summaryrefslogtreecommitdiff
path: root/Thermodynamics_by_C_P_Arora/Chapter8.ipynb
blob: de9fddbfba02f040f626ff71527bfd5c6d805663 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
{
 "metadata": {
  "name": "",
  "signature": "sha256:c31b3e182c94546bee565a2d8036e956b36a8e464b50b24f4e687e55ce855452"
 },
 "nbformat": 3,
 "nbformat_minor": 0,
 "worksheets": [
  {
   "cells": [
    {
     "cell_type": "heading",
     "level": 1,
     "metadata": {},
     "source": [
      "Chapter 8:VAPOUR CYCLE"
     ]
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 8.1, Page No: 362"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Variable declaration\n",
      "TH=311.06; # Source temperature in degree celcius\n",
      "pb=10; # Boiler pressure in MPa\n",
      "TL=32.88; # Sink temperature in degree celcius \n",
      "pc=5; # Condenser pressure in kPa\n",
      "# From steam tables at pb\n",
      "h2=1407.56; # specific enthalpy in kJ/kg \n",
      "h3=2724.7; # specific enthalpy in kJ/kg \n",
      "s2=3.3596; # specific entropy in kJ/kg K\n",
      "s3=5.6141; # specific entropy in kJ/kg K\n",
      "# From steam tables at pc\n",
      "hf=137.82; hfg=2423.7; # specific enthalpy in kJ/kg \n",
      "sf=0.4764; sfg=7.9187; # specific entropy in kJ/kg K\n",
      "\n",
      "#Calculation\n",
      "x1=(s2-sf)/sfg; # quality of steam at state 1\n",
      "x4=(s3-sf)/sfg; # quality of steam at state 4\n",
      "h1=hf+x1*hfg; # specific enthalpy at state 1\n",
      "h4=hf+x4*hfg; # specific enthalpy at state 4\n",
      "wT=h3-h4; # Turbine work\n",
      "wC=h2-h1; # Compressor work\n",
      "wnet=wT-wC; # Net work output\n",
      "qH=h3-h2; # Heat added\n",
      "rw=wnet/wT; # Ratio of net work to trbine work\n",
      "eff_th=wnet/qH; # Thermal efficiency\n",
      "SSC=3600/wnet; # specific steam consumption\n",
      "\n",
      "#Result\n",
      "print \"Ratio of net work to trbine work =\",round(rw,3),\"\\nThermal efficiency =\",round(eff_th*100,1),\"%\"\n",
      "print \"specific steam consumption =\",round(SSC,3),\"kg/kWh\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Ratio of net work to trbine work = 0.618 \n",
        "Thermal efficiency = 47.6 %\n",
        "specific steam consumption = 5.741 kg/kWh\n"
       ]
      }
     ],
     "prompt_number": 1
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 8.2, Page No:366"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Variable declaration\n",
      "TH=311.06; # Source temperature in degree celcius\n",
      "p2=10; # Boiler pressure in MPa\n",
      "TL=32.88; # Sink temperature in degree celcius \n",
      "p1=5; # Condenser pressure in kPa\n",
      "# From steam tables at p2\n",
      "h3=2724.7; # specific enthalpy in kJ/kg \n",
      "s3=5.6141; # specific entropy in kJ/kg K\n",
      "# From steam tables at p1\n",
      "hf=137.82; hfg=2423.7; # specific enthalpy in kJ/kg \n",
      "sf=0.4764; sfg=7.9187; # specific entropy in kJ/kg K\n",
      "\n",
      "#Calculations\n",
      "x4=(s3-sf)/sfg; # quality of steam at state 4\n",
      "h4=hf+x4*hfg; # specific enthalpy at state 4\n",
      "h1=137.82; # specific enthalpy at state 1 in kJ/kg \n",
      "s1=0.4764; # specific entropy at state in kJ/kgK\n",
      "v1=0.001005; # specific volume in m^3/kg\n",
