1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
|
{
"metadata": {
"name": "",
"signature": "sha256:4c4dfb370e475e99da4c5056464d38bcfd8f5f2d436b23af2eaa8055bd431fec"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Chapter 14:CHEMICAL REACTIONS AND COMBUSTION"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 14.1, Page No:644"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Variable declaration\n",
"# From the Table 14.1 \n",
"del_hfHCL=92307; # Enthalpy of Heat in kJ/kmol\n",
"del_hfH2O=-241818; # Enthalpy of Heat kJ/kmol\n",
"\n",
"#Calculation\n",
"del_Ho=4*del_hfHCL-2*del_hfH2O; # The standard heat of reaction from enthalpy equation\n",
"\n",
"#Result\n",
"print \"The standard heat of reaction for the process = \",del_Ho,\"kJ (answer mentioned in the textbook is wrong)\"\n",
"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The standard heat of reaction for the process = 852864 kJ (answer mentioned in the textbook is wrong)\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 14.2, Page No:645"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Variable declaration\n",
"del_Ho=5640000; # Heat released during the process\n",
"# From the Table 14.1 \n",
"del_hfO2=-393509; del_hfH2O=-285830; # Enthalpy of Heat in kJ/kmol\n",
"\n",
"#Calculation\n",
"del_hfsucrose=12*del_hfO2+11*del_hfH2O+del_Ho; # The enthalpy formation of sucrose\n",
"\n",
"#Result\n",
"print \"The enthalpy formation of sucrose = \",del_hfsucrose,\"kJ/kmol (answer mentioned in the textbook is wrong)\"\n",
"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The enthalpy formation of sucrose = -2226238 kJ/kmol (answer mentioned in the textbook is wrong)\n"
]
}
],
"prompt_number": 2
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 14.3, Page No:649"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Variable declaration\n",
"# (a).Balancing of chemical equation\n",
"# The unbalanced equation for the process is C8H18 + O2 + N2 \u2192 CO2 + H2O + N2\n",
"x=8; # Carbon balance\n",
"y=9; # Hydrogen balance\n",
"z=12.5; # Oxygen balance in reverse order\n",
"n=z*3.76; # Nitrogen Balance\n",
"\n",
"#Result for (a)\n",
"print \"(a).Balancing of chemical equation\"\n",
"print \" C8H18 + z O2 + n N2 \u2192 x CO2 + y H2O + n1 N2 \\n \"\n",
"print \" z =\",z,\"\\n n =\",n,\"\\n x =\",x,\"\\n y =\",y,\"\\n n1 =\",5*n\n",
"\n",
"#Calculation for (b)\n",
"# (b).The theoretical air-fuel ratio\n",
"a=1; # Mole of C8H18\n",
"AF1=(z+n)/a; #The theoretical air-fuel ratio on mole basis\n",
"ma=28.84; # Molecular mass of air \n",
"mc=114; # Molecular mass of C8H18\n",
"AF2=(AF1*ma)/(a*mc); # The theoretical air-fuel ratio on mass basis\n",
"\n",
"#Result for (b)\n",
"print \"\\n(b).The theoretical air-fuel ratio\",\"\\nThe theoretical air-fuel ratio on mole basis = \",AF1,\"kmol air / kmol C8H18\"\n",
"print \"The theoretical air-fuel ratio on mass basis = \",round(AF2,0),\"kg air / kmol C8H18\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"(a).Balancing of chemical equation\n",
" C8H18 + z O2 + n N2 \u2192 x CO2 + y H2O + n1 N2 \n",
" \n",
" z = 12.5 \n",
" n = 47.0 \n",
" x = 8 \n",
" y = 9 \n",
