summaryrefslogtreecommitdiff
path: root/Thermodynamics,_Statistical_Thermodynamics,_&_Kinetics/Chapter19.ipynb
blob: 8e67d995f78bebb508ecfbcda1bb39117a0f74d2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
{
 "metadata": {
  "name": "",
  "signature": "sha256:426928f27add269a4fb950a40e7b077ed56eb54390661454909c07f1497ce752"
 },
 "nbformat": 3,
 "nbformat_minor": 0,
 "worksheets": [
  {
   "cells": [
    {
     "cell_type": "heading",
     "level": 1,
     "metadata": {},
     "source": [
      "Chapter 19: Complex Reaction Mechanism "
     ]
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example Problem: 19.1, Page Number 501"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import numpy as np\n",
      "from numpy import arange,array,ones,linalg\n",
      "from pylab import plot,show\n",
      "#Variable declaration\n",
      "Ce = 2.3e-9        #Initial value of enzyme concentration, M\n",
      "r = array([2.78e-5,5.e-5,8.33e-5,1.67e-4])\n",
      "CCO2 = array([1.25e-3,2.5e-3,5.e-3,20.e-3])\n",
      "\n",
      "#Calculations\n",
      "rinv = 1./r\n",
      "CCO2inv = 1./CCO2\n",
      "xlim(0,850)\n",
      "ylim(0,38000)\n",
      "xi = CCO2inv\n",
      "A = array([ CCO2inv, ones(size(CCO2inv))])\n",
      "# linearly generated sequence\n",
      "w = linalg.lstsq(A.T,rinv)[0] # obtaining the parameters\n",
      "slope = w[0]\n",
      "intercept = w[1]\n",
      "\n",
      "line = w[0]*CCO2inv+w[1] # regression line\n",
      "plot(CCO2inv,line,'r-',CCO2inv,rinv,'o')\n",
      "show()\n",
      "rmax = 1./intercept\n",
      "k2 = rmax/Ce\n",
      "Km = slope*rmax\n",
      "\n",
      "#Results\n",
      "print 'Km and k2 are %4.1f mM and %3.1e s-1'%(Km*1e3,k2)"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "metadata": {},
       "output_type": "display_data",
       "png": "iVBORw0KGgoAAAANSUhEUgAAAX8AAAD7CAYAAACCEpQdAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3X+cVmWd//HXW36auprW4s+ECBOMQsmwLBxTEZfCH+sq\nlsYmayYKiGmC1ZfJ1U3LUsCkMit/rHy1/Kq4YwiyzuJqMCKgwEACCgEKJAlSCjLw+f5xHegWx5kB\nZubcM/f7+XjMY665zjlzf84wfO5rPuc611FEYGZmpWWvvAMwM7Pm5+RvZlaCnPzNzEqQk7+ZWQly\n8jczK0FO/mZmJaht3gE0lCTPSTUz20URodr6W9TIPyKK8mPMmDG5x9ASYyv2+Io5tmKPz7EVR3x1\naVHJ38zMGoeTv5lZCXLybwRlZWV5h/C+ijk2KO74ijk2KO74HNvua674VF9dqFhIipYSq5lZMZBE\ntIYLvmZm1jic/M3MSpCTv5lZCWoxN3mZmbVmFRXTGTduCps3t6VDhxqGD+/HgAF9m+z1nPzNzHJW\nUTGdESOeYOnSG3f0LV36HYAmewNw2cfMLGfjxr078QMsXXoj48dPbbLXdPI3M8tTVRWbn32x1k2b\nNrVpspetM/lL6ihppqS5kqol/SDrL5e0UtKc7OOMgmNGS1osaZGkfgX9vSXNy7aNLejvIOmBrH+G\npCOb4kTNzIrK66/DJZfAWWfRofOHa92lY8etTfbydSb/iNgEnBwRvYBPAidL+jwQwE8i4tjs4/cA\nknoA5wM9gP7AHZK232AwARgSEd2AbpL6Z/1DgHVZ/63AzY17imZmRWTrVrjjDujRA/bZBxYuZPhN\n/0rXrt95125du17HsGGnNVkY9V7wjYi3smZ7oA3wRvZ1bXeNnQlMjIgtwDJJS4A+kpYD+0VEVbbf\nPcBZwGRgIDAm638IuH13TsTMrOg9+yxcfjn8wz/AtGnQsyfw94u648d/j02b2tCx41aGDeuf72wf\nSXsBs4GuwISIWCDpXGCYpK8Bs4BvRcR64FBgRsHhK4HDgC1Ze7tVWT/Z5xUAEVEjaYOkAyPiL3t2\namZmRWLNGrj2WnjySfjRj2DQINC7x88DBvRt0mS/s4aM/LcBvSTtDzwhqYxUwrk+2+XfgR+TyjdN\nqry8fEe7rKys6BdoMrMSV1MDP/0p3HADfP3rsHAh7Ldfk71cZWUllZWVDdp3lxZ2k/Q94O2IuKWg\nrzPwWET0lDQKICJuyrZNJpV0lgNPRUT3rP8CoG9EXJbtUx4RMyS1BV6LiPdc/fDCbmbWokyfnko8\nnTrB+PHQvXuzh7DbC7tJ+pCkA7L23sBpwBxJBxfsdjYwL2tPAgZJai+pC9ANqIqI1cCbkvpkF4Av\nAh4tOGZw1j4XmLbLZ2hmVixefRW++lW48EIYMwamTs0l8denvrLPIcDdWd1/L+DeiJgm6R5JvUiz\nfl4BLgWIiGpJDwLVQA0wtGC4PhT4DbA38HhETM767wLulbQYWAcMarSzMzNrLlu2wNixcNNN8I1v\nwC9+kWbzFCmv529mtqemTYNhw+DII9MbwFFH5R0RUHfZx2v7mJntrhUr4Fvfgueeg9tug4ED3zOL\np1h5eQczs121eTP84Adw7LHpZq3qajjzzBaT+MEjfzOzXTN5MgwfDkcfDVVV8NGP5h3RbnHyNzNr\niGXL4MorYf78VNcfMCDviPaIyz5mZnV5+224/nr49Kfh+ONT8m/hiR888jcze3+PPQYjRsBxx8Hz\nz6fZPK2Ek7+Z2c6WLEklniVL4Gc/g3796j+mhXHZx8xsu7fegu9+F044Afr2hRdfbJWJHzzyNzOD\nCHj4YbjqqpT4586Fww/PO6om5eRvZqXtj39Md+euWgW//jWcfHLeETULl33MrDT99a8wahSceCKc\ncUYa7ZdI4gcnfzMrNRHwwANppc1XX4V582DkSGjXLu/ImpXLPmZWOhYsSCWedetg4kT4/Ofzjig3\nHvmbWev35pvpYm5ZGZxzTpqzX8KJH5z8zaw1i4D77kslng0b0sj/iiugrYse/gmYWev0wgsp0b/1\nFjz0UJrCaTt45G9mrcv69amuf9pp6VGKVVVO/LVw8jez1mHbNvjVr9JSy1u2wMKFcOml0KZN3pEV\nJZd9zKzle/75VOKJgP/6r7QCp9XJI38za7nWrYNvfjMtsXzJJfDss078DVRn8pfUUdJMSXMlVUv6\nQdZ/oKSpkl6SNEXSAQXHjJa0WNIiSf0K+ntLmpdtG1vQ30HSA1n/DEmtZ81UM2saW7fCz3+eHqHY\nrl0q8Vx8Mezl8WxD1fmTiohNwMkR0Qv4JHCypM8Do4CpEXEUMC37Gkk9gPOBHkB/4A5px0MtJwBD\nIqIb0E1S/6x/CLAu678VuLkxT9DMWpmZM6FPH7j3XnjiCRg/Hj74wbyjanHqfZuMiLeyZnugDfAG\nMBC4O+u/Gzgra58JTIyILRGxDFgC9JF0CLBfRFRl+91TcEzh93oIOGW3z8bMWq8//xmGDIGzz04P\nWHn6aejVK++oWqx6k7+kvSTNBdYAT0XEAqBTRKzJdlkDdMrahwIrCw5fCRxWS/+qrJ/s8wqAiKgB\nNkg6cPdOx8xanZoauP32VOLZf39YtAguugh2FBVsd9Q72ycitgG9JO0PPCHp5J22h6RoqgDNrIQ9\n8wxcfnkq61RWwjHH5B1Rq9HgqZ4RsUFSBdAbWCPp4IhYnZV01ma7rQKOKDjscNKIf1XW3rl/+zEf\nAV6V1BbYPyL+UlsM5eXlO9plZWWUlZU1NHwza0lWr4Zvfxv++7/hllvg/PM90m+AyspKKisrG7Sv\nIt5/0C7pQ0BNRKyXtDfwBPB94HTSRdqbJY0CDoiIUdkF3/uBz5DKOU8CH8v+OpgJDAeqgApgXERM\nljQU6BkRl0kaBJwVEYNqiSXqitXMWoEtW1KJ58YbU33/e9+DfffNO6oWSxIRUeu7