      "wp=abs (v1*(p2*10**3-p1)); # Pump work (absolute value)\n",
      "h2=h1+wp; # specific enthalpy at state 2\n",
      "wT=h3-h4; # Turbine work\n",
      "wnet=wT-wp; # Net work output\n",
      "qH=h3-h2; # Heat added\n",
      "rw=wnet/wT; # Ratio of net work to trbine work\n",
      "eff_th=wnet/qH; # Thermal efficiency\n",
      "SSC=3600/wnet; # specific steam consumption\n",
      "\n",
      "#Results\n",
      "print \"Ratio of net work to trbine work =\",round(rw,2),\"\\nThermal efficiency =\",round(eff_th*100,0),\"%\"\n",
      "print \"specific steam consumption =\",round(SSC,3),\"kg/kWh\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Ratio of net work to trbine work = 0.99 \n",
        "Thermal efficiency = 39.0 %\n",
        "specific steam consumption = 3.585 kg/kWh\n"
       ]
      }
     ],
     "prompt_number": 2
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 8.3, Page No:369"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Variable declaration\n",
      "TH=311.06; # Source temperature in degree celcius\n",
      "p2=10; # Boiler pressure in MPa\n",
      "TL=32.88; # Sink temperature in degree celcius \n",
      "p1=5; # Condenser pressure in kPa\n",
      "# (a).Actual carnot cycle\n",
      "eff_Tur=0.8; # Efficiency of turbine\n",
      "eff_com=0.6; # Efficiency of compressure\n",
      "# From steam tables at p2\n",
      "h3=2724.7; # specific enthalpy in kJ/kg \n",
      "s3=5.6141; # specific entropy in kJ/kg K\n",
      "s2=3.3596; # specific entropy in kJ/kg K\n",
      "h2=1407.56; # specific enthalpy in kJ/kg \n",
      "# From steam tables at p1\n",
      "hf=137.82; hfg=2423.7; # specific enthalpy in kJ/kg \n",
      "sf=0.4764; sfg=7.9187; # specific entropy in kJ/kg K\n",
      "\n",
      "#Calculations for (a)\n",
      "x1=(s2-sf)/sfg; # quality of steam at state 1\n",
      "x4=(s3-sf)/sfg; # quality of steam at state 4\n",
      "h1=hf+x1*hfg; # specific enthalpy at state 1\n",
      "h4=hf+x4*hfg; # specific enthalpy at state 4\n",
      "wTs=h3-h4; # Turbine work\n",
      "wT=eff_Tur*wTs; # Actual turbine work\n",
      "wCs=h2-h1; # Compressor work\n",
      "wC=wCs/eff_com; # Actual compressor work\n",
      "wnet=wT-wC; # Net work output\n",
      "h2a=h1+wC; # specific enthalpy\n",
      "qH=h3-h2a; # Heat added\n",
      "rw=wnet/wT; # Ratio of net work to trbine work\n",
      "eff_th=wnet/qH; # Thermal efficiency\n",
      "SSC=3600/wnet; # specific steam consumption\n",
      "\n",
      "#Results for (a)\n",
      "print \"(a).Actual carnot cycle\",\"\\nRatio of net work to trbine work =\",round(rw,4),\"\\nThermal efficiency =\",round(eff_th*100,2),\"%\"\n",
      "print \"specific steam consumption =\",round(SSC,1),\"kg/kWh\"\n",
      "\n",
      "#Variable declaration for (b)\n",
      "#   (b).Actual Rankine cycle\n",
      "eff_Tur=0.8; # Efficiency of turbine\n",
      "eff_pump=0.9; # Efficiency of Pump\n",
      "# From steam tables at p1\n",
      "h1=137.82; # specific enthalpy at state 1 in kJ/kg \n",
      "s1=0.4764; # specific entropy at state in kJ/kgK\n",
      "v1=0.001005; # specific volume in m^3/kg\n",
      "\n",
      "#Calculations for (b)\n",
      "wps=abs (v1*(p2*10**3-p1)); # Pump work (absolute value)\n",
      "wp=wps/eff_pump; # Actual pmp work\n",
      "h2a=h1+wp; # # specific enthalpy at state 2\n",