" n1 = 235.0\n",
"\n",
"(b).The theoretical air-fuel ratio \n",
"The theoretical air-fuel ratio on mole basis = 59.5 kmol air / kmol C8H18\n",
"The theoretical air-fuel ratio on mass basis = 15.0 kg air / kmol C8H18\n"
]
}
],
"prompt_number": 3
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 14.4, Page No:650"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import numpy as np\n",
"#Variable declaration\n",
"# The combustion equation for C4H10 with 80% theoretical air is C4H10 +5.2(O2 + 3.76 N2) \u2192 a(1)CO + a(2)CO2 + 5H2O + 19.55N2\n",
"# The following matrix shows the balance of C and O\n",
"\n",
"#Calculation\n",
"A = np.array([(1, 1),(1,2)])\n",
"B = np.array([4,5.4])\n",
"m = np.linalg.solve(A,B)\n",
"\n",
"#Result\n",
"print \"The equation for the combustion of butane with 80% theoretical air is \"\n",
"print \"\\nC4H10 +5.2(O2 + 3.76 N2) \u2192\", m.item(0), \"CO + \",m.item(1), \"CO2 + 5H2O + 19.55N2\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The equation for the combustion of butane with 80% theoretical air is \n",
"\n",
"C4H10 +5.2(O2 + 3.76 N2) \u2192 2.6 CO + 1.4 CO2 + 5H2O + 19.55N2\n"
]
}
],
"prompt_number": 4
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 14.5, Page No:650"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Variable declaration\n",
"p=101.325; # Atmospheric pressure in kPa\n",
"# The complete combustion equation for actane\n",
" # yC8H18+ x (O2+3.76N2) \u2192 n1 CO2+n2 H2O+n3 O2+n3 N2\n",
"x=12.5*1.5; y=1;\n",
"n1=8; n2=9; n3=6.28; n4=70.5;\n",
"\n",
"#calculation\n",
"n=n1+n2+n3+n4; # Total number of moles of the products\n",
"AFm=(x+x*3.76)/y ;# Air fuel ratio\n",
"m=28.84;\n",
"M=116; # Molecular weight of octane\n",
"AF=AFm*m/M;\n",
"yco2=n1/n; yH2O=n2/n; yO2=n3/n; yN2=n4/n;\n",
"pH2O=p*yH2O; # Partial pressure of water vapour in the products\n",
"Tsat=45.21; # In oC\n",
"\n",
"#Result\n",
"print \"Air fuel ratio = \",round(AF,2),\"kg air/kg octane\"\n",
"print \"Dew point temperature = \",Tsat,\"oC\"\n",
"print \"\\nIf the products are cooled below 25 oC then, the water vapour will condense.\"\n",
"print \"Because the cooled temperature is less than dew point temperature of water vapour i.e., T < Tsat.\"\n",
"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Air fuel ratio = 22.19 kg air/kg octane\n",
"Dew point temperature = 45.21 oC\n",
"\n",
"If the products are cooled below 25 oC then, the water vapour will condense.\n",
"Because the cooled temperature is less than dew point temperature of water vapour i.e., T < Tsat.\n"
]
}
],
"prompt_number": 5
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 14.6, Page No:651"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Variable declaration\n",
"# The complete chemical equation is\n",
"#[0.14H2+0.03CH4+0.27CO+0.045CO2+0.01O2+0.505N2]+0.255(O2+3.75N2) \u21920.2H2O+0.345CO2+1.44N2\n",
"a=0.14; # Composition of H2 in air\n",
"b=0.03; # Composition of CH4 in air\n",
"c=0.27; # Composition of CO in air\n",
"d=0.045; # Composition of CO2 in air\n",
"e=0.01; # Composition of O2 in air\n",
"f=0.505; # Composition of N2 in air\n",