Zn0j/0OAuyXt\nRbo+cG9ETJM0B3hQ0hBgGXAeQERUS3oQqAZqgKEFGXso8Btgb+DxiJic9d8F3CtpMbAOeE/iN7MS\nUFmZbtQ69FD43/9Nd+pak6lz5F9MPPI3a6VWrYKrr043aN16a5rN4xJPo6hr5O87IswsH++8Az/8\nIXzqU9C1a7pR65xznPibidf2MbPmN3VqWnmza1eYMQM+9rG8Iyo5Tv5m1nz+9Kf0RK3Zs2HsWPjS\nlzzSz4nLPmbW9DZvTjN4jjsOevZMT9T68ped+HPkkb+ZNa3HH0/LMRxzDDz3HHTpkndEhpO/mTWV\nl1+GkSPThdxx4+CMM/KOyAq47GNmjevtt6G8HI4/Pq2+OW+eE38R8sjfzBpHBEyaBFdemR6oMmcO\nfOQjeUdl78PJ38z23OLFqa7/yitw551w6ql5R2T1cNnHzHbf3/4G3/kOfPaz8MUvwgsvOPG3EE7+\nZrbrIuB3v0tr7L/ySkr6V18N7dvnHZk1kMs+ZrZrFi6E4cPTssv33AMnnZR3RLYbPPI3s4bZuDGt\nsd+3b7ozd/ZsJ/4WzMnfzOoWARMnQvfusHZtmro5YgS0a5d3ZLYHXPYxs/c3f35aY3/DBnjgATjx\nxLwjskbikb+ZvdeGDenu3C9+Ec47D2bNcuJvZZz8zezvItJF3O7dU41/wQIYOhTatMk7MmtkLvuY\nWTJ3birxbN4MjzwCn/lM3hFZE/LI36zUvfFGSvqnnw6DB6eHqzjxt3pO/malats2uOuuVOLZtg2q\nq+GSS1ziKREu+5iVolmz4PLLYa+90nr7xx2Xd0TWzOoc+Us6QtJTkhZImi9peNZfLmmlpDnZxxkF\nx4yWtFjSIkn9Cvp7S5qXbRtb0N9B0gNZ/wxJRzbFiZoZ8PrrcOml6Slal10GzzzjxF+i6iv7bAFG\nRsQxwAnA5ZK6AwH8JCKOzT5+DyCpB3A+0APoD9wh7XhO2wRgSER0A7pJ6p/1DwHWZf23Ajc34vmZ\nGcDWrfCzn6W1eDp2TEs0/Ou/ppG/laQ6yz4RsRpYnbX/KmkhcFi2ubaHb54JTIyILcAySUuAPpKW\nA/tFRFW23z3AWcBkYCAwJut/CLh9D87HzHb2hz+kC7r77ANPPgmf/GTeEVkRaPDbvqTOwLHAjKxr\nmKQXJN0l6YCs71BgZcFhK0lvFjv3r+LvbyKHASsAIqIG2CDpwF07DTN7j7Vr4eKL4dxz4aqr4H/+\nx4nfdmjQBV9J+wK/A0ZkfwFMAK7PNv878GNS+aZJlZeX72iXlZVRVlbW1C9p1vLU1MCECXD99Wnq\n5sKF8A//kHdU1gwqKyuprKxs0L6KiLp3kNoB/wX8PiJuq2V7Z+CxiOgpaRRARNyUbZtMKuksB56K\niO5Z/wVA34i4LNunPCJmSGoLvBYRH67ldaK+WM1K3tNPpxLPQQfB7benGr+VLElERG0l+npn+wi4\nC6guTPySDinY7WxgXtaeBAyS1F5SF6AbUJVdO3hTUp/se14EPFpwzOCsfS4wbZfOzszgtdfgoovg\nK19JT9aaNs2J3+pUX9nnROBC4EVJc7K+64ALJPUizfp5BbgUICKqJT0IVAM1wNCC4fpQ4DfA3sDj\nETE5678LuFfSYmAdMKgxTsysJGzZAuPHw3/8R7pBa+FC2HffvKOyFqDesk+xcNnHbCdPPZVKPIcf\nDuPGwcc/nndEVmTqKvv4Dl+zlmblSvjWt2DmTLj1VjjrLFCt/7/N3pfv8DBrKd55B26+GXr1SqP8\n6mo4+2wnftstHvmbtQRTpsCwYdCtWxrxd+2ad0TWwjn5mxWz5cvTDVpz58LYsenB6WaNwGUfs2K0\naRPccAP07p3KPAsWOPFbo/LI36zYVFTAiBFpKYZZs6Bz57wjslbIyd+sWLz8ckr6f/wj/PSn6cla\nZk3EZR+zvL31FowZkx6deOKJMG+eE781OY/8zfISAY8+CiNHpsQ/Zw4ccUTeUVmJcPI3y8NLL6US\nz/Ll8Mtfwimn5B2RlRiXfcya09/+BqNHw+c+B6eeCi+84MRvuXDyN2sOEfDb30L37rBiBbz4Ylqi\noV27vCOzEuWyj1lTW7gw3Z27di3cdx/07Zt3RGYe+Zs1mY0b4ZprUrIfOBBmz3bit6Lh5G/W2CLg\n/vvh6KPh9ddh/nwYPhza+g9tKx7+bTRrTPPmpTX2N25MNf7PfS7viMxq5ZG/WWNYvz5N3TzlFBg0\nCJ57zonfipqTv9me2LYN7r47zeJ5++20xv5ll0GbNnlHZlYnl33MdtecOXD55VBTA5MmwfHH5x2R\nWYN55G+2q/7yFxg6FPr3h4svhhkznPitxakz+Us6QtJTkhZImi9peNZ/oKSpkl6SNEXSAQXHjJa0\nWNIiSf0K+ntLmpdtG1vQ30HSA1n/DElHNsWJmu2xbdvgzjtTiUdK8/f/7d9gL4+hrOVRRLz/Rulg\n4OCImCtpX+B54Czg68DrEfFDSdcCH4yIUZJ6APcDxwOHAU8C3SIiJFUBV0RElaTHgXERMVnSUOAT\nETFU0vnA2RExqJZYoq5YzRpLRcV0xo2bwubNbenQoYbhw/sx4B/3TiWetm3TcsvHHpt3mGb1kkRE\n1PqQ5zpr/hGxGlidtf8qaSEpqQ8ETsp2uxuoBEYBZwITI2ILsEzSEqCPpOXAfhFRlR1zD+lNZHL2\nvcZk/Q8Bt+/OSZo1hoqK6YwY8QRLl964o2/pHy6BNk8w4LZ/h4su8kjfWoUG/xZL6gwcC8wEOkXE\nmmzTGqBT1j4UWFlw2ErSm8XO/auyfrLPKwAiogbYIOnAXTkJs8YybtyUdyV+gKUb72R876/A4MFO\n/NZqNGi2T1byeQgYEREbpb//FZGVdJqlHlNeXr6jXVZWRllZWXO8rJWQzZtr/y+xqaZjM0ditusq\nKyuprKxs0L71Jn9J7UiJ/96IeCTrXiPp4IhYLekQYG3WvwoofBrF4aQR/6qsvXP/9mM+ArwqqS2w\nf0T8pbZYCpO/WaNbs4YOi+fUuqljx63NHIzZrtt5UPz973//ffetb7aPgLuA6oi4rWDTJGBw1h4M\nPFLQP0hSe0ldgG5AVXbt4E1JfbLveRHwaC3f61xgWn0naNaoampg7Fj4xCcY3ucAunYZ/a7NXbte\nx7Bhp+UUnFnTqG+2z+eB6cCLwPYdRwNVwIOkEfsy4LyIWJ8dcx1wMVBDKhM9kfX3Bn4D7A08HhHb\np412AO4lXU9YBwyKiGW1xOLZPtb4pk9Pa/H84z/C+PHQvTsVFdMZP34qmza1oWPHrQwbdhoDBng1\nTmt56prtU2fyLyZO/taoXn01Lbf89NPw4x/DueemuftmrUhdyd9TF6y0bNkCt9wCn/wkHHlkulHr\nX/7Fid9Kjtf2sdIxbVp6otaRR8Kzz8JRR+UdkVlunPyt9VuxIj0v97nn4Lbb0lO1PNK3Eueyj7Ve\nmzfDD34AvXql9Xiqq+HMM534zfDI31qryZPToxOPPjqN+D/60bwjMisqTv7WuixbBiNHpscpjh0L\nAwbkHZFZUXLZx1qHTZvg+uuhd+/0MX++E79ZHTzyt5bvscfgyitTbX/27DSbx8zq5ORvLdeSJSnp\nL1kCEyZAv371H2NmgMs+1hK99RZ873twwgnwhS/Aiy868ZvtIo/8reWIgIcfhquuSol/7lw4/PD6\njzOz93Dyt5bhj39MUzdXroRf/xpOPjnviMxaNJd9rLj99a8wahSceCL0759G+078ZnvMyd+KUwQ8\n8EC6M3fVqjRvf+RIaNcu78jMWgWXfaz4LFiQFmBbtw7uvz9d1DWzRuWRvxWPN99MC7CVlcE558Dz\nzzvxmzURJ3/LXwTcd18q8axfn0b+V1wBbf2HqVlT8f8uy9cLL6RE/9Zb8NBDaQqnmTU5j/wtH+vX\np6mb/frBhRdCVZUTv1kzcvK35rVtW5qn3717Wm+/uhouvRTatMk7MrOSUm/yl/QrSWskzSvoK5e0\nUtKc7OOMgm2jJS2WtEhSv4L+3pLmZdvGFvR3kPRA1j9Dklflaq2efz7N1//5z9NibD//ORx0UN5R\nmZWkhoz8fw3036kvgJ9ExLHZx+8BJPUAzgd6ZMfcIe14bNIEYEhEdAO6Sdr+PYcA67L+W4Gb9+iM\nrPisWweXXZaWWL7kkvT83E9/Ou+ozEpavck/Ip4G3qhlU23PwjsTmBgRWyJiGbAE6CPpEGC/iKjK\n9rsHOCtrDwTuztoPAac0PHwralu3wi9+AT16pJk7CxfCxRfDXq42muVtT2b7DJP0NWAW8K2IWA8c\nCswo2GclcBiwJWtvtyrrJ/u8AiAiaiRtkHRgRPxlD2KzvM2cmWbxdOgATzyR1to3s6Kxu0OwCUAX\noBfwGvDjRovIWrY//xmGDIGzz06zeZ5+2onfrAjt1sg/ItZub0v6JfBY9uUq4IiCXQ8njfhXZe2d\n+7cf8xHgVUltgf3fb9RfXl6+o11WVkZZWdnuhG9NoaYmXcD9/vfhq19NJZ799887KrOSUllZSWVl\nZYP2VUTUv5PUGXgsInpmXx8SEa9l7ZHA8RHxleyC7/3AZ0jlnCeBj0VESJoJDAeqgApgXERMljQU\n6BkRl0kaBJwVEYNqiSEaEqvl4Jln4PLL4YAD4Pbb4ROfyDsiMwMkERG1XZ+tf+QvaSJwEvAhSSuA\nMUCZpF6kWT+vAJcCRES1pAeBaqAGGFqQsYcCvwH2Bh6PiMlZ/13AvZIWA+uA9yR+K1KrV8O118K0\naXDLLXD++aBaf8/MrMg0aORfDDzyLyJbtsBPfwo33phm73z3u7DffnlHZWY72aORv9m7VFam5ZYP\nPjhdzD366LwjMrPd4ORvDbNqFVx9dbpB6yc/SUsuu8Rj1mL5bhur2zvvwI9+BJ/6FHTtmtbi+ed/\nduI3a+E88rf39+STqcTTpQv84Q/QrVveEZlZI3Hyt/f605/gqqtg9my47Tb48pc90jdrZVz2sb/b\nvDnN4Dn2WOjZMz1Ra+BAJ36zVsgjf0t+//u0HEOPHjBrVir1mFmr5eRf6l5+GUaOTBdyx46Ff/qn\nvCMys2bgsk+pevttKC+H44+HPn1g/nwnfrMS4pF/qYmASZPgyivTA1XmzIGPfCTvqMysmTn5t1IV\nFdMZN24Kmze3pUOHGoYP78eAow6BESNSqecXv4DTTss7TDPLiZN/K1RRMZ0RI55g6dIbd/Qtrfom\n1ExiwP8ZCY88Au3b5xihmeXNC7u1Qqef/l2mTLnhvf0nXcPkyh/lEJGZ5aGuhd18wbcV2ry59j/o\nNrFPM0diZsXKyb+12biRDssX1LqpY8etzRyMmRUrJ//WIgImToTu3Rne5R26dr72XZu7dr2OYcN8\ngdfMEtf8W4P58+GKK2D9+vSQlRNPpKJiOuPHT2XTpjZ07LiVYcNOY8CAvnlHambNqK6av5N/S7Zh\nQ7pR67770udLL4W2nsBlZokv+LY2EXDPPdC9O2zcmJZmuPxyJ34zazBni5Zm7txU4tm0CR5+OC3N\nYGa2izzybyneeCMl/dNPh699DWbOdOI3s91Wb/KX9CtJayTNK+g7UNJUSS9JmiLpgIJtoyUtlrRI\nUr+C/t6S5mXbxhb0d5D0QNY/Q9KRjXmCLd62bXDXXanEs3VrKvF84xvQpk3ekZlZC9aQkf+vgf47\n9Y0CpkbEUcC07Gsk9QDOB3pkx9wh7XgSyARgSER0A7pJ2v49hwDrsv5bgZv34Hxal1mz4LOfhTvv\nhIoKmDABDjoo76jMrBWoN/lHxNPAGzt1DwTuztp3A2dl7TOBiRGxJSKWAUuAPpIOAfaLiKpsv3sK\njin8Xg8Bp+zGebQu69almTtf+hJ885vw7LPQu3feUZlZK7K7Nf9OEbEma68BOmXtQ4GVBfutBA6r\npX9V1k/2eQVARNQAGyQduJtxtWxbt8LPfpZKPB06wKJF8PWvw16+NGNmjWuPZ/tEREhqlgn45eXl\nO9plZWWUlZU1x8s2jxkz0nTND3wApk6FT30q74jMrIWprKyksrKyQfs26CYvSZ2BxyKiZ/b1IqAs\nIlZnJZ2nIuJoSaMAIuKmbL/JwBhgebZP96z/AqBvRFyW7VMeETMktQVei4gP1xJD67zJa+1aGDUK\nJk+GH/4QvvpVPzDdzBpFU9zkNQkYnLUHA48U9A+S1F5SF6AbUBURq4E3JfXJLgBfBDxay/c6l3QB\nufWrqYHx4+GYY+CDH0wlngsvdOI3s2ZRb9lH0kTgJOBDklYA/we4CXhQ0hBgGXAeQERUS3oQqAZq\ngKEFw/WhwG+AvYHHI2Jy1n8XcK+kxcA6YFDjnFoRe/rpNGf/oIOgsjK9AZiZNSOv7dOcXnsNvv3t\nlPBvuQXOO88jfTNrMl7bJ29btsBPfgI9e8Jhh8HChXD++U78ZpYbr+3T1J56KpV4Dj8cnnkGPv7x\nvCMyM3PybzIrV8LVV8Mf/gC33gpnn+2RvpkVDZd9Gts778DNN0OvXtCtWyrxnHOOE7+ZFRWP/BvT\nlCkwbFhK+jNmwMc+lndEZma1cvJvDMuXw1VXwZw5MHYsfPnLeUdkZlYnl332xKZNcMMNcNxxaTmG\n6monfjNrETzy310VFTBiRJq++fzz0Llz3hGZmTWYk/+uevlluPLKtBzD7bdD/50fdWBmVvxc9mmo\nt9+GMWPg+OPTA1bmzXPiN7MWyyP/+kTAo4/CyJEp8c+dC0cckXdUZmZ7xMm/Li+9lOr6y5fDL38J\np/ghY2bWOrjsU5u//Q2uuw4+97mU8OfOdeI3s1bFyb9QBPz2t+kxisuXw4svpiUa2rfPOzIzs0bl\nss92Cxemu3PXroX77oO+ffOOyMysyXjkv3EjXHNNSvYDB8Ls2U78ZtbqldTIv6JiOuPGTWHz5rZ0\n6LCF4Z9sz4CJd8Kpp8L8+dCpU94hmpk1i5JJ/hUV0xkx4gmWLr1xR9/Syq/BDd9lwDXfzDEyM7Pm\nVzJln3Hjprwr8QMsfecexk9blVNEZmb5KZnkv3lz7X/kbNrUppkjMTPL3x4lf0nLJL0oaY6kqqzv\nQElTJb0kaYqkAwr2Hy1psaRFkvoV9PeWNC/bNnZPYno/HTrU1NrfsePWpng5M7Oitqcj/wDKIuLY\niPhM1jcKmBoRRwHTsq+R1AM4H+gB9AfukHY83moCMCQiugHdJDX6ojnDh/eja9fvvKuva9frGDbs\ntMZ+KTOzotcYF3x3fj7hQOCkrH03UEl6AzgTmBgRW4BlkpYAfSQtB/aLiKrsmHuAs4DJjRDbDgMG\npOmb48d/j02b2tCx41aGDeu/o9/MrJTsafIP4ElJW4GfR8SdQKeIWJNtXwNsnz95KDCj4NiVwGHA\nlqy93aqsv9ENGNDXyd7MjD1P/idGxGuSPgxMlbSocGNEhKTYw9fYoby8fEe7rKyMsrKyxvrWZmYt\nXmVlJZWVlQ3aVxGNk5sljQH+ClxCug6wWtIhwFMRcbSkUQARcVO2/2RgDLA826d71n8BcFJEfHOn\n7x+NFauZWSmQRETsXJoH9uCCr6QPSNova+8D9APmAZOAwdlug4FHsvYkYJCk9pK6AN2AqohYDbwp\nqU92AfiigmPMzKwJ7EnZpxPwcDZhpy3wnxExRdIs4EFJQ4BlwHkAEVEt6UGgGqgBhhYM5YcCvwH2\nBh6PiEa92GtmZu/WaGWfpuayj5nZrmmSso+ZmbVcTv5mZiXIyd/MrAQ5+ZuZlSAnfzOzEuTkb2ZW\ngpz8zcxKkJO/mVkJcvI3MytBTv5mZiXIyd/MrAQ5+ZuZlSAnfzOzEuTkb2ZWgpz8zcxKkJO/mVkJ\ncvI3MytBTv5mZiXIyd/MrAQ5+ZuZlaCiSf6S+ktaJGmxpGvzjsfMrDUriuQvqQ1wO9Af6AFcIKl7\nvlE1XGVlZd4hvK9ijg2KO75ijg2KOz7HtvuaK76iSP7AZ4AlEbEsIrYA/xc4M+eYGqyYf5mKOTYo\n7viKOTYo7vgc2+4rteR/GLCi4OuVWZ+ZmTWBYkn+kXcAZmalRBH5511JJwDlEdE/+3o0sC0ibi7Y\nJ/9AzcxamIhQbf3FkvzbAn8ETgFeBaqACyJiYa6BmZm1Um3zDgAgImokXQE8AbQB7nLiNzNrOkUx\n8jczs+YhxYFQAAAEHUlEQVRVLBd831feN39J+pWkNZLmFfQdKGmqpJckTZF0QMG20VmsiyT1a4b4\njpD0lKQFkuZLGl4sMUrqKGmmpLmSqiX9oFhiK3i9NpLmSHqsCGNbJunFLL6qYopP0gGSfidpYfZv\n26eIYvt49jPb/rFB0vAiim909v91nqT7JXXIJbaIKNoPUgloCdAZaAfMBbo3cwxfAI4F5hX0/RD4\ndta+Frgpa/fIYmyXxbwE2KuJ4zsY6JW19yVdO+leLDECH8g+twVmAJ8vltiy17wK+E9gUhH+274C\nHLhTX1HEB9wNXFzwb7t/scS2U5x7Aa8BRxRDfNn3fxnokH39ADA4j9ia/Ie/hz+ozwKTC74eBYzK\nIY7OvDv5LwI6Ze2DgUVZezRwbcF+k4ETmjnWR4BTiy1G4APAc8AxxRIbcDjwJHAy8Fix/duSkv9B\nO/XlHh8p0b9cS3/usdUSUz/g6WKJDziQNED7IOlN8zHgtDxiK/ayT7He/NUpItZk7TVAp6x9KCnG\n7Zo1XkmdSX+lzKRIYpS0l6S5WQxPRcSCYokNuBW4BthW0FcssUG6/+VJSbMkXVJE8XUB/izp15Jm\nS7pT0j5FEtvOBgETs3bu8UXEX4AfA38izWxcHxFT84it2JN/0V+NjvR2XFeczXIOkvYFHgJGRMTG\ndwWQY4wRsS0iepFG2X0lnVwMsUn6ErA2IuYAtc6DLoJ/2xMj4ljgDOBySV9414vnF19b4Djgjog4\nDvgb6a/yYohtB0ntgS8Dv33Pi+f3e9cVuJJUTTgU2FfShXnEVuzJfxWpVrfdEbz7XTAvayQdDCDp\nEGBt1r9zvIdnfU1KUjtS4r83Ih4pxhgjYgNQAfQuktg+BwyU9AppZPhFSfcWSWwARMRr2ec/Aw+T\n1sAqhvhWAisj4rns69+R3gxWF0Fshc4Ans9+flAcP7tPA89GxLqIqAH+H6m83ew/u2JP/rOAbpI6\nZ+/i5wOTco4JUgyDs/ZgUp19e/8gSe0ldQG6kW5YazKSBNwFVEfEbcUUo6QPbZ+1IGlvUm1zTjHE\nFhHXRcQREdGFVBr474i4qBhiA5D0AUn7Ze19SLXrecUQX0SsBlZIOirrOhVYQKpf5/6zK3ABfy/5\nbI8j7/gWASdI2jv7v3sqUE0eP7vmuOiyhxdIziBdIFkCjM7h9SeSanPvkK4/fJ100eZJ4CVgCnBA\nwf7XZbEuAk5vhvg+T6pZzyUl1jmkpbFzjxHoCczOYnsRuCbrzz22neI8ib/P9imK2Eh19bnZx/zt\nv/tFFN+nSBfwXyCNXvcvltiy19sHeB3Yr6CvKOIDvk16s5xHmjXVLo/YfJOXmVkJKvayj5mZNQEn\nfzOzEuTkb2ZWgpz8zcxKkJO/mVkJcvI3MytBTv5mZiXIyd/MrAT9fyHy2zHrMxKhAAAAAElFTkSu\nQmCC\n",