      "wnet=wT-wp; # Net work output\n",
      "qH=h3-h2a; # Heat added\n",
      "rw=wnet/wT; # Ratio of net work to trbine work\n",
      "eff_th=wnet/qH; # Thermal efficiency\n",
      "SSC=3600/wnet; # specific steam consumption\n",
      "\n",
      "#Results for (b)\n",
      "print \"\\n\\n(b).Actual Rankine cycle\",\"\\nRatio of net work to trbine work =\",round(rw,3),\"\\nThermal efficiency =\",round(eff_th*100,0),\"%\"\n",
      "print \"specific steam consumption =\",round(SSC,1),\"kg/kWh\"\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "(a).Actual carnot cycle \n",
        "Ratio of net work to trbine work = 0.2046 \n",
        "Thermal efficiency = 15.68 %\n",
        "specific steam consumption = 21.7 kg/kWh\n",
        "\n",
        "\n",
        "(b).Actual Rankine cycle \n",
        "Ratio of net work to trbine work = 0.986 \n",
        "Thermal efficiency = 31.0 %\n",
        "specific steam consumption = 4.5 kg/kWh\n"
       ]
      }
     ],
     "prompt_number": 3
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 8.4, Page No:379 "
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Variable declaration\n",
      "T3=450; # temperature of steam at state 3 in degree celcius\n",
      "p3=10; # Boiler pressure in MPa \n",
      "p6=5; # Condenser pressure in kPa\n",
      "# From steam tables at state 1\n",
      "hf=137.82; hfg=2423.7; # specific enthalpy in kJ/kg \n",
      "sf=0.4764; sfg=7.9187; # specific entropy in kJ/kg K\n",
      "h1=137.82; # specific enthalpy at state 1 in kJ/kg \n",
      "s1=0.4764; # specific entropy at state in kJ/kgK\n",
      "v1=0.001005; # specific volume in m^3/kg\n",
      "\n",
      "#Calculations for (a)\n",
      "wp=abs (v1*(p3*10**3-p6)); # Pump work (absolute value)\n",
      "h2=h1+wp; # specific enthalpy at state 2\n",
      "#   (a).Rankine cycle with superheat\n",
      "# From steam tables at state 3\n",
      "h3=3240.9;# specific enthalpy in kJ/kg\n",
      "s3=6.419; # specific entropy in kJ/kg K\n",
      "# State 4_1\n",
      "x4_1=(s3-sf)/sfg; # Quality of steam at state 4_1\n",
      "h4_1=hf+x4_1*hfg; # specific enthalpy at state 4_1\n",
      "wT=h3-h4_1; # Turbine work\n",
      "wnet=wT-wp; # Net work output\n",
      "qH=h3-h2; # Heat added\n",
      "eff_th=wnet/qH; # Thermal efficiency\n",
      "SSC=3600/wnet; # specific steam consumption\n",
      "\n",
      "#Results for (a)\n",
      "print \"(a).Rankine cycle with superheat\",\"\\nQuality of steam at exhaust = \",round(x4_1,2),\"\\nThermal efficiency =\",round(eff_th*100,1),\"%\"\n",
      "print \"specific steam consumption =\",round(SSC,3),\"kg/kWh\"\n",
      "\n",
      "#Variable declaration for (b)\n",
      "#   (b).Reheat cycle\n",
      "s4=s3; # isentropic expansion\n",
      "x4=0.975; # Quality of steam at state 4\n",
      "# from steam table intermediate pressure is selected for s4 & x4 by interpolation and assumed by round value\n",
      "p4=1.2; # Intermediate pressure in MPa\n",
      "# From steam tables at state 4\n",
      "hf4=798.6; hfg4=1986.2; # specific enthalpy in kJ/kg \n",
      "h4=hf4+x4*hfg4; # specific enthalpy in kJ/kg \n",
      "# From steam tables at state 5\n",
      "h5=3368.5;# specific enthalpy in kJ/kg\n",
      "s5=7.5266; # specific entropy in kJ/kg K\n",
      "\n",