"g=(0.265-0.01); # O2 requirement from atmospheric air with 1% O2 already in fuel\n",
"h=3.76; # By nitrogen balance \n",
"i=1; # mole of the air\n",
"\n",
"#Calculation\n",
"#Air fuel ratio on mol (volume) basis\n",
"AFvol=(g+(g*h))/i; # Air fuel ratio (theroretical)\n",
"AFv=1.1*AFvol; # Air fuel ratio on mol (volume) basis\n",
"#Air fuel ratio on mass basis\n",
"M1=2; # Molecular mass of H2\n",
"M2=16; # Molecular mass of CH4\n",
"M3=28; # Molecular mass of CO\n",
"M4=44; # Molecular mass of CO2\n",
"M5=32; # Molecular mass of O2\n",
"M=a*M1+b*M2+c*M3+d*M4+e*M5+f*M3; # Molecular mass of Fuel\n",
"Ma=28.84; # Molecular mass of air\n",
"AFm=AFv*Ma/(i*M); # Air fuel ratio on mass basis\n",
"\n",
"#Results\n",
"print \"Air fuel ratio on mol (volume) basis =\",round(AFv,3),\"kmol actual air/kmol fuel\"\n",
"print \"\\nAir fuel ratio on mass basis = \",round(AFm,2),\"kg air / kg fuel\"\n",
"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Air fuel ratio on mol (volume) basis = 1.335 kmol actual air/kmol fuel\n",
"\n",
"Air fuel ratio on mass basis = 1.56 kg air / kg fuel\n"
]
}
],
"prompt_number": 6
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 14.7, Page No:653"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Variable declaration\n",
"#From table 14.2 at 25 oC and 1 atm for C8H8\n",
"del_Ho=-2039.7; # LHV in MJ/kmol\n",
"# Combustion equation is C3H8+ 5O2 +18.8N2 \u2192 3CO2 +4H2O +18.8N2\n",
"# From table 14.3\n",
"h333_C3H8=2751; # h333_h298 of C3H8 in kJ/kmol\n",
"h333_O2=147; # h333_h298 of O2 in kJ/kmol\n",
"h333_N2=145; # h333_h298 of N2 in kJ/kmol\n",
"h1333_CO2=52075; # h1333_h298 of CO2 in kJ/kmol\n",
"h1333_H2O=32644; # h1333_h298 of H2O in kJ/kmol\n",
"h1333_N2=32644; # h1333_h298 of N2 in kJ/kmol\n",
"M=44; # molecular mass of C3H8\n",
"\n",
"#Calculation\n",
"Ha_H1=h333_C3H8+5*h333_C3H8+18.8*h333_N2; # The enthalpy differences\n",
"Hb_H2=3*h1333_CO2+4*h1333_H2O+18.8*h1333_N2; # The enthalpy differences\n",
"Q=(del_Ho+Hb_H2/1000-Ha_H1/1000)/M; # Heat transfer from combustion chamber\n",
"\n",
"#Result\n",
"print \"Heat transfer from combustion chamber =\",round(abs (Q),2),\"MJ/kg C3H8\"\n",
"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Heat transfer from combustion chamber = 26.33 MJ/kg C3H8\n"
]
}
],
"prompt_number": 7
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 14.8, Page No:656"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Variable declaration\n",
"Ha_H1=6220; # From example 14.7 in kJ/kmol\n",
"del_Ho=-2039.7; # From example 14.7 LHV in MJ/kmol\n",
"\n",
"#Calculation\n",
"Hb_H2=-del_Ho+Ha_H1; # For adiabatic combustion of C3H8\n",
"# Hb_H2=3*h1333_CO2+4*h1333_H2O+18.8*h1333_N2 By iteration process and making use of the values from Table A.3, A.13, A.15\n",
"# we can get the adiabatic flame temperature is\n",
"Tad=2300;# The adiabatic flame temperature in kelvin\n",
"\n",
"#Result\n",
"print \"The adiabatic flame temperature =\",Tad,\"K\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The adiabatic flame temperature = 2300 K\n"
]
}
],
"prompt_number": 8
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 14.9, Page No:658"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Variable declaration\n",