       "text": [
        "<matplotlib.figure.Figure at 0x8d31770>"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Km and k2 are 10.0 mM and 1.1e+05 s-1\n"
       ]
      }
     ],
     "prompt_number": 13
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example Problem: 19.2, Page Number 507"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "from numpy import arange,array,ones,linalg\n",
      "from pylab import plot,show\n",
      "\n",
      "#Variable declaration\n",
      "Vads = array([5.98,7.76,10.1,12.35,16.45,18.05,19.72,21.1])   #Adsorption data at 193.5K\n",
      "P = array([2.45,3.5,5.2,7.2,11.2,12.8,14.6,16.1])            #Pressure, torr\n",
      "\n",
      "#Calculations\n",
      "Vinv = 1./Vads\n",
      "Pinv =1./P\n",
      "xlim(0,0.5)\n",
      "ylim(0,0.2)\n",
      "A = array([ Pinv, ones(size(Pinv))])\n",
      "# linearly generated sequence\n",
      "w = linalg.lstsq(A.T,Vinv)[0] # obtaining the parameters\n",
      "m = w[0]\n",
      "c = w[1]\n",
      "line = m*Pinv+c # regression line\n",
      "plot(Pinv,line,'r-',Pinv,Vinv,'o')\n",
      "show()\n",
      "Vm = 1./c\n",
      "K = 1./(m*Vm)\n",
      "\n",
      "#Results\n",
      "print 'Slope and intercept are %5.4f torr.g/cm3 and %5.4f g/cm3'%(m,c)\n",
      "print 'K and Vm are %4.2e Torr^-1 and %3.1f cm3/g'%(K,Vm)"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "metadata": {},
       "output_type": "display_data",
       "png": "iVBORw0KGgoAAAANSUhEUgAAAX0AAAEACAYAAABfxaZOAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAGaFJREFUeJzt3Xt4VdWZx/Hva9BEaB1bx6mWYrEUi4jWS0WlihkVkhKv\n1RlFqjOKt1aSqGgtogIzUnWqPgqOSjteWp86OE/HsYwRuVRTxKEWLDeRqMTiBZXiFYQmEvLOH+sI\nISY5J5ez9zln/z7Pk8ecfTm8LA+/7Ky99lrm7oiISDLsEncBIiISHYW+iEiCKPRFRBJEoS8ikiAK\nfRGRBFHoi4gkSNrQN7NyM6szs1fN7No29o8xs+VmtsLMnjOzQzI9V0REomUdjdM3syLgZeAkYB2w\nGBjt7qtbHHMM8JK7f2xm5cBkdz86k3NFRCRa6a70hwJr3H2tu28FZgKntTzA3Re5+8epl88DX8v0\nXBERiVa60O8LvNni9Vupbe0ZCzzZxXNFRCTLeqXZn/EcDWb298CFwHc7e66IiEQjXeivA/q1eN2P\ncMW+k9TN218A5e7+YSfP1Q8HEZEucHfr7DnpuneWAAPNrL+Z7QacDcxqeYCZ7Qc8BvzA3dd05twW\nhevLnUmTJsVeQ658qS3UFmqLjr+6qsMrfXdvMrNxwBygCLjf3Veb2aWp/TOAG4EvAfeaGcBWdx/a\n3rldrlRERLotXfcO7j4bmN1q24wW318EXJTpuSIiEh89kZtDSktL4y4hZ6gtdlBb7KC26L4OH86K\npAAzj7sGEZF8Y2Z4Fm7kiohIAVHoi4gkiEJfRCRBFPoiIgmi0BcRSRCFvohIgij0RUQSRKEvIpIg\nCn0RkQRR6IuIJIhCX0QkQRT6IiIJotAXEUkQhb6ISIIo9EVEEkShLyKSIAp9EZEEUeiLiCSIQl9E\nJEEU+iIiCaLQFxFJEIW+iEiCKPRFRBJEoS8ikiAKfRGRBFHoi4gkiEJfRPLXpk3w7/8O7nFXkjfM\nY24sM/O4axCRPNPcDA89RM3VU5i2+6E0fuMQins7VVUjqagYHnd1kTAz3N06e16vbBQjIpI1CxdC\ndTU1W4qo7nMW9W/dDm+HXfX1EwESE/xdoe4dEckPb7wB55wD554LV1/NtP1GhMBvob5+KtOnz4up\nwPyg0BeR3LZ5M9x4Ixx2GAwaBHV1MHo0jY27tnl4Q0NRxAXmF3XviEhuam6GRx6BCRPguONg2TLo\n12/77uLipjZPKynZFlWFeUmhLyK5549/hOpqaGqCRx+FYcM+d0hV1Ujq6ydSXz91+7YBA66jsrI8\nykrzjkbviEjuWLcuXNn/7nfw05/CeefBLu33QtfULGD69Hk0NBRRUrKNysoRibmJ29XROwp9EYnf\nX/8Kt98Od94Jl1wSgv+LX4y7qpymIZsikn/c4Te/gWuuge98BxYvhv33j7uqgqbQF5F4LF0a+u03\nboSHHoLS0rgrSgQN2RSRaK1fDxddBKNGhT77F15Q4EdIoS8i0WhshH/7NzjoINhzzzDe/uKLoUjj\n6qOk7h0RyS53+O1v4eqrYfBgWLQIBg6Mu6rEUuiLSPasXAlXXgnvvAP33gsjRsRdUeKpe0dEet57\n78GPfgQnnghnnAHLlyvwc4RCX0R6ztatYaz9gQdCr16h3/7yy8P3khP0f0JEesbs2aErp39/+P3v\nQ/+95ByFvoh0T10dXHUV1NfDHXeEoZjW6QdFJSJpu3fMrNzM6szsVTO7to39g8xskZk1mNn4VvvW\nmtkKM1tqZn/sycJFJGYffghXXBFmwDzppHDTtqJCgZ/jOgx9MysC7gbKgcHAaDM7sNVh7wOVwG1t\nvIUDpe5+mLsP7YF6RSRuTU1wzz1hbvuGBnjppXClv9tucVcmGUjXvTMUWOPuawHMbCZwGrD6swPc\nfQOwwcwq2nkP/dgXKRTz54d++733hnnz4JBD4q5IOild6PcF3mzx+i3gqE68vwPzzWwbMMPdf9HJ\n+kQkF6xZEx6uWrkSbrsNTj9d3Th5Kl3od3fO4++6+ztmtjcwz8zq3P3Z1gdNnjx5+/elpaWUah4O\nkdywcSPcdBM88EAI/ZkzoaQk7qoSqba2ltra2m6/T4fz6ZvZ0cBkdy9PvZ4ANLv7rW0cOwn4xN1v\nb72vo/2aT18kB23bBg8+CDfcAN/7HkydCvvuG3dV0kK25tNfAgw0s/7A28DZwOj2amhVUG+gyN03\nmVkfYCQwpbMFikjEFiwIo3J694YnnoAjjoi7IulBHYa+uzeZ2ThgDlAE3O/uq83s0tT+GWa2D7AY\n2ANoNrNqwkifvwMes9Dv1wv4tbvPzd5fRUS6Ze1a+PGP4fnnw2yY//iP6rcvQFouUSTpPvkEbrkl\nTIhWXR367nv3jrsqSaOr3Tuae0ckqZqb4eGHw3j7tWvDpGg33qjAL3CahkEkif7wh3BVD2GN2qOP\njrceiYyu9EWS5K234Ac/gLPOCrNfLlqkwE8Yhb5IEmzZAv/yL/Dtb4dZMOvq4PzzYRdFQNKoe0ek\nkLnDo4/CtdfCUUeFRcj794+7KomRQl+kUL3wQui337Il3LAdPjzuiiQH6Hc7kULz7rtw4YVw8slw\nwQWweLECX7ZT6IsUioaGMN5+yBD427+Fl1+GsWOhqCjuyiSHqHtHJN+5w+OPh4eqDj44DMf85jfj\nrkpylEJfJJ+tWBHmydmwAX7+czjxxLgrkhyn7h2RfLRhA1x2GYwYEcbcL12qwJeMKPRF8smnn4bF\nxwcPDvPa19XBj34EvfRLu2RGnxSRfOAONTUwfjwMGADPPhvmzBHpJIW+SK77bOHxtWvhzjvDoiYi\nXaTuHZFc9cEHUFUFxx8fgn7lSgW+dJtCXyTXNDXB3XfDgQeG71evDk/W7rpr3JVJAVD3jkgMamoW\nMG3aXBobe1Fc3ERV1UgqKobDvHlhCOa++8L8+WHcvUgPUuiLRKymZgHV1XOor5+6fVt93TXwlSlU\nfPA63H47nHqqliqUrNByiSIRKyu7nrlzb/r89gPG8NSKB6C4OIaqJN9ouUSRPNHY2PYv2A37DlTg\nS9Yp9EUiVrz5L21uLynZFnElkkQKfZGo/PnPcNZZVL0+hwFfqd5p14AB11FZOSKmwiRJdCNXJNs2\nbYKbb4YZM+DKK6l4+GF4ejHTp99AQ0MRJSXbqKwsD6N3RLJMN3JFsqW5GX71K5g4MUyGdvPN0Ldv\n3FVJgejqjVxd6Ytkw//9X3igqlcveOyxsD6tSA5Q6Iv0pDffDIuQP/tsWMVq