      "#Calculations for (b)\n",
      "x6=(s5-sf)/sfg; # Quality of steam at state 6\n",
      "h6=hf+x6*hfg; # specific enthalpy in kJ/kg \n",
      "wT=(h3-h4)+(h5-h6); # Turbine work\n",
      "wnet=wT-wp; # Net work output\n",
      "qH=(h3-h2)+(h5-h4); # Heat added\n",
      "eff_th=wnet/qH; # Thermal efficiency\n",
      "SSC=3600/wnet; # specific steam consumption\n",
      "\n",
      "#Results for (b)\n",
      "print \"\\n\\n(b).Reheat cycle\",\"\\nQuality of steam at exhaust = \",round(x6,2),\"\\nThermal efficiency =\",round(eff_th*100,1),\"%\"\n",
      "print \"specific steam consumption =\",round(SSC,3),\"kg/kWh\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "(a).Rankine cycle with superheat \n",
        "Quality of steam at exhaust =  0.75 \n",
        "Thermal efficiency = 41.2 %\n",
        "specific steam consumption = 2.825 kg/kWh\n",
        "\n",
        "\n",
        "(b).Reheat cycle \n",
        "Quality of steam at exhaust =  0.89 \n",
        "Thermal efficiency = 42.1 %\n",
        "specific steam consumption = 2.295 kg/kWh\n"
       ]
      }
     ],
     "prompt_number": 4
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 8.5, Page No:386 "
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Variable declaration\n",
      "T5=311.06; # temperature of steam at state 5  in degree celcius\n",
      "p5=10; # Boiler pressure in MPa\n",
      "p4=p5;\n",
      "T7=32.88; # temperature of steam at state 7  in degree celcius \n",
      "p7=5; # Condenser pressure in kPa\n",
      "p1=p7;\n",
      "# From steam tables at p7\n",
      "h1=137.82; # specific enthalpy at state 1 in kJ/kg \n",
      "s1=0.4764; # specific entropy at state 1 in kJ/kgK\n",
      "v1=0.001005; # specific volume in m^3/kg\n",
      "\n",
      "#Calculations\n",
      "wp=abs (v1*(p5*10**3-p7)); # Pump work (absolute value)\n",
      "h2=h1+wp; # specific enthalpy at state 2\n",
      "T6=(T5+T7)/2; # Temperature of bleed system\n",
      "h5=2724.7; # specific enthalpy at state 5 in kJ/kg \n",
      "s5=5.6141; # specific entropy at state 5 in kJ/kgK\n",
      "# From steam tables at state 6\n",
      "p6=791.5; # bleed steam pressure in kPa\n",
      "p2=p6; p3=p6;\n",
      "vf6=0.00114; # specific volume in m^3/kg\n",
      "v3=vf6;\n",
      "hf6=719.21; hfg6=2049.5; # specific enthalpy in kJ/kg \n",
      "sf6=2.0419; sfg6=4.6244; # specific entropy in kJ/kg K\n",
      "x6=(s5-sf6)/sfg6; # quality of steam at state 6\n",
      "h6=hf6+x6*hfg6; # specific enthalpy at state 6\n",
      "h3=hf6; # specific enthalpy at state 3\n",
      "m1=(h3-h2)/(h6-h2); # Fraction of bleed steam\n",
      "wLP=abs (v1*(p2-p1)); # LP work\n",
      "wHP=abs (v3*(p4*10**3-p3)); # HP work\n",
      "wp=(1-m1)*wLP+wHP; # Total pump work\n",
      "h2=h1+wp; h4=h3+wp; # Specific Enthalpies of water\n",
      "# From steam tables at pc\n",
      "hf7=137.82; hfg7=2423.7; # specific enthalpy in kJ/kg \n",
      "sf7=0.4764; sfg7=7.9187; # specific entropy in kJ/kg K\n",
      "x7=(s5-sf7)/sfg7; # quality of steam at state 7\n",
      "h7=hf7+x7*hfg7; # specific enthalpy at state 4\n",
      "wT=(h5-h6)+(1-m1)*(h6-h7); # Turbine work\n",
      "wnet=wT-wp; # Net work output\n",
      "qH=h5-h4; # Heat added\n",
      "eff_th=wnet/qH; # Thermal efficiency\n",
