1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
|
{
"metadata": {
"name": "",
"signature": "sha256:7515996c0789938329f86975cb5205356a100488f9513af4795fb2fe55a812d5"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Chapter 5 : principles of statistical\n",
"thermodynamics"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 5.1 pg : 104"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from math import factorial\n",
"\t\t\t\n",
"# Variables\n",
"N1 = 1.\n",
"N2 = 1.\n",
"N3 = 3.\n",
"N4 = 1.\n",
"\t\t\t\n",
"# Calculations\n",
"N = N1+N2+N3+N4\n",
"sig = factorial(N) /(factorial(N1) *factorial(N2)*factorial(N3)*factorial(N4))\n",
"\t\t\t\n",
"# Results\n",
"print \"No. of ways of arranging = %d \"%(sig)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"No. of ways of arranging = 120 \n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 5.2 pg : 104"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\t\t\t\n",
"# Variables\n",
"N = 6.\n",
"g = 4.\n",
"\t\t\t\n",
"# Calculations\n",
"sig = factorial(g+N-1) /(factorial(g-1) *factorial(N))\n",
"\t\t\t\n",
"# Results\n",
"print \"No. of ways of arranging = %d \"%(sig)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"No. of ways of arranging = 84 \n"
]
}
],
"prompt_number": 2
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 5.3 pg : 104"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from math import factorial\t\t\t\n",
"# Variables\n",
"N = 6.\n",
"g = 8.\n",
"\t\t\t\n",
"# Calculations\n",
"sig = factorial(g) /(factorial(N) *factorial(g-N))\n",
"\t\t\t\n",
"# Results\n",
"print \"No. of ways = %d \"%(sig)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"No. of ways = 28 \n"
]
}
],
"prompt_number": 3
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 5.4 pg : 121"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"%matplotlib inline\n",
"\n",
"\n",
"import math \n",
"from matplotlib.pyplot import bar\n",
"\n",
"# Variables\n",
"N0 = 1.\n",
"\t\t\t\n",
"# Calculations\n",
"N1 = 3/math.e\n",
"N2 = 6/math.e**2\n",
"N3 = 10/math.e**3\n",
"N = N0+N1+N2+N3\n",
"ei = [0, 1, 2, 3]\n",
"\n",
"f0 = N0/N\n",
"f1 = N1/N\n",
"f2 = N2/N\n",
"f3 = N3/N\n",
