1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
|
{
"metadata": {
"name": "",
"signature": "sha256:6878a09d345c6e36356d1de04735bdf1caaedc539dfc6eb9c2d7616f776f15b1"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Chapter 1 : introduction to transport phenomena"
]
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 1.1 - Page No : 6\n"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"\n",
"# Variables\n",
"v=0.01283; \t\t\t #[m**3] - volume of tank in m**3\n",
"v=0.4531; \t\t\t #[ft**3] - volume of tank in ft**3\n",
"p=2; \t\t\t #[atm] - pressure\n",
"T=1.8*300; \t\t\t #[degR] - temperature\n",
"R=0.73; \t\t \t #[(atm*ft**3)/(lbmol*degR)] - gas constant\n",
"\n",
"# Calculations\n",
"# usin the equation of state for an ideal gas pv=nRT\n",
"n=(p*v)/(R*T);\n",
"\n",
"xN2=0.5; \t\t\t # fractiom of N2 in math.tank\n",
"nN2=xN2*n;\n",
"Ca=nN2/v;\n",
"\n",
"# Results\n",
"print \"no. of moles , n = %.3e\"%n\n",
"print \"Ca = %.2e lb*mol/ft**3\"%(Ca);\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"no. of moles , n = 2.299e-03\n",
"Ca = 2.54e-03 lb*mol/ft**3\n"
]
}
],
"prompt_number": 4
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": [
"Example 1.2 - Page No :9\n"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"\n",
"from numpy import *\n",
"\n",
"# the three unknowns are x,y,z\n",
"# the three equations are-\n",
"# x+y+z = 1500\n",
"# (1) 0.05*x+0.15*y+0.40*z = 1500*0.25\n",
"# (2) 0.95*x+0.00*y+0.452*z = 1500*0.50\n",
"# Variables\n",
"a = array([[1, 1, 1],[0.05, 0.15, 0.40],[0.95, 0 ,0.452]])\n",
"d = array([[1500.],[1500.*0.25],[1500.*0.50]])\n",
"\n",
"# Calculations\n",
"#ainv = linalg.inv(a);\n",
"#sol = ainv * d;\n",
"sol = linalg.solve(a,d)\n",
"# Results\n",
"print \"the amount of concentrated HNO3 is %.0fkg \\\n",
"\\nthe amount of concentrated H2SO4 is %.0fkg \\\n",
"\\nthe amount of waste acids is %.0fkg\"%(sol[1],sol[0],round(sol[2],-1));\n",
"\n",
"# Answer may be different because of rounding error and inbuilt function solve."
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"the amount of concentrated HNO3 is 307kg \n",
"the amount of concentrated H2SO4 is 423kg \n",
"the amount of waste acids is 770kg\n"
]
}
],
"prompt_number": 7
}
],
"metadata": {}
}
]
}
|