      "SSC=3600/wnet; # specific steam consumption\n",
      "\n",
      "#Result\n",
      "print \"Thermal efficiency =\",round(eff_th*100,1),\"%\",\"\\nspecific steam consumption =\",round(SSC,3),\"kg/kWh\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Thermal efficiency = 42.4 % \n",
        "specific steam consumption = 4.254 kg/kWh\n"
       ]
      }
     ],
     "prompt_number": 5
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 8.6, Page No:389"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Variable declaration \n",
      "ps=6.89+1; # Pressure of steam produced in bar (Absolute)\n",
      "x=0.96; # Quality of steam produced\n",
      "f=75; # Steady flow of water in litres\n",
      "t=9.5; # Time consumption of water in minutes\n",
      "tf=685; #Time consumption of 10 litre fuel in seconds\n",
      "Vf=10; # consumption of fuel in litres\n",
      "Sf=0.85; # specific gravity of water\n",
      "CV=43125; # Calorific value of fuel in kJ/kg\n",
      "\n",
      "#Calculation\n",
      "ms=f/(t*60);# Steam generation\n",
      "mf=Vf*Sf/tf; # consumption of fuel\n",
      "# From steam tables at ps\n",
      "hf=718.5; hfg=2050; # specific enthalpy in kJ/kg \n",
      "hs=hf+x*hfg; # specific enthalpy of steam produced\n",
      "hFW=146.7; # Enthalpy of feed water at 35 degree celcius\n",
      "eff_boiler=(ms*(hs-hFW))/(mf*CV); # Boiler Efficiency\n",
      "\n",
      "#Result\n",
      "print \"Boiler Efficiency = \",round(eff_boiler*100,2),\"%\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Boiler Efficiency =  62.45 %\n"
       ]
      }
     ],
     "prompt_number": 6
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 8.7, Page No:394"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Variable declaration \n",
      "TL=-15; # Source temperature in degree celcius\n",
      "TH=40; # Sink temperature in degree celcius\n",
      "# From the table of properties of Freon - 12\n",
      "h2=203.05; h3=74.53; hf4=22.31; hg4=180.85; # specific enthalpy in kJ/kg \n",
      "s1=0.682; s3=0.2716; sf4=0.0906; sg4=0.7046; sfg4=sg4-sf4;# specific entropy in kJ/kg K\n",
      "\n",
      "#Calculations\n",
      "sf1=sf4; sfg1=sfg4; s2=s1; s4=s3; hf1=hf4; hg1=hg4; hfg4=hg4-hf4; hfg1=hfg4;# refer figure 8.20 \n",
      "x1=(s1-sf1)/sfg1; # Dryness fraction at state 1\n",
      "x4=(s4-sf4)/sfg4; # dryness fraction at state 4\n",
      "h1=hf1+x1*hfg1; h4=hf4+x4*hfg4; # specific enthalpy in kJ/kg \n",
      "wc=h2-h1; # work of compression\n",
      "wE=h3-h4; # Work of expansion\n",
      "qL=h1-h4; # Refrigerating effect\n",
      "qH=h2-h3; # Heat rejected\n",
      "wnet=wc-wE; # Net work\n",
      "COPc=qL/wnet; # COP of the cycle\n",
      "\n",
      "#Results\n",
      "print \"Work of compression = \",round(wc,2),\"kJ/kg\",\"\\nWork of expansion =\",round(wE,2),\"kJ/kg\"\n",
      "print \"Refrigerating effect = \",round(qL,2),\"kJ/kg\"\n",
      "print \"Heat rejected =\",qH,\"kJ/kg\",\"\\nCOP of the cycle =\",round(COPc,3)"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Work of compression =  28.04 kJ/kg \n",
        "Work of expansion = 5.48 kJ/kg\n",
        "Refrigerating effect =  105.97 kJ/kg\n",
        "Heat rejected = 128.52 kJ/kg \n",
        "COP of the cycle = 4.699\n"
       ]
      }
     ],
     "prompt_number": 7