"# (a).Entropy change per kmol of C\n",
"# From table 14.1 at 298 K and 1 atm\n",
"s_c=5.686; # Absolute entropies of C in kJ/kmol K\n",
"s_o2=205.142; # Absolute entropies of o2 in kJ/kmol K\n",
"s_co2=213.795; # Absolute entropies of CO2 in kJ/kmol K\n",
"\n",
"#Calculation for (a)\n",
"del_s=s_co2-(s_c+s_o2); # The entropy change \n",
"\n",
"#Result for (a)\n",
"print \"(a).The entropy change = \",del_s,\"kJ/K/kmol C\"\n",
"\n",
"#Variable declaration for(b)\n",
"# (b).Entropy change of universe\n",
"Tsurr=298; # Temperature of surroundings in kelvin\n",
"\n",
"#Calculation for (b)\n",
"# From table 14.1 \n",
"del_Ho=-393509; # del_hfco2 in kJ/kmol CO2\n",
"Q=abs (del_Ho);\n",
"del_Ssurr=Q/Tsurr; # Entropy change of surroundings\n",
"del_Suniv=del_s+del_Ssurr; #Entropy change of universe\n",
"\n",
"#Result for (b)\n",
"print \"\\n(b).Entropy change of universe = \",del_Suniv,\"kJ/K\"\n",
"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"(a).The entropy change = 2.967 kJ/K/kmol C\n",
"\n",
"(b).Entropy change of universe = 1322.967 kJ/K\n"
]
}
],
"prompt_number": 9
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 14.10, Page No:659"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"from __future__ import division\n",
"\n",
"#Variable declaration\n",
"# (a).The product CO2 is also at 298K\n",
"Pco=2/3; # Paratial pressure of CO in atm \n",
"Po2=1/3; # Paratial pressure of O2 in atm\n",
"Pco2=1; # Paratial pressure of CO2 in atm\n",
"T0=298; # Temperature of surroundings in kelvin\n",
"R_1=8.3143; # Universal gas constant of air in kJ/kmol K\n",
"\n",
"#Calculation for (a)\n",
"# From table 14.1 at 298 K and 1 atm\n",
"s_co2=213.795-R_1*math.log (Pco2); # entropies in kJ/kmol K\n",
"s_co=197.653-(R_1*math.log (Pco)); # entropies in kJ/kmol K\n",
"s_o2=205.03-R_1*math.log (Po2); # entropies in kJ/kmol K\n",
"del_Scv=s_co2-s_co-1/2*s_o2; # Entropy change of comtrol volume \n",
"# From table 14.1\n",
"del_hfco2=-393509; del_hfco=-110525; # Enthalpy of Heat in kJ/kmol\n",
"Q= del_hfco2- del_hfco; # Heat transfer (to surroundings)\n",
"del_Ssurr=abs(Q)/T0; # Entropy change of surroundings\n",
"del_Sgen=del_Scv+del_Ssurr; #Entropy change of universe\n",
"\n",
"#Result for (a)\n",
"print \"(a).The product CO2 is also at 298 K\",\"\\nEntropy change of comtrol volume = \",round(del_Scv,2),\"kJ/K\"\n",
"print \"Entropy change of surroundings = \",round(del_Ssurr,2),\"kJ/K\",\"\\nEntropy change of universe = \",round(del_Sgen,3),\"kJ/K\"\n",
"\n",
"#Calculation for (b)\n",
"# (b).The reaction is adiabatic\n",
"# Let the adiabatic flame temperature be T. Then since\n",
"Q=0;\n",
"C_p=44*0.8414;\n",
"# From table A.16\n",
"T=5057.5; #adiabatic flame temperature in kelvin\n",
"s_CO2=213.795+C_p*math.log (T/T0); # entropies in kJ/kmol K\n",
"del_Scv=s_CO2-s_co-1/2*s_o2; # Entropy change of comtrol volume \n",
"del_Ssurr=abs(Q)/T0; # Entropy change of surroundings\n",
"del_Sgen=del_Scv+del_Ssurr; #Entropy change of universe\n",
"\n",
"#Result for (b)\n",
"print \"\\n(b).The reaction is adiabatic\",\"\\nEntropy change of comtrol volume = \",round(del_Scv,3),\"kJ/K\"\n",
