5fv24+ZsaMGcrd3V15enqqyMhI8+P79+9Xvr6+ysPDQ40bN87q15Jr\n4MCB6uGHH1aVK1dWzs7Oav78+WV6PRkZGeqZZ55RXl5eKjAwUJ07d86al3fX9X311VdqyJAhytvb\nW7m5ualu3bqphIQE8/Nt6fp27NihDAaD8vHxUb6+vsrX11etX7/ebu5fQde3bt06u7l/R48eVb6+\nvsrHx0e1atVKTZs2TSlVtu8nJb0+mZAohBCiVGyqaUsIIUT5I4lECCFEqUgiEUIIUSqSSIQQQpSK\nJBIhhBClIolECCFEqUgiETbB0dERPz8/3Nzc6NOnj3lCliW4uLiY12GyxnGW8s033/DHH3/oHYao\nACSRCJtQo0YNDh06xG+//Ubt2rX57LPPLFbW/a7pZjAYynwF2Ozs7Hv+PCcnp9Cfff311/z+++9l\nGo8QBZFEImxOUFAQZ8+e5eLFiwQHB+Pn54fRaCQ6OhqANWvW0Lp1a4xGY77aS94aw/79++ncuTOg\nrUvUqVMnfH19efHFF/MlgxkzZuDu7o67u7t5I7Xk5GTCwsLw8fHBaDSydOlS8/M/+eQTAgICaNWq\nFbGxsYC2eOCgQYPw8fHB09OTZcuWAdrKtJ06dcLPzw8vLy+2bdsGQFRUFJ06daJv3775NtbKVatW\nLV5//XXatGnDnj17mDZtGgEBAbi5uTFs2DBycnJYvnw5+/fvZ/Dgwfj7+5ORkcHu3bsJDAzE29ub\nzp07m5dWF6LUym7ivhCWU6tWLaWUtpFPnz591OzZs9X777+v3nvvPfNzUlJS1KVLl1RgYKB54593\n331Xvfnmm0qp/JuL7du3T4WEhCillHrxxRfNy+38/PPPymAwqKSkJLVz505lNBrV7du3VXp6uvL0\n9FR79uxRS5cuVS+99JK53Fu3bpnP/5///EcppdTnn3+unn/+eaWUUhMnTlSLFi1SSil1/fp15erq\nqpKTk1V6erp5g6GTJ08qo9GolFJq69atqmbNmvmW8MjLYDDk29Ds5s2b5q+HDh2qli9frpRSKiQk\nRB04cEAppdTt27dV69at1dWrV5VSSv3www9q8ODBxfrdC1GUSnonMiGKIz09HT8/P7KysggKCuJv\nf/sbe/bsYeTIkaSnp9OrVy/8/f1Zv349p06dokOHDoC28U+7du3uee7o6GgmT54MwJNPPsmDDz6I\nUoro6Gj69etHlSpVAOjXrx87duygT58+TJo0iUmTJhEWFkZwcLD5XH369AHA39+f5cuXA7BhwwY2\nbtzIhx9+CIDJZCI+Pp6GDRvyt7/9jdjYWKpUqcLJkyfN5wkICKBx48YFxuvo6Ghe0RZg7dq1zJo1\nC5PJRFJSEm5ubuafqT9rV0ePHuXUqVN07doV0JrMGjZsWNSvXYhikUQibEL16tXNq5Tm6tSpE9u3\nbyciIoJRo0YxYcIEatSoQffu3fn222/vOoeDg4O5TyEjI8P8eGF9G3c+rpTCYDDQokULDhw4QERE\nBOHh4XTu3Jn/+7//A6Bq1aqA9maft/9izZo1NGvWLN/5p0yZgouLC0uWLCE7O5tq1aqZf1azZs1C\nfxfVqlUz9+OkpKQwYcIEjh49SqNGjZg2bRomkynfNeTG7uPjw/bt2ws9rxD3S/pIhM1KSEigQYMG\njBw5khEjRrB//346derE1q1bzXspZGRkcObMGUDbY2H//v0ArFy50nyeoKAglixZAsDGjRu5fv06\nBoOBoKAgVq1aRWZmJhkZGaxatYrg4GAuXbpEjRo1GDx4MK+99pr5nIXp1q0bn3/+ufn73L6TjIwM\nc63gu+++K7JjvSAmkwkHBwfq1q1Lenq6uf8FtOSbmpoKgLe3NxcuXDAnY5PJxIkTJ0pcnhAFkRqJ\nsGCl5KoAAAEhSURBVAkFjaTavHkzH374IZUrV6Z27drMnz+fhg0bMm/ePHr37g1oo5pmzJiBq6sr\n4eHhjBw5koYNG9KpUyfzOd966y3+8pe/8MMPP9CuXTuaNm0KQGBgIAMGDMDHxweA4cOH07ZtWzZs\n2MDrr79OpUqVqFSpknnr5DvjzXv+l156CQ8PDypVqkSTJk2IiIjgpZdeonfv3ixevJjQ0FBq1ap1\nz+st6Gd169Zl+PDhuLm50bRp03zNeEOHDmX48OE88MAD7Nq1i2XLljFmzBhu376NyWRi/PjxtGrV\nqtj3QIjCyDLyQgghSkWatoQQQpSKJBIhhBClIolECCFEqUgiEUIIUSqSSIQQQpSKJBIhhBClIolE\nCCFEqUgiEUIIUSr/D5BULYf7jJs0AAAAAElFTkSuQmCC\n",
       "text": [
        "<matplotlib.figure.Figure at 0x330ed50>"
       ]
      }
     ],
     "prompt_number": 3
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 15.3 - Page No :774\n"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "# Find the power-law parameters for the data of Example 15.2 (Table 15.2).\n",
      "\n",
      "# Variables\n",