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 8.8, Page No:400 "
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Variable declaration\n",
      "TL=-15; # Source temperature in degree celcius\n",
      "TH=40; # Sink temperature in degree celcius\n",
      "# From the table of properties of Freon - 12\n",
      "h3=74.53; h1=180.85; h4=h3; # specific enthalpy in kJ/kg \n",
      "s1=0.7046; s2=0.682; # specific entropy in kJ/kg K\n",
      "\n",
      "# (a)               \n",
      "\n",
      "#Calculation for (i)\n",
      "# (i).Condensor and Evaporator pressure\n",
      "pc=0.9607; # Saturation pressure at TH in MPa\n",
      "pE=0.1826; # Saturation pressure at TL in MPa\n",
      "\n",
      "#Results for (i)\n",
      "print \"(a)\",\"\\n(i).Condensor and Evaporator pressure\",\"\\nCondensor pressure = \",pc,\"MPa\"\n",
      "print \"Evaporator pressure = \",pE,\"MPa\"\n",
      "\n",
      "#Calculation for (ii)\n",
      "# (ii).Compressor discharge temperature  & Enthalpy\n",
      "p2=pc; # Condensor pressure\n",
      "s2=s1; # refer figure 8.25\n",
      "# From the table of properties of Freon - 12 at pc\n",
      "t2=46.8; # Compressor discharge temperature in degree celcius\n",
      "h2=208.3; # specific enthalpy in kJ/kg \n",
      "\n",
      "#Results for (ii)\n",
      "print \"\\n(ii).Compressor discharge temperature  & Enthalpy\",\"\\nCompressor discharge temperature = \",t2,\"oC\"\n",
      "print \"Enthalpy = \",h2,\"kJ/kg\"\n",
      "\n",
      "#Calculation for (iii)\n",
      "# (iii).Ratio of COP of the cycle to Carnot COP\n",
      "w=h2-h1; # Compressor work\n",
      "qL=h1-h4; # Refrigeration effect\n",
      "COP=qL/w; # COP of the cycle\n",
      "COPc=4.68; # COP of carnot cycle from example 8.7\n",
      "r=COP/COPc; # Ratio of COP of the cycle to Carnot COP\n",
      "\n",
      "#Results for (iii)\n",
      "print \"\\n(iii).Ratio of COP of the cycle to Carnot COP = \",round(r,2)\n",
      "\n",
      "#Calculation for (b)\n",
      "# (b)                \n",
      "QL=0.440; # Capacity of refrigerator in kW (1/8 ton of refrigeration)\n",
      "m=QL/qL; # Mass flow rate of refrigerant\n",
      "W=m*w; # Power consumption of compressor\n",
      "QH=QL+W; # Heat rejected\n",
      "\n",
      "#Results for (b)\n",
      "print \"\\n\\n(b)\",\"\\nMass flow rate of refrigerant = \",round(m,5),\"kg/s\",\"\\nPower consumption of compressor = \",round(W,4),\"kW\"\n",
      "print \"Heat rejected to surroundings = \",round(QH,4),\"kW   (Error in textbook answer)\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "(a) \n",
        "(i).Condensor and Evaporator pressure \n",
        "Condensor pressure =  0.9607 MPa\n",
        "Evaporator pressure =  0.1826 MPa\n",
        "\n",
        "(ii).Compressor discharge temperature  & Enthalpy \n",
        "Compressor discharge temperature =  46.8 oC\n",
        "Enthalpy =  208.3 kJ/kg\n",
        "\n",
        "(iii).Ratio of COP of the cycle to Carnot COP =  0.83\n",
        "\n",
        "\n",
        "(b) \n",
        "Mass flow rate of refrigerant =  0.00414 kg/s \n",
        "Power consumption of compressor =  0.1136 kW\n",
        "Heat rejected to surroundings =  0.5536 kW   (Error in textbook answer)\n"
       ]
      }
     ],
     "prompt_number": 8
    }
   ],
   "metadata": {}
  }
 ]
}