"print \"Entropy change of surroundings = \",round(del_Ssurr,3),\"kJ/K\",\"\\nEntropy change of universe = \",round(del_Sgen,3),\"kJ/K\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"(a).The product CO2 is also at 298 K \n",
"Entropy change of comtrol volume = -94.31 kJ/K\n",
"Entropy change of surroundings = 949.61 kJ/K \n",
"Entropy change of universe = 855.299 kJ/K\n",
"\n",
"(b).The reaction is adiabatic \n",
"Entropy change of comtrol volume = 10.517 kJ/K\n",
"Entropy change of surroundings = 0.0 kJ/K \n",
"Entropy change of universe = 10.517 kJ/K\n"
]
}
],
"prompt_number": 10
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 14.11, Page No:661"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Variable declaration\n",
"# The Combustion of H2 with Q2 from H2O\n",
"#H2(g)+1/2 O2 (g)\u2192H2O(l)+285830 kJ/kmol H2\n",
"T0=298; # Temperature of surroundings in kelvin\n",
"# From table 14.1 at 298 K\n",
"del_hfH2O=-285830; # Enthalpy of Heat in kJ/kmol\n",
"s_298H2O=69.94; s_298H2=130.684; s_298O2=205.142; # entropies in kJ/kmol K\n",
"\n",
"#Calculation\n",
"GP_GR=del_hfH2O-T0*(s_298H2O-s_298H2-1/2*s_298O2); # Formation of Gibbs function\n",
"GR=0;\n",
"GP=GP_GR-GR; # Standard Gibbs function of formation of liquid H2O\n",
"\n",
"#Result\n",
"print \"Standard Gibbs function of formation of liquid H2O = \",round(GP,0),\"kJ/kmol\"\n",
"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Standard Gibbs function of formation of liquid H2O = -237162.0 kJ/kmol\n"
]
}
],
"prompt_number": 11
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 14.12, Page No:662"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Variable declaration\n",
"# the combustion equation\n",
"# n1C3H8+n2O2+n3 N2 \u2192 n4 CO2+ n5 H2O+n6 O2+n7 N2\n",
"T0=298; # Temperature of surroundings in kelvin\n",
"# (a).Product species at 25 oC and 1 atm\n",
"d_gfC3H8=-24290; d_gfCO2=-394359; d_gfH2O=-228570; # in kJ/kmol\n",
"GR=d_gfC3H8;\n",
"\n",
"#Calculation for (a)\n",
"GP=3*d_gfCO2+4*d_gfH2O;\n",
"Wmax=GR-GP; # Maximum possible work output\n",
"M=44;#Molecular weight\n",
"Wmax=Wmax/M;\n",
"\n",
"#Result for (a)\n",
"print \"(a).\",\"\\nMaximum possible work output = \",round(Wmax,3),\"kJ/kg fuel (answer mentioned in the textbook is wrong)\"\n",
"\n",
"#Calculation for (b)\n",
"# (b).The actual partial pressures of products\n",
"n1=1; n2=20; n3=75.2;\n",
"n4=3; n5=4; n6=15; n7=75.2; # refer equation\n",
"SR=19233; SP=19147; # in kJ/K from table\n",
"HR=-104680; # in kJ/kmol fuel\n",
"d_h0fCO2=-393509; d_h0fH2O=-241818; # in kJ/kmol\n",
"HP=3*d_h0fCO2+4*d_h0fH2O;\n",
"Wmax=HR-HP-T0*(SR-SP); # Maximum possible work output\n",
"Wmax=Wmax/M;\n",
"\n",
"#Result for (b)\n",
"print \"\\n(b).\",\"\\nMaximum possible work output = \",round(Wmax,3),\"kJ/kg (round off error)\"\n",
"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"(a). \n",
"Maximum possible work output = 47115.159 kJ/kg fuel (answer mentioned in the textbook is wrong)\n",
"\n",
"(b). \n",
"Maximum possible work output = 45852.068 kJ/kg (round off error)\n"
]
}
],
"prompt_number": 12
}
],
"metadata": {}
}
]
}
|