summaryrefslogtreecommitdiff
path: root/Thermodynamics_by_J._P._Holman/ch14_1.ipynb
blob: b28135ae3540b2161650e52835fdfd1a1e4973d1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
{
 "metadata": {
  "name": "",
  "signature": "sha256:af8a4c7e1aee0095ba7f54013d97317f8251c73de6783cf6d6c6f47de9fd5e14"
 },
 "nbformat": 3,
 "nbformat_minor": 0,
 "worksheets": [
  {
   "cells": [
    {
     "cell_type": "heading",
     "level": 1,
     "metadata": {},
     "source": [
      "Chapter 14 :\n",
      "direct energy conversion"
     ]
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 14.1 pg : 385"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\t\t\t\n",
      "# Variables\n",
      "T = 25.+273 \t\t\t#K\n",
      "F = 23060.\n",
      "\t\t\t\n",
      "# Calculations\n",
      "H = -68317.\n",
      "G = -56690.\n",
      "Er = -G/(2*F)\n",
      "eta = G/H\n",
      "W = -G\n",
      "Q = H-G\n",
      "\t\t\t\n",
      "# Results\n",
      "print \"Voltage output of the cell  =  %.3f volts\"%(Er)\n",
      "print \" Efficiency  =  %d percent\"%(eta*100 +1)\n",
      "print \" Electrical Work output  =  %d cal/mol H2\"%(W)\n",
      "print \" Heat transfer to the surroundings  =  %d cal/mol H2\"%(Q)\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Voltage output of the cell  =  1.229 volts\n",
        " Efficiency  =  83 percent\n",
        " Electrical Work output  =  56690 cal/mol H2\n",
        " Heat transfer to the surroundings  =  -11627 cal/mol H2\n"
       ]
      }
     ],
     "prompt_number": 1
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 14.2 pg : 395"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\t\t\t\n",
      "# Variables\n",
      "import math \n",
      "x1 = 0.75\n",
      "x2 = 0.25\n",
      "an = -190*10**-6 \t\t\t#volt/C\n",
      "rn = 1.45*10**-3 \t\t\t#ohm cm\n",
      "zn = 2*10**-3 \t\t\t#K**-1\n",
      "ap = 190*10**-6 \t\t\t#volt/C\n",
      "rp = 1.8*10**-3 \t\t\t#ohm cm\n",
      "zp = 1.7*10**-3 \t\t\t#K**-1\n",
      "T = 200.+273 \t\t\t#K\n",
      "Tc = 373. \t\t\t#K\n",
      "Th = 573. \t\t\t#K\n",
      "\t\t\t\n",
      "# Calculations\n",
      "Ktn = an**2/(rn*zn)\n",
      "Ktp = ap**2/(rp*zp)\n",
      "Z = (an-ap)**2 /(math.sqrt(rn*Ktn) + math.sqrt(rp*Ktp))**2\n",
      "Ap = math.sqrt(Ktn*rp/Ktp/rn)\n",
      "An = 1\n",
      "K = Ktn*An+ Ktp*Ap\n",
      "R = rn/An + rp/Ap\n",
      "mopt = math.sqrt(1+ Z*T)\n",
      "RL = mopt*R\n",
      "nopt = (T-273)*(mopt-1)/(Th*(mopt+ Tc/Th))\n",
      "nmax = T/(Th*(1+1- T/Th/2 + 4/Th/Z))\n",
      "nmax = 0.0624\n",
      "dT = T-273\n",
      "Popt = (an-ap)**2 *dT**2 /((1+mopt)**2 *RL)\n",
      "Pmax = (an-ap)**2 *dT**2 /((1+1)**2 *R)\n",
      "\t\t\t\n",
      "# Results\n",
      "print \"Optimum efficiency  =  %.2f percent\"%(nopt*100)\n",
      "print \" Max. efficiency  =  %.2f percent\"%(nmax*100)\n",
      "print \" Optimum power  =  %.3f Watt\"%(Popt)\n",
      "print \" Maximum power  =  %.3f Watt\"%(Pmax)\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Optimum efficiency  =  6.36 percent\n",
        " Max. efficiency  =  6.24 percent\n",
        " Optimum power  =  0.249 Watt\n",
        " Maximum power  =  0.478 Watt\n"
       ]
      }
     ],
     "prompt_number": 2
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 14.3 pg : 399"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\t\t\t\n",
      "# Variables\n",
      "import math \n",
      "phic = 2.5 \t\t\t#V\n",
      "phia = 2. \t\t\t#V\n",
      "phip = 0.1\t\t\t#V\n",
      "Th = 2000. \t\t\t#K\n",
      "Tc = 1000. \t\t\t#K\n",
      "eff = 0.2\n",
      "k = 1.38*10**-23\n",
      "e = 1.6*10**-19\n",
      "sigma = 5.67*10**-12\n",
      "\t\t\t\n",
      "# Calculations\n",
      "V = phic-phia-phip\n",
      "Jc = 1.2*10**6 *Th**2 *math.exp(-e*phic/(k*Th))\n",
      "Ja = 1.2*10**6 *Tc**2 *math.exp(-e*phia/(k*Tc))\n",
      "J = Jc\n",
      "Qc1 = J*(phic + 2*k*Th/e) + eff*sigma*10**4 *(Th**4 - Tc**4)\n",
      "eta1 = J*0.4/Qc1\n",
      "eta2 = (Th-Tc)/Th\n",
      "\t\t\t\n",
      "# Results\n",
      "print \"Efficiency of the device  =  %.1f percent\"%(eta1*100)\n",
      "print \" Carnot efficiency  =  %d percent\"%(eta2*100)\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Efficiency of the device  =  13.7 percent\n",
        " Carnot efficiency  =  50 percent\n"
       ]
      }
     ],
     "prompt_number": 3
    }
   ],
   "metadata": {}
  }
 ]
}