9GjYRbfOJHfo0yjS\nE7ZsgSlT4NBDw6pVdXUwZowCX3KOrvRFusMdZs4MV/fDhsGf/gRf/3rcVYm0S6Ev0lWLF4d5choa\n4Ne/huOOi7sikbT0u6dIZ73zDvzzP8Npp8HYsSH8FfiSJxT6IplqaICf/jTMfLnPPqHf/sIL1W8v\neUXdOyLpuIdhl9dcE27UPv98WLJQJA8p9EU6smxZ6Lf/4AP4j/+AE06IuyKRbtHvpSJt+ctf4JJL\noKwMzjknjMpR4EsBUOiLtPTpp2ERk8GDoU+f0G9/2WXhyVqRAqBPsgiEfvsnnoDx42HgQFi4EAYN\nirsqkR6n0BdZtQquvDJMoTBtGpSXx12RSNaoe0eS6/33Ydw4KC2Fk0+GFSsU+FLwFPqSPFu3wvTp\ncOCBoVtn9WqoqoJdd427MpGsU/eOJMucOaErp29fePppGDIk7opEIqXQl2R45ZVwk7auLozOOeUU\nsE6vPyGS99S9I4Xto49C2A8bBsOHw4svwqmnKvAlsRT6Upi2bQtr0g4aBBs3hhE611wDxcVxVyYS\nK3XvSOF55pkwdcKee8Ls2XDYYXFXJJIzFPpSOF57LVzNv/AC3HYbnHmmunFEWlH3juS/TZtgwgQ4\n8kg4/PAwBPOssxT4Im1Q6Ev+am6GBx+Eb30L3n4bVq6EiRNh993jrkwkZ6UNfTMrN7M6M3vVzK5t\nY/8gM1tkZg1mNr4z54p02XPPwdCh8POfw+OPwy9/CV/9atxVieQ8c/f2d5oVAS8DJwHrgMXAaHdf\n3eKYvYGvA6cDH7r77ZmemzrOO6pBZCdvvBEWIV+4EG65Bc49V904kkhmhrt3+sOf7kp/KLDG3de6\n+1ZgJnBaywPcfYO7LwG2dvZcSbaamgWUlV1Paelkysqup6ZmQfsHb94MkyaFkTgHHBAeshozRoEv\n0knpRu/0Bd5s8fot4KgM37s750qBq6lZQHX1HOrrp27fVl8/EYCKiuE7DnSHRx6Bn/wEjj0Wli6F\n/faLulyRgpEu9LvT75LxuZMnT97+fWlpKaWlpd34YyUfTJs2d6fAB6ivn8r06TfsCP3Fi6G6Oixs\n8p//GUJfJKFqa2upra3t9vukC/11QL8Wr/sRrtgzkfG5LUNfkqGxse2PXkNDURiJM2ECzJsHU6fC\nP/0T7KKBZpJsrS+Ip0yZ0qX3SfcvaQkw0Mz6m9luwNnArHaObd252plzJWGKi5va3F7y9itw8MFh\nJM7LL8MFFyjwRXpQh1f67t5kZuOAOUARcL+7rzazS1P7Z5jZPoSROXsAzWZWDQx290/aOjebfxnJ\nH1VVI6mvn7hTF8+AXudSudd78NRi+MY3YqxOpHB1OGQzkgI0ZDOxamoWMH3qf9Owai0lzZuovO4M\nKiZUxl2WSF7o6pBNhb7EY/16uP56+N//hcmT4eKLoago7qpE8ka2xumL9KxPPw2ToR10EOyxRxhv\nf9llCnyRiGiWTYmGe7iqHz8+zJXz3HPhvyISKYW+ZN+LL4Z1adetg7vvhrKyuCsSSSx170j2vPce\nXH45nHBCWKJw+XIFvkjMFPrS87ZuhbvugsGDwxj71auhshJ23TXuykQST9070rOeeip05fTrF5Yt\nPOiguCsSkRYU+tIzXn4ZrroKXnkF7rgDTj5ZM2CK5CB170j3fPhhuLI/9tjQd79qFZxyigJfJEcp\n9KVrmprg3nth0CDYsiWE/fjxsNtucVcmIh1Q94503u9+B1dcAXvtBXPmwKGHxl2RiGRIoS+Zq6+H\nq68OQy9/9jP4/vfVjSOSZ9S9I+lt3BjWpT3qqLAY+UsvwZlnKvBF8pCu9BOkpmYB06bNpbGxF8XF\nTVRVjdx5acLWtm2Dhx4KE6OVl8PKlbDvvpHVKyI9T6GfEBmvSfuZZ58NSxXuvjvMmgVHHhlVqSKS\nRereSYj216Sdt/OBr78OZ58NY8bANdfAwoUKfJECotBPiA7XpAXYvBluuAEOPzxMn1BXB6NHq99e\npMAo9BOi3TVpS5rg4YfDNMevvQbLlsGkSdC7d8QVikgUtHJWQrTVpz+g71Xc1WcBFXtYmCBt2LAY\nKxSRztByiZJWTc0Cpk+fR8PHTZS8vorKxhVU3DEFzjsvzIYpInlDoS/p/fWvYanCO+8MSxROmABf\n+ELcVYlIF3Q19DVkMwnc4b/+C3784zASZ8kS2H//uKsSkRgo9AvdCy+EeXI2bYJf/QqOPz7uikQk\nRurILVTvvgtjx0JFBZx/fgh/Bb5I4in0C01jI9x6KwwZAl/+cljc5OKLoago7spEJAeoe6dQuMNv\nfxvmtD/oIFi0CAYOjLsqEckxCv1CsHJl6Ldfvx7uuw9GjIi7IhHJUereyWcbNsAPfwgnnhjmtl+2\nTIEvIh1S6OejrVvDWPvBg8PyhHV1cPnl0Eu/uIlIx5QS+ebJJ+Gqq6B/f/j970Pwi4hkSKGfL1av\nDmH/2mtwxx0wapRmwBSRTlP3Tq778MOwmMnw4TByZLhpW1GhwBeRLlHo56qmJrjnHhg0KIy9f+kl\nuPLK0IcvItJF6t7JRfPnh4Dfe2+YNw8OOSTuikSkQCj0c8maNeHhqhdfDLNhnn66unFEpEepeycX\nbNwYZsA8+uiwkMmqVXDGGQp8EelxutKPSE3NAqZNm0tjYy+Ki5uoqhpJRfl34cEHw9q0o0aFK/x9\n9om7VBEpYAr9CLS1VGH9i1dBSSUV+34RnngCjjgixgpFJCm0clYEysquZ+7cmz6//ZCLeGrZL9SN\nIyKd1tWVs9SnH4HGxrZ/oWr40tcU+CISKYV+tjU3U/z+G23uKinZFnExIpJ0Cv1sWrQIjjmGqsbl\nDOg7fqddAwZcR2WlZsQUkWipT78HbR+hs3EbxWtXUfXpCiru/FcYM4aa2QuZPn0eDQ1FlJRso7Jy\nBBUVw+MuWUTyVFf79BX6PaSmZgHVVbOpf+3m7dsG7D+Bu6Z/T+EuIj1OoR8nd8q+fRFzV97/uV1l\nZTfw1FP/GkNRIlLINHonLkuWwHHH0fja+jZ3NzRoQXIRyR0K/a5691248EI45RS44AKKh327zcM0\nQkdEckna0DezcjOrM7NXzezado6Zltq/3MwOa7F9rZmtMLOlZvbHniw8LjX/M5+yA86ltN95lD2z\niZq7HoCxY6mqLmPAgIk7HasROiKSazqchsHMioC7gZOAdcBiM5vl7qtbHDMK+Ka7DzSzo4B7gaNT\nux0odfcPslJ9lNypmXgL1T9bRX3TI2HbWqi/biL06bP9Zu306Te0GKFTrpu4IpJTOryRa2bHAJPc\nvTz1+icA7n5Li2PuA55x90dTr+uA4919vZn9GfiOu7/fwZ+R+zdyly+HK66gbAnM/eSZz+3WzVoR\niVq2buT2Bd5s8fqt1LZMj3FgvpktMbOLO1tcznjgAfiHf6Dx8Lav2nWzVkTyRbpZNjO9BG/vp82x\n7v62me0NzDOzOnd/tvVBkydP3v59aWkppaWlGf6x2VdTs4BpdV+kcflfeHFVHbAA2Dn8dbNWRLKt\ntraW2trabr9Puu6do4HJLbp3JgDN7n5ri2PuA2rdfWbq9fbunVbvNQn4xN1vb7U9Z7t32poSuVev\ny2hqOpfPgn/AgOu46y713YtItLravZPuSn8JMNDM+gNvA2cDo1sdMwsYB8xM/ZD4KNWf3xsocvdN\nZtYHGAlM6WyBcZo2be5OgQ/Q1HQfe+11DkOGPK2btSKSdzoMfXdvMrNxwBygCLjf3Veb2aWp/TPc\n/UkzG2Vma4DNwAWp0/cBHrMwdXAv4NfuPjdbf5FsaG9K5CFDBlFbOznaYkREekDalbPcfTYwu9W2\nGa1ej2vjvNeAQ7tbYJyKi5va3K4+fBHJV3oitwNVVSP1wJWIFBRNuJZGTc0CTYksIjlHs2yKiCSI\nZtkUEZG0FPoiIgmi0BcRSRCFvohIgij0RUQSRKEvIpIgCn0RkQRR6IuIJIhCX0QkQRT6IiIJotAX\nEUkQhb6ISIIo9EVEEkShLyKSIAp9EZEEUeiLiCSIQl9EJEEU+iIiCaLQFxFJEIW+iEiCKPRFRBJE\noS8ikiAKfRGRBFHoi4gkiEJfRCRBFPoiIgmi0BcRSRCFvohIgij0RUQSRKEvIpIgCn0RkQRR6IuI\nJIhCX0QkQRT6IiIJotAXEUkQhb6ISIIo9EVEEkShLyKSIAp9EZEEUeiLiCSIQl9EJEEU+iIiCaLQ\nFxFJkLShb2blZlZnZq+a2bXtHDMttX+5mR3WmXNFRCQ6HYa+mRUBdwPlwGBgtJkd2OqYUcA33X0g\ncAlwb6bnys5qa2vjLiFnqC12UFvsoLbovnRX+kOBNe6+1t23AjOB01odcyrwSwB3fx7Y08z2yfBc\naUEf6B3UFjuoLXZQW3RfutDvC7zZ4vVbqW2ZHPPVDM4VEZEIpQt9z/B9rLuFiIhI9pl7+7luZkcD\nk929PPV6AtDs7re2OOY+oNbdZ6Ze1wHHA/unOze1PdMfLCIi0oK7d/qCu1ea/UuAgWbWH3gbOBsY\n3eqYWcA4YGbqh8RH7r7ezN7P4NwuFS0iIl3TYei7e5OZjQPmAEXA/e6+2swuTe2f4e5PmtkoM1sD\nbAYu6OjcbP5lRESkYx1274iISGGJ7Inc7jzkVWjStYWZDTKzRWbWYGbj46gxKhm0xZjU52GFmT1n\nZofEUWcUMmiL01JtsdTMXjCzE+KoMwqZPthpZkeaWZOZfT/K+qKUweei1Mw+Tn0ulprZ9R2+obtn\n/YvQvbMG6A/sCiwDDmx1zCjgydT3RwF/iKK2qL8ybIu9ge8ANwHj46455rY4Bvib1PflCf9c9Gnx\n/cGE52Birz2Otmhx3NPAE8CZcdcd4+eiFJiV6XtGdaXf1Ye8vhJRfVFK2xbuvsHdlwBb4ygwQpm0\nxSJ3/zj18nngaxHXGJVM2mJzi5dfAN6LsL4oZfpgZyXwG2BDlMVFLNO2yHhATFSh39WHvArxH3gm\nbZEUnW2LscCTWa0oPhm1hZmdbmargdlAVUS1RS1tW5hZX0L43ZvaVKg3JzP5XDgwLNX196SZDe7o\nDdMN2ewpXX3IqxD/Rxbi36mrMm4LM/t74ELgu9krJ1YZtYW7Pw48bmbHAQ8D38pqVfHIpC3uBH7i\n7m5mRuE+IJpJW/wJ6OfuW8zse8DjwAHtHRzVlf46oF+L1/0IP7E6OuZrqW2FJpO2SIqM2iJ18/YX\nwKnu/mFEtUWtU58Ld38W6GVme2W7sBhk0hZHEJ4N+jNwJnCPmZ0aUX1RStsW7r7J3bekvp8N7Gpm\nX27vDaMK/e0PeZnZboQHtWa1OmYWcD5sfxL4I3dfH1F9UcqkLT5TqFcvn0nbFma2H/AY8AN3XxND\njVHJpC0GpK5qMbPDAdz9/cgrzb60beHu33D3/d19f0K//g/dvb1/R/ksk8/FV1p8LoYShuJ/0N4b\nRtK94914yKvQZNIWqVlKFwN7AM1mVg0MdvdPYis8CzJpC+BG4EvAvanP9VZ3HxpXzdmSYVucCZxv\nZluBT4BzYis4izJsi0TIsC3OAn5oZk3AFtJ8LvRwlohIgmi5RBGRBFHoi4gkiEJfRCRBFPoiIgmi\n0BcRSRCFvohIgij0RUQSRKEvIpIg/w89NqstXi+m2QAAAABJRU5ErkJggg==\n",
       "text": [
        "<matplotlib.figure.Figure at 0x8295610>"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Slope and intercept are 0.3449 torr.g/cm3 and 0.0293 g/cm3\n",
        "K and Vm are 8.48e-02 Torr^-1 and 34.2 cm3/g\n"
       ]
      }
     ],
     "prompt_number": 11
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example Problem: 19.3, Page Number 510"
     ]
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example Problem: 19.4, Page Number 520"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "from numpy import arange,array,ones,linalg\n",
      "from pylab import plot,show\n",
      "\n",
      "#Variable declaration\n",
      "CBr = array([0.0005,0.001,0.002,0.003,0.005])                    #C6Br6 concentration, M\n",
      "tf = array([2.66e-7,1.87e-7,1.17e-7,8.50e-8,5.51e-8])            #Fluroscence life time, s\n",
      "\n",
      "#Calculations\n",
      "Tfinv = 1./tf\n",
      "xlim(0,0.006)\n",
      "ylim(0,2.e7)\n",
      "A = array([ CBr, ones(size(CBr))])\n",
      "# linearly generated sequence\n",
      "[m,c] = linalg.lstsq(A.T,Tfinv)[0] # obtaining the parameters\n",
      "\n",
      "line = m*CBr+c # regression line\n",
      "plot(CBr,line,'r-',CBr,Tfinv,'o')\n",
      "show()\n",
      "\n",
      "#Results\n",
      "print 'Slope and intercept are kq = %5.4e per s and kf = %5.4e per s'%(m,c)"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "metadata": {},
       "output_type": "display_data",
       "png": "iVBORw0KGgoAAAANSUhEUgAAAX0AAAEGCAYAAACJnEVTAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAGJ5JREFUeJzt3XuUXHWV6PHvJoGENaiRqzIj4AVanhEk4PCQJWlHwUD7\nuFdxYLwoiAoC6Y5CEAgqcTnMFR/odKOAIIg4ig44vBoh4dEEBoM8wiuAkOaVIIQr4SUxDUl+949T\nHTpNpV+pqlNV5/tZq1aqzqNq/1ald+/+nXP2iZQSkqRi2CDvACRJtWPSl6QCMelLUoGY9CWpQEz6\nklQgJn1JKpCaJf2IOD8ilkbEfSPY9oyIWFB6/Ckinq9FjJLU7KJW5+lHxAeAvwK/SCntPIr9pgO7\nppS+WLXgJKkgalbpp5RuBtaq2COiJSJ+HxF3RMS8iNi+zK6fAX5dkyAlqcmNz/nzfwoclVJaFBF7\nAj8BPtS/MiL+J7AVcEM+4UlSc8kt6UfEJsDewH9GRP/ijQZtdgjwn8leEZJUEXlW+hsAL6SUpgyx\nzcHAMTWKR5Ka3pBz+hGxZUTcGBELI+L+iOhYx3adEfFIRNwTEUMl8TVSSi8Bj0XEQaX3iIjYZcB7\n7gC8NaU0f+TDkSQNZbgDua8BX00pTQb2Ao6NiB0HbhARBwLvTiltCxwJnFXujSLi18CtwPYRsTgi\nPg/8H+ALEXE3cD/w8QG7HIwHcCWpokZ1ymZEXAZ0pZSuH7DsbODGlNJvSq8fAqamlJZWOlhJ0voZ\n8SmbEbEVMAW4bdCqzYHFA14vAbZY38AkSZU3oqRfOtPmEmBGSumv5TYZ9NqzbSSpDg179k5EbAhc\nCvwypXRZmU2eArYc8HqL0rLB7+MvAkkag5TS4MJ6zIY7eyeAnwEPpJR+tI7NrgA+V9p+L7LTMMvO\n56eUmvZx6qmn5h6DY3N8jq/5HpU2XKW/D3AocG9ELCgtmwW8q5TEz0kpXR0RB0bEIuAV4PMVj1KS\nVBFDJv2U0i2MYN4/pTS9YhFJkqrGfvoV0tramncIVdPMYwPH1+iafXyVVsvWyqlWnyVJzSIiSLU6\nkCtJai4mfUkqEJO+JBWISV+SCsSkL0kFYtKXpAIx6UtSgZj0JalATPqSVCAmfUkqEJO+JBXIsDdR\nkaR61N09j87OOfT1jWfChJV0dOxPW9u+eYdV90z6khpOd/c8Zsy4lt7e09Ys6+09BcDEPwyndyQ1\nnM7OOWslfIDe3tPo6pqbU0SNw6QvqeH0LS/faXjFinE1jqTxmPQlNZYbb2TCnfPKrpo4cVWNg2k8\nJn1JjeH55+FLX4LDDqNj5kdpaTllrdUtLbNob98vp+AahwdyJdW3lODSS6GjAz75Sbj/ftre/GbY\ncx5dXd9gxYpxTJy4ivb2aR7EHQFvlyipfj31FBx7LDz8MJx7LuyzT94R1Zy3S5TU/FavhrPPhl13\nzR4LFhQy4VeD0zuS6stDD2Vz96tWQU8PTJ6cd0RNxUpfUn149VX49rfhAx+AQw6BW24x4VeBlb6k\n/M2fD1/8Imy9Ndx1F2y5Zd4RNS2TvqT8vPwynHIKXHIJ/PCH8M//DFGxY5Yqw+kdSfno7ob3vAf+\n+le4/344+GATfg1Y6UuqrWefha98Bf74Rzj/fPjQh/KOqFCs9CXVRkpw4YWw887ZnP2995rwc2Cl\nL6n6Hn0UjjoKnnsOfv972G23vCMqLCt9SdWzciX84Aewxx6w//7ZlI4JP1dW+pKq4+67s9MwJ02C\n226Dlpa8IxJW+pIq7W9/g5NOgo98BKZPh7lzTfh1xKQvqXJuvBF22QUefzw7UHv44Z6GWWec3pG0\n/p5/Hk44AebMgR//GD72sbwj0jpY6Usau5Syq2knT4aNN84usjLh1zUrfUljs2RJ1uv+kUeyxP/+\n9+cdkUbASl/S6KxeDWedBVOmZKdfLlhgwm8gVvqSRu7BB7Ne96tXw003wU475R2RRslKX9Lw+nvd\n77svfOYzWa97E35DstKXNLQ//CGr7u113xRM+pLKG9jr/kc/gk9/2nPum4DTO5LeaHCve29u0jSs\n9CW9zl73Tc9KX5K97gvESl8qOnvdF4qVvlRUK1fC97+f9br/yEfsdV8Qw1b6EXE+0AY8m1Laucz6\nVuBy4NHSoktTSv9aySAlVdiCBVmv+7e+1V73BTOSSv8CYNow29yUUppSepjwpXrV3+t+2jRob7fX\nfQENm/RTSjcDzw+zmedySfXuhhuyXvdPPGGv+wKrxIHcBLw/Iu4BngJmppQeqMD7SqqE55+HmTOz\nqv4nP4GPfjTviJSjSiT9u4AtU0rLI+IA4DJgu3Ibzp49e83z1tZWWltbK/Dxksrq73U/YwZ86lOw\ncCG86U15R6Vh9PT00NPTU7