"fi = [f0, f1, f2, f3]\n",
"\t\t\t\n",
"# Results\n",
"print \"fractional population of level 0 = %.3f\"%(f0)\n",
"print \" fractional population of level 1 = %.3f\"%(f1)\n",
"print \" fractional population of level 2 = %.3f\"%(f2)\n",
"print \" fractional population of level 3 = %.3f\"%(f3)\n",
"bar(ei,fi,0.1)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"fractional population of level 0 = 0.293\n",
" fractional population of level 1 = 0.323\n",
" fractional population of level 2 = 0.238\n",
" fractional population of level 3 = 0.146\n"
]
},
{
"metadata": {},
"output_type": "pyout",
"prompt_number": 1,
"text": [
"<Container object of 4 artists>"
]
},
{
"metadata": {},
"output_type": "display_data",
"png": "iVBORw0KGgoAAAANSUhEUgAAAX0AAAEACAYAAABfxaZOAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAD7dJREFUeJzt3V+IHed5x/HvidailaxtrFa1qKx0QVbrGGwSU5RtZbcn\nqTCbXESGXMgmwVAHVxdV7YtQhKBE66uigikEgaOCCmlqqotWMYLKlW3oUJG6sjbVv9Zao1UqkBTX\nOLbrWA6hK3R68c5Gk6NdvTPn75x9vx846My875x9eLz+ndl35uyCJEmSJEmSJEmSJEmSJEmSamAK\nmAUuALsXGd8OnAFOAT8AvlAYuwSczcfe6GuVkqSurQDmgAngDuA08Om2OasLzx/I5y/4b2BtH+uT\nJFXwicj4FkKIXwLmgUOEM/uijwvP7wR+3Dbe6KI+SVIPxUJ/A3C5sH0l39fuMeA88DLwTGF/C3gN\nmAGe7rxMSVIvjEXGWyVf56X88QjwXeC38/1bgbeBdcCrhGsDx6uXKUnqhVjoXwU2FrY3Es72l3I8\nf81fBd4jBD7Au8D3CMtFvxD6mzZtal28eLFCyZIk4CJwb9WDYss7M8BmwoXclcAO4EjbnE3cXLd/\nKP/3PWAVsCbfXg08Cpxr/wIXL16k1WqN7GPv3r1Dr8H6h19HivWPcu3Lof48eyuLnelfB3YBxwh3\n8hwkrN3vzMcPAF8BniRc6L0GPJ6PrQcOF77Oi8ArnRQpSeqNWOhDuDj7ctu+A4Xnf5k/2v0Q+EyH\ndUmS+iC2vKOIZrM57BK6Yv3DNcr1j3LtMPr1d6oO99C38vUpSVJJjUYDOshwz/QlKSGGviQlxNCX\npIQY+pKUEENfkhJi6EtSQgx9SUqIoS9JCTH0JSkhhr4kJcTQl6SEGPqJGx9fS6PRuO1jfNy/bS8t\nF/7CtcSFX9oU638D/xtJ9eIvXJMkRRn6kpQQQ1+SEmLoS1JCDH1JSoihL0kJMfQlKSGGviQlpEzo\nTwGzwAVg9yLj24EzwCngB8AXKhwrSRqg2Ke5VgBvAduAq8BJ4AngfGHOauDj/PkDwPeAe0seC34i\nd6j8RK40mvr1idwtwBxwCZgHDhHO7Is+Ljy/E/hxhWMlSQMUC/0NwOXC9pV8X7vHCGfwLwPPVDxW\nkjQgY5Hxsj/Tv5Q/HgG+C9xXpYjp6emfP282mzSbzSqHS9Kyl2UZWZZ1/Tqx9aBJYJpwQRZgD3AD\n2HebYy4SlnY2lzzWNf0hck1fGk39WtOfIYT3BLAS2AEcaZuzqfCFH8r/fa/ksZKkAYot71wHdgHH\nCHfjHCSs3e/Mxw8AXwGeJFysvQY8HjlWkjQk/hGVxLm8I42mkf4jKrE/1+ef7JOk3qjFmX65m4Q8\n2+wHz/Sl0TTSZ/qSpMEw9CUpIYa+JCXE0JekhBj6kpQQQ1+SEmLoS1JCDH1JSoihL0kJMfQlKSGG\nviQlxNCXpIQY+pKUEENfkhJi6EtSQgx9SUqIoS9JCTH0JSkhhr4kJcTQl6SEGPqSlJAyoT8FzAIX\ngN2LjH8VOAOcBb4PPFgYu5TvPwW80U2hkqTujUXGVwD7gW3AVeAkcAQ4X5jzQ+D3gQ8JbxB/DUzm\nYy2gCbzfs4olSR2LnelvAeYIZ+zzwCFge9uc1wmBD3ACuKdtvNFdiZKkXomF/gbgcmH7Sr5vKV8H\njha2W8BrwAzwdCcFSpJ6J7a806rwWp8HngK2FvZtBd4G1gGvEq4NHL/10OnC82b+kCQtyLKMLMu6\nfp3Y0sskIZGn8u09wA1gX9u8B4HD+by5JV5rL3ANeL5tf6vce0uDVqvKe5DKaDQaxPtv76W6Cf/v\nVl8+jy3vzACbgQlgJbCDcCG36FOEwP8avxj4q4A1+fPVwKPAuaoFSpJ6J7a8cx3YBRwj3MlzkHDn\nzs58/ADwTeAu4IV83zzhAvB6wpvBwtd5EXilV4VLkqqrw501Lu8Mkcs70mjq1/KOJGkZMfQlKSGG\nviQlxNCXhmh8fC2NRuO2j/HxtcMuU8uIF3IT54Xc4bL/6pQXciVJUYa+JCXE0JekhBj6kpQQQ1+S\nEmLoS1JCDH1JSoihL0kJMfQlKSGGviQlxNCXpIQY+pKUEENfkhJi6EtSQgx9SUqIoS9JCTH0JSkh\nhr4kJaRM6E8Bs8AFYPci418FzgBnge8DD1Y4VpI0QLG/r7gCeAvYBlwFTgJPAOcLc34XeBP4kBDy\n08BkyWPBv5E7VP6N1uGy/+pUv/5G7hZgDrgEzAOHgO1tc14nBD7ACeCeCsdKkgYoFvobgMuF7Sv5\nvqV8HTja4bGSpD4bi4xX+Zny88BTwNbqx04XnjfzhyRpQZZlZFnW9evE1oMmCYk8lW/vAW4A+9rm\nPQgczufNVTzWNf0hck15uOy/OtWvNf0ZYDMwAawEdgBH2uZ8ihD4X+Nm4Jc9VpI0QLHlnevALuAY\n4W6cg4S7b3bm4weAbwJ3AS/k++YJF3GXOlaSNCSVfzToA5d3hsjlheGy/+pUv5Z3JEnLiKEvSQkx\n9CUpIYa+JCXE0JekhBj6kpQQQ1+SEmLoS1JCDH1JSoihL0kJMfQlKSGGviQlxNCXpIQY+pKUEENf\nkhJi6EtSQgx9SUqIoS9JCTH0JSkhhr4kJcTQl6SEGPqSlBBDX5ISUib0p4BZ4AKwe5Hx+4DXgZ8B\n32gbuwScBU4Bb3RcpSSpJ8Yi4yuA/cA24CpwEjgCnC/MeQ/4U+CxRY5vAU3g/W4LlSR1L3amvwWY\nI5yxzwOHgO1tc94FZvLxxTS6qE+S1EOx0N8AXC5sX8n3ldUCXiO8KTxdrTRJUq/FlndaXb7+VuBt\nYB3wKuHawPFbp00XnjfzhyRpQZZlZFnW9evEll4mCYk8lW/vAW4A+xaZuxe4Bjy/xGstNd4q997S\noNXq9j1I7RqNBvH+2/t+sf/qVPjeqb58HlvemQE2AxPASmAH4ULuojW0ba8C1uTPVwOPAueqFihJ\n6p3Y8s51YBdwjHAnz0HCnTs78/EDwHrCXT3jhJ8CngXuB34dOFz4Oi8Cr/Swdknq2Pj4Wj766IPo\nvDVr7uInP1k+NyDW4c4al3eGyOWF4bL/w1Ou91DX/vdreUeStIwY+pKUEENfkhJi6EtSQgx9SUqI\noS9JCTH0JSkhhr4kJcTQl6SEGPqSlBBDX5ISYuhLUkIMfUlKiKEvSQkx9CUpIYa+JCXE0JekhBj6\nkpQQQ1+SEmLoS1JCDH1JSoihL0kJMfQlKSFlQn8KmAUuALsXGb8PeB34GfCNisdKkgaoERlfAbwF\nbAOuAieBJ4DzhTnrgN8EHgM+AJ6vcCxAC1qlSm21ysxTFY1Gg3j/7X2/2P/hKdd7qGv/Q/3RDL9F\n7Ex/CzAHXALmgUPA9rY57wIz+XjVYyVJAxQL/Q3A5cL2lXxfGd0cK0nqg7HIeDc/01Q4drrwvJk/\nJEkLsiwjy7KuXycW+leBjYXtjYQz9jIqHDtd8iUlKU3NZpNms/nz7eeee66j14kt78wAm4EJYCWw\nAziyxNz2CwpVjpUkDUDsTP86sAs4Rrgb5yDh7pud+fgBYD3hzpxx4AbwLHA/cG2JYyVJQ1L5dp8+\n8JbNIfKWweGy/8PjLZuSpGXP0JekhBj6kpQQQ1+SEmLoS1JCDH1JSoihL0kJMfQlKSGGviQlxNCX\npIQY+pKUEENfkhJi6EtSQgx9SUqIoS9JCTH0JSkhhr4kJcTQl6SEGPqSlBBDX5ISYuhLUkIMfUlK\niKEvSQkpE/pTwCxwAdi9xJxv5eNngM8W9l8CzgKngDc6rlKS1BNjkfEVwH5gG3AVOAkcAc4X5nwJ\nuBfYDHwOeAGYzMdaQBN4v2cVS5I6FjvT3wLMEc7Y54FDwPa2OV8GvpM/PwF8Eri7MN7oukpJUk/E\nQn8DcLmwfSXfV3ZOC3gNmAGe7rxMSVIvxJZ3WiVfZ6mz+YeBHwHrgFcJ1waO3zptuvC8mT8kSQuy\nLCPLsq5fJ7b0MklI5Kl8ew9wA9hXmPNtICMs/UAI9j8A3ml7rb3ANeD5tv2tcu8tDVqtsu9BKqvR\naBDvv73vF/s/POV6D3Xtf6i/+vJ5bHlnhnCBdgJYCewgXMgtOgI8mT+fBP6XEPirgDX5/tXAo8C5\nqgVKknontrxzHdgFHCPcyXOQcOfOznz8AHCUcAfPHPAx8Ef52HrgcOHrvAi80qvCJUnV1eHOGpd3\nhsjlheGy/8Pj8o4kadkz9CUpIYa+JCXE0JekhBj6kpQQQ1+SEmLoS1JCDH1JSoihL0kJMfQlKSGG\nviQlxNCXpIQY+pKUEENfkhJi6EtSQgx9SUqIoS9JCTH0JSkhhr4kJcTQl6SEGPqSlBBDX5ISUib0\np4BZ4AKwe4k538rHzwCfrXisJGlAYqG/AthPCO/7gSeAT7fN+RJwL7AZ+GPghQrHjrwsy4ZdQtLs\n//DY+9EUC/0twBxwCZgHDgHb2+Z8GfhO/vwE8ElgfcljR57f+MNl/4fH3o+mWOhvAC4Xtq/k+8rM\n+Y0Sx0qSBigW+q2Sr9PothBJ0vBNAv9c2N7DrRdkvw08XtieBe4ueSyEJaCWDx8+fPio9JijD8aA\ni8AEsBI4zeIXco/mzyeBf69wrCSpZr4IvEV4V9mT79uZPxbsz8fPAA9FjpUkSZK0nHTzIa86iNXf\nBD4ETuWPPx9YZXF/A7wDnLvNnDr3PlZ/k/r2fiPwL8B/Af8JPLPEvLr2v0z9Terb/18i3Ep+GngT\n+Isl5tW1/2Xqb1LD/q8gLPFMAHcQvzbwOW5eG6iDMvU3gSMDraq8RwjfyEuFZp17D/H6m9S39+uB\nz+TP7yQsd47S936Z+pvUt/8Aq/J/xwi9fbhtvM79h3j9TSr0f1C/e6fTD3ndPaD6Ysp+0Kyut64e\nBz64zXidew/x+qG+vf8fwkkCwDXgPOEzLEV17n+Z+qG+/Qf4af7vSsIJ3Ptt43XuP8Trhwr9H1To\nd/ohr3v6XFdZZepvAb9H+PHwKOFXT4yKOve+jFHp/QThJ5YTbftHpf8TLF5/3fv/CcIb1zuEpao3\n28br3v9Y/ZX6P9aHAhfTKjmv/d2q7HH9VqaO/yCsf/6UcNfSS8Bv9bOoHqtr78sYhd7fCfwD8Czh\njLld3ft/u/rr3v8bhCWqXwGOEZZDsrY5de5/rP5K/R/Umf7VvKgFGwnvprebc0++rw7K1P8RN38M\ne5mw9r+2/6X1RJ17X0bde38H8I/A3xH+h2xX9/7H6q97/xd8CPwT8Dtt++ve/wVL1V/L/nfzIa86\nKFP/3dw8W9hCWP+vkwnKXcitW+8XTLB0/XXufQP4W+CvbjOnzv0vU3+d+/9rhDV6gF8G/hX4w7Y5\nde5/mfpr2/9uPuRVB7H6/4RwS9tp4N8I3zx18ffAj4D/I6xdPsVo9T5Wf517/zDhx/PT3Lyl7ouM\nTv/L1F/n/j9AWP44DZwF/izfPyr9L1N/nfsvSZIkSZIkSZIkSZIkSZIkSZIkScvD/wNmMBds+uNg\nIAAAAABJRU5ErkJggg==\n",
"text": [
"<matplotlib.figure.Figure at 0x103672c90>"
]
}
],
"prompt_number": 1
}
],
"metadata": {}
}
]
}
|