      "# from Example  15.2 \n",
      "n = 0.8851;\n",
      "K = 0.01254;\n",
      "n = n;\n",
      "\n",
      "# Calculations\n",
      "K = K/((3*n+1)/(4*n));\n",
      "\n",
      "# Results\n",
      "print \"n = \",n\n",
      "print \"K  =  %f N/m**2\"%(K);\n",
      "\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "n =  0.8851\n",
        "K  =  0.012146 N/m**2\n"
       ]
      }
     ],
     "prompt_number": 9
    },
    {
     "cell_type": "heading",
     "level": 3,
     "metadata": {},
     "source": [
      "Example 15.4 - Page No :775\n"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "# Obtain the basic shear diagram.\n",
      "\n",
      "# Variables\n",
      "a = array([10, 20, 50, 100, 200, 400, 600, 1000, 2000])\n",
      "tau = array([2.24, 3.10, 4.35, 5.77, 7.50, 9.13, 11.0, 13.52, 16.40])\n",
      "tau = tau*10**-4;\n",
      "betao = 8.96694;\n",
      "beta1 = 0.48452520;\n",
      "beta2 = 0.010923041;\n",
      "\n",
      "# Calculations\n",
      "# such a plot suggests a second order polynomila  of the type y = betao+beta1*x+beta2*x**2;\n",
      "# where y = ln(tauw) and x = ln(8*Uz,avg/do) = ln(a);\n",
      "# from the graph\n",
      "n = beta1+2.*beta2*a;\n",
      "phiw = ((3.*n+1.)/(4.*n))*(a);\n",
      "mu = tau/phiw;\n",
      "\n",
      "# Results\n",
      "\n",
      "print \" 8*Uz,avg/do     n         ((3*n+1)/4*n)    phiw            mu\"\n",
      "for i in range(9):\n",
      "    print \" %6.0f       %8.4f      %8.4f      %8.4f       %6.6f\"%(a[i],n[i],3*n[i]+1/4*n[i],phiw[i],mu[i])\n",
      "\n",
      "\n",
      "# Answer in book is wrong. Please calculate manually."
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        " 8*Uz,avg/do     n         ((3*n+1)/4*n)    phiw            mu\n",
        "     10         0.7030        2.1090       11.0563       0.000020\n",
        "     20         0.9214        2.7643       20.4262       0.000015\n",
        "     50         1.5768        4.7305       45.4273       0.000010\n",
        "    100         2.6691        8.0074       84.3663       0.000007\n",
        "    200         4.8537       14.5612      160.3013       0.000005\n",
        "    400         9.2230       27.6689      310.8425       0.000003\n",
        "    600        13.5922       40.7765      461.0358       0.000002\n",
        "   1000        22.3306       66.9918      761.1954       0.000002\n",
        "   2000        44.1767      132.5301      1511.3182       0.000001\n"
       ]
      }
     ],
     "prompt_number": 24
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [],
     "language": "python",
     "metadata": {},
     "outputs": []
    }
   ],
   "metadata": {}
  }
 ]
}