X3j5TS8BtFbAVcWe5AbpltHwN2TyktG7Q8jeSzJFVAf6/7RYvgvPNg\n773zjkhjFBGklCo2D7fep2xGxGYR2cRgROxB9otk2TC7SaqG1auzKZwpU2D33bMGaSZ8DTCSUzZ/\nDUwF3hYRi4FTgQ0BUkrnAAcBR0fESmA5cEj1wpW0Tv297lOy173WaUTTOxX5IKd3pOp49VX4zneg\nqwu+9S348pdhA6+7bBaVnt6xDYPUyPp73W+zjb3uNSImfakRDex1/+//Dgcd5Dn3GhH/BpQaTX+v\n+1deyXrde3MTjYKVvtQonn02O+f+9tvtda8xs9KX6t3AXvfvepe97rVerPSletbf637ZMrjmmuz8\ne2k9WOlL9Whwr/vbbjPhqyKs9KV6Y697VZGVvlQv7HWvGjDpS/XghhuyA7X2uleVOb0j5WnZMjjh\nBLjuuqxRWltb3hGpyVnpS3lICX772+wiq7/7u+wiKxO+asBKX6q1JUvgmGOgtxcuvdTWx6opK32p\nVgb2un/f+7KzdEz4qjErfakWHngg64YZAfPmwY475h2RCspKX6qmvr6sx/3UqXDooSZ85c5KX6qW\nP/whu8iqpSWbytlii7wjkkz6UsW9/DLMmpUdpLXXveqM0ztSJV11FUyenF1du3Chve5Vd6z0pUpY\nujTrdX/HHfDzn8M//VPeEUllWelL6yOlLMnvsgtstRXcd58JX3XNSl8aq97erNf988/b614Nw0pf\nGq3+Xvd77gkHHGCvezUUK31pNPp73W+6Kfzxj7DNNnlHJI2Klb40EsuXw4knZr3uOzpgzhwTvhqS\nSV8azg03ZAdqn3wy63V/2GGehqmG5fSOtC72ulcTstKXBrPXvZqYlb40kL3u1eRM+iqs7u55dHbO\noa9vPBMmvEbHNq/RdskF2U3JL7kENtoo7xClijPpq5C6u+cxY8a19PaetmZZ78TD4Iwf0nb0oTlG\nJlWXc/oqpM7OOWslfIDeFRfSdfmfcopIqg2Tvgqp79lXyi5fsWJcjSORasukr2J56SWYPp0JD9xe\ndvXEiatqHJBUWyZ9FcdVV2WnYa5YQccvTqal5ZS1Vre0zKK9fb+cgpNqwwO5an79ve7vvBMuvBA+\n+EHaADZ5E11d32DFinFMnLiK9vZptLXtm3e0UlVFSqk2HxSRavVZEvB6r/uTToIjjoBvfhM23jjv\nqKRRiQhSShXr+2Glr+bU3+v+hRfg2mth113zjkiqC87pq7msXAnf+97rve7nzzfhSwNY6at53HVX\n1uv+bW+z1720Dlb6anzLl8PXvpZV9l/5SjadY8KXyjLpq7Fdf33W637Jkuym5J/7nL3upSE4vaPG\ntGwZzJyZJX173UsjZqWvxjKw1/0mm9jrXholK301jsWL4dhj4dFH4Xe/g732yjsiqeFY6av+rV4N\nP/4x7LYb/OM/ZmfpmPClMbHSV3174AH40pdggw1g3jzYcce8I5Ia2rCVfkScHxFLI+K+IbbpjIhH\nIuKeiJhS2RBVSH19MHs2TJ0Kn/0s3HSTCV+qgJFM71wATFvXyog4EHh3Smlb4EjgrArFpqK69VaY\nMgXuvjt7fPnLWaUvab0NO72TUro5IrYaYpOPAxeWtr0tIiZFxGYppaWVCVGF8dJLMGsW/Nd/QWcn\nfPKTnnMvVVglyqfNgcUDXi8BtqjA+6pIrrwyOw2zry87DfNTnzLhS1VQqQO5g386y/ZQnj179prn\nra2ttLa2Vujj1bCWLoWOjuyMnFKve6nIenp66Onpqdr7j6iffml658qU0s5l1p0N9KSULi69fgiY\nOnh6x376Wkt/r/sTT4QvfMFe99I61GM//SuA6cDFEbEX8ILz+RpSby8ceSS8+CLMmWPrY6mGRnLK\n5q+BW4HtI2JxRBwREUdFxFEAKaWrgUcjYhFwDnBMVSNW41q5Er773azXfVubve6lHHi7RNXGwF73\nZ59t62NphCo9vePJz6oue91LdcWkr+q5/nrYeWd46il73Ut1wt47qrxly+D44+GGG+Css+DAA/OO\nSFKJlb4qJyX4zW9g8mR485uzi6xM+FJdsdJXZSxeDMccA489lrVRsPWxVJes9LV+Bva633NPe91L\ndc5KX2O3cGHW637cOLj5Zthhh7wjkjQMK32NXl8fnHoqtLbCYYdlve5N+FJDsNLXOnV3z6Ozcw59\nfeOZMGElHR370zZpXFbdb7dd1ut+883zDlPSKJj0VVZ39zxmzLiW3t7T1izrnX8kjJ9D209/YK97\nqUE5vaOyOjvnrJXwAXpf+ildux5ir3upgZn0VVZfX/k/AlesmljjSCRVkklfb5QSE/7yeNlVEyeu\nqm0skirKpK+1LVoEH/4wHX330rLFzLVWtbTMor19v5wCk1QJtlZWZuVKOOOMrN/9rFnQ0UH3tbfS\n1TWXFSvGMXHiKtrb96Otbd+8I5UKpdKtlU36er3X/dvfnvW633rrvCOSVGI/fVXO8uVwwglZr/uv\nfhWuucaELzU5k35RXXdd1uv+z3/Oet1/9rOehikVgBdnFc1zz8HMmXDjjVmv+wMOyDsiSTVkpV8U\nKcHFF8N73gNveUvW696ELxWOlX4RPPlk1uv+iSfgssuyFsiSCslKv5mtWgVnngm77571uL/zThO+\nVHBW+s2qv9f9+PH2upe0hpV+sxnc676nx4QvaQ0r/Wby3/+dXWS1ww72updUlkm/Gbz0Epx0Elx+\nOXR1Zb3uJakMp3ca3RVXwOTJWe+chQtN+JKGZKXfqJ55Bjo6smmciy7K5vAlaRhW+o0mJTj/fNhl\nF9h2W7jnHhO+pBGz0m8kixbBkUfCyy/D3Lnw3vfmHZGkBmOl3wheew1OPz27wOpjH4P58034ksbE\nSr/e3XlndhrmO94Bt99u62NJ68VKv17197pva4Pjj7fXvaSKMOnXo7lzs26YTz+d9bo/9FB73Uuq\nCKd36slzz2VVfU+Pve4lVYWVfj0Y2Ot+0iR73UuqGiv9vNnrXlINWennZdWqrE/ObrvB3nvb615S\nTVjp52Hhwuw0zA03hFtusfWxpJqx0q+lvj745jeztgmHH26ve0k1Z6VfK7fckt3Jascds34573xn\n3hFJKiCTfrW9+CKcfLK97iXVBad3qunyy7PTMFetste9pLpgpV8NzzwD7e3ZNM4vfwlTp+YdkSQB\nJv311t09j87OOfT1jWfChNfo2B7aLj43m7+/6CKYODHvECVpDZP+eujunseMGdfS23vammW9N30O\nvv892qYflmNkklSec/rrobNzzloJH6C37xd0XbUop4gkaWjDJv2ImBYRD0XEIxFxYpn1rRHxYkQs\nKD2+Xp1Q60/fX/5WdvmKFeNqHIkkjcyQ0zsRMQ44E/gw8BRwe0RckVJ6cNCmN6WUPl6lGOvPK6/A\nqacy4f75ZVdPnLiqxgFJ0sgMV+nvASxKKT2eUnoNuBj4RJntitPsfe5c2HlnWLqUjgtOpKXllLVW\nt7TMor19v5yCk6ShDXcgd3Ng8YDXS4DBXcES8P6IuIfsr4GZKaUHKhdinXjuOTjuOLjpJjj7bJg2\njTaAt0yiq+sbrFgxjokTV9HePo22tn3zjlaSyhou6acRvMddwJYppeURcQBwGbBduQ1nz5695nlr\nayutra0jizJP/b3ujzsODjkk63W/ySZrVre17WuSl1QxPT099PT0VO39I6V15/WI2AuYnVKaVnp9\nMrA6pXT6EPs8BuyeUlo2aHka6rPq0pNPwtFHw+LFcO65tj6WVHMRQUqpYlPow83p3wFsGxFbRcRG\nwMHAFYMC2iwiu4FrROxB9otk2RvfqoGsWgWdnbD77rDPPva6l9Q0hpzeSSmtjIjpwLXAOOBnKaUH\nI+Ko0vpzgIOAoyNiJbAcOKTKMVfX/fdnve4nTMg6Y26/fd4RSVLFDDm9U9EPqvfpnRUr4N/+Lbsh\n+WmnZYl/A69dk5SvSk/v2IYB4Oabs145O+1kr3tJTa3YSf/FF+Gkk+CKK+x1L6kQijt/cfnlMHky\nrF5tr3tJhVG8Sv/pp6GjI5vG+Y//sNe9pEIpTqWfEpx3Hrz3vbDddnDvvSZ8SYVTjEr/kUfgyCOz\nRmnXXQe77JJ3RJKUi6ZL+mvdyWqjV+l450u0XXUxfP3r2S0Mx9n2WFJxNVXSL3snq40/D2eeRdsR\nn84xMkmqD001p1/2TlZ/u4Cu396bU0SSVF+aKun39ZX/w8U7WUlSpqmS/oQJK8su905WkpRpqqTf\n0bG/d7KSpCE0XcO17u55dHXNHXAnq/28yYmkhlXphmtNl/QlqZnU+iYqkqQmYtKXpAIx6UtSgZj0\nJalATPqSVCAmfUkqEJO+JBWISV+SCsSkL0kFYtKXpAIx6UtSgZj0JalATPqSVCAmfUkqEJO+JBWI\nSV+SCsSkL0kFYtKXpAIx6UtSgZj0JalATPqSVCAmfUkqEJO+JBWISV+SCsSkL0kFYtKXpAIx6UtS\ngZj0JalATPqSVCAmfUkqEJO+JBWISV+SCmTYpB8R0yLioYh4JCJOXMc2naX190TElMqHKUmqhCGT\nfkSMA84EpgE7Af8SETsO2uZA4N0ppW2BI4GzqhRrXevp6ck7hKpp5rGB42t0zT6+Shuu0t8DWJRS\nejyl9BpwMfCJQdt8HLgQIKV0GzApIjareKR1rpn/4zXz2MDxNbpmH1+lDZf0NwcWD3i9pLRsuG22\nWP/QJEmVNlzSTyN8nxjjfpKkGoqU1p2fI2IvYHZKaVrp9cnA6pTS6QO2ORvoSSldXHr9EDA1pbR0\n0Hv5i0CSxiClNLiwHrPxw6y/A9g2IrYC/gwcDPzLoG2uAKYDF5d+SbwwOOFDZYOWJI3NkEk/pbQy\nIqYD1wLjgJ+llB6MiKNK689JKV0dEQdGxCLgFeDzVY9akjQmQ07vSJKay5iuyF2fC7bWtW9EbBoR\ncyPi4YiYExGTxhJbJVRpfJ+OiIURsSoidqvFONalSuP7XkQ8WNr+dxHxllqMpZwqje/bpW3vjojr\nI2LLWoylTNwVH9uA9cdHxOqI2LSaYxhKlb672RGxJCIWlB7TajGWcqr1/UVEe+nn7/6IOP2N7zpA\nSmlUD7JpnkXAVsCGwN3AjoO2ORC4uvR8T2D+cPsC3wW+Vnp+IvCd0cZWiUcVx7cDsB1wI7BbHmOr\n8vj2AzYoPf9OE35/bxqwfztwXrOMrbR+S+Aa4DFg0yb77k4FjstjTDUa3weBucCGpddvHyqOsVT6\nY71g6++H2XfNPqV//9cYYquEqowvpfRQSunhWg1iCNUa39yU0urS/reR37Ua1RrfywP23wT4S3WH\nUVa1fvYAzgC+Vu0BDKOa46uHE0mqNb6jgf9bWk5K6f8NFcRYkv5YL9jaHHjnEPtull4/62cpkNdV\nvdUaX72oxfiOAK5e70jHpmrji4jTIuJJ4DCyv2ZqrSpji4hPAEtSSvdWOuBRqub/zfbSdMnPcpw6\nrtb4tgX2jYj5EdETEe8bKoixJP2xXrC1rm3e8H4p+xslryPMlRxfParq+CLiFODVlNKvxrJ/BVRt\nfCmlU1JK7wJ+DvxwtPtXQMXHFhEbA7PIpkBGvX+FVeu7OwvYGtgVeBr4wSj3r5RqjW888NaU0l7A\nCcBvh9t4tJ4im//rtyXZb52httmitM2GZZY/VXq+NCL+PqX0TET8A/DsGGKrhEqOr9y+eava+CLi\ncLI5yQ9VLtxRq8X39yvy+UumGmNrIZsnvici+re/MyL2SCnV+mewKt/dwHFExHnAlZULeVSq9X9z\nCfA7gJTS7aWD8f8jpfRc2SjGcDBiPNBL9h9lI4Y/GLEXrx+MWOe+ZAdyTyw9P4n8DgRWZXwD9r0R\n2D2PsVX5+5sGLATeltfYqjy+bQfs3w5c1CxjG7R/ngdyq/Xd/cOA/b8K/KrJxncU8K3S8+2AJ4eM\nY4zBHwD8iexo8skDPvioAducWVp/DwPOVim3b2n5psB1wMPAHGBSHl9MFcf3v8nm5P4GPAP8vsnG\n9wjwBLCg9PhJk43vEuC+0g/bpcA7mmVsg97/UXJK+lX87n4B3Fva/jKy44fNNL4NgYtK/z/vBFqH\nisGLsySpQLxdoiQViElfkgrEpC9JBWLSl6QCMelLUoGY9CWpQEz6klQgJn1JKpD/D/zQh7mkzHIQ\nAAAAAElFTkSuQmCC\n",
       "text": [
        "<matplotlib.figure.Figure at 0x860a730>"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Slope and intercept are kq = 3.1995e+09 per s and kf = 2.1545e+06 per s\n"
       ]
      }
     ],
     "prompt_number": 15
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example Problem: 19.5, Page Number 523"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "from scipy.optimize import root\n",
      "\n",
      "#Variable Declaration\n",
      "r = 11.          #Distance of residue separation, \u00b0A\n",
      "r0 = 9.          #Initial Distance of residue separation, \u00b0A\n",
      "EffD = 0.2      #Fraction decrease in eff\n",
      "\n",
      "#Calculations\n",
      "Effi = r0**6/(r0**6+r**6)\n",
      "Eff = Effi*(1-EffD)\n",
      "f = lambda r: r0**6/(r0**6+r**6) - Eff\n",
      "sol = root(f, 12)\n",
      "rn = sol.x[0]\n",
      "\n",
      "#Results\n",
      "print 'Separation Distance at decreased efficiency %4.2f'%rn"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Separation Distance at decreased efficiency 11.53\n"
       ]
      }
     ],
     "prompt_number": 21
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example Problem: 19.6, Page Number 525"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Variable Declarations\n",
      "mr = 2.5e-3        #Moles reacted, mol\n",
      "P = 100.0          #Irradiation Power, J/s\n",
      "t = 27             #Time of irradiation, s\n",
      "h = 6.626e-34      #Planks constant, Js\n",
      "c = 3.0e8          #Speed of light, m/s\n",
      "labda = 280e-9     #Wavelength of light, m\n",
      "\n",
      "#Calculation\n",
      "Eabs = P*t\n",
      "Eph = h*c/labda\n",
      "nph = Eabs/Eph     #moles of photone\n",
      "phi = mr/6.31e-3\n",
      "\n",
      "#Results\n",
      "print 'Total photon energy absorbed by sample %3.1e J'%Eabs\n",
      "print 'Photon energy absorbed at 280 nm is %3.1e J'%Eph\n",
      "print 'Total number of photon absorbed by sample %3.1e photones'%nph\n",
      "print 'Overall quantum yield %4.2f'%phi"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Total photon energy absorbed by sample 2.7e+03 J\n",
        "Photon energy absorbed at 280 nm is 7.1e-19 J\n",
        "Total number of photon absorbed by sample 3.8e+21 photones\n",
        "Overall quantum yield 0.40\n"
       ]
      }
     ],
     "prompt_number": 4
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example Problem: 19.7, Page Number 530"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "from math import exp\n",
      "#Variable Declarations\n",
      "r = 2.0e9          #Rate constant for electron transfer, per s\n",
      "labda = 1.2        #Gibss energy change, eV\n",
      "DG = -1.93         #Gibss energy change for 2-naphthoquinoyl, eV\n",
      "k = 1.38e-23       #Boltzman constant, J/K\n",
      "T = 298.0          #Temeprature, K\n",
      "#Calculation\n",
      "DGS = (DG+labda)**2/(4*labda)\n",
      "k193 = r*exp(-DGS*1.6e-19/(k*T))\n",
      "#Results\n",
      "print 'DGS = %5.3f eV'%DGS\n",
      "print 'Rate constant with barrier to electron transfer %3.2e per s'%k193"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "DGS = 0.111 eV\n",
        "Rate constant with barrier to electron transfer 2.66e+07 per s\n"
       ]
      }
     ],
     "prompt_number": 9
    }
   ],
   "metadata": {}
  }
 ]
}