1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
|
{
"metadata": {
"name": "",
"signature": "sha256:c2f0eb9f813e96ecfb0ebcea9c89faad6a2b8ee530cc39d385b0a4ab04407ef5"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Chapter 09: Ideal and Real Solutions"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example Problem 9.2, Page Number 202"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from math import log\n",
"\n",
"#Variable Declaration\n",
"nb = 5.00 #Number of moles of Benzene, mol\n",
"nt = 3.25 #Number of moles of Toluene, mol\n",
"T = 298.15 #Temperature, K\n",
"P = 1.0 #Pressure, bar\n",
"R = 8.314 #Ideal Gas Constant, J/(mol.K)\n",
"\n",
"#Calculations\n",
"n = nb + nt\n",
"xb = nb/n\n",
"xt = 1. - xb\n",
"dGmix = n*R*T*(xb*log(xb)+xt*log(xt))\n",
"dSmix = n*R*(xb*log(xb)+xt*log(xt))\n",
"\n",
"#Results\n",
"print 'Gibbs energy change of mixing is %4.3e J'%dGmix\n",
"print 'Gibbs energy change of mixing is < 0, hence the mixing is spontaneous'\n",
"print 'Entropy change of mixing is %4.2f J/K'%dSmix"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Gibbs energy change of mixing is -1.371e+04 J\n",
"Gibbs energy change of mixing is < 0, hence the mixing is spontaneous\n",
"Entropy change of mixing is -45.99 J/K\n"
]
}
],
"prompt_number": 9
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example Problem 9.3, Page Number 205"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Variable Declaration\n",
"nb = 5.00 #Number of moles of Benzene, mol\n",
"nt = 3.25 #Number of moles of Toluene, mol\n",
"T = 298.15 #Temperature, K\n",
"R = 8.314 #Ideal Gas Constant, J/(mol.K)\n",
"P0b = 96.4 #Vapor pressure of Benzene, torr\n",
"P0t = 28.9 #Vapor pressure of Toluene, torr\n",
"\n",
"#Calculations\n",
"n = nb + nt\n",
"xb = nb/n\n",
"xt = 1. - xb\n",
"P = xb*P0b + xt*P0t\n",
"y = (P0b*P - P0t*P0b)/(P*(P0b-P0t))\n",
"yt = 1.-yb\n",
"\n",
"#Results\n",
"print 'Total pressure of the vapor is %4.1f torr'%P\n",
"print 'Benzene fraction in vapor is %4.3f '%yb\n",
"print 'Toulene fraction in vapor is %4.3f '%yt"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Total pressure of the vapor is 69.8 torr\n",
"Benzene fraction in vapor is 0.837 \n",
"Toulene fraction in vapor is 0.163 \n"
]
}
],
"prompt_number": 12
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example Problem 9.4, Page Number 206"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from sympy import *\n",
"#Variable Declaration\n",
"nb = 5.00 #Number of moles of Benzene, mol\n",
"nt = 3.25 #Number of moles of Toluene, mol\n",
"T = 298.15 #Temperature, K\n",
"R = 8.314 #Ideal Gas Constant, J/(mol.K)\n",
"P0b = 96.4 #Vapor pressure of Benzene, torr\n",
"P0t = 28.9 #Vapor pressure of Toluene, torr\n",
"nv = 1.5 #moles vaporized, mol\n",
"\n",
"#Calculations\n",
"n = nb + nt\n",
"nl = n - nv\n",
"zb = nb/n\n",
"\n",
"x,y, P = symbols('x y P')\n",
"e1 = nv*(y-zb)-nl*(zb-x)\n",
"print 'Mass Balance:', e1\n",
"e2 = P - (x*P0b + (1-x)*P0t)\n",
"print 'Pressure and x:',e2\n",
"e3 = y - (P0b*P - P0t*P0b)/(P*(P0b-P0t))\n",
"print 'Pressure and y:', e3\n",
"equations = [e1,e2,e3]\n",
"sol = solve(equations)\n",
"\n",
"#Results\n",
"for i in sol:\n",
" if ((i[x] > 0.0 and i[x] <1.0) and (i[P] > 0.0) and (i[y]>zb and i[y]<1.0)):\n",
" print 'Pressure is %4.2f torr' %i[P]\n",
" print 'Mole fraction of benzene in liquid phase %4.3f' %i[x]\n",
" print 'Mole fraction of benzene in vapor phase %4.3f' %i[y]\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Mass Balance: 6.75*x + 1.5*y - 5.0\n",
"Pressure and x: P - 67.5*x - 28.9\n",
"Pressure and y: y - 0.0148148148148148*(96.4*P - 2785.96)/P\n",
"Pressure is 66.75 torr"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"Mole fraction of benzene in liquid phase 0.561\n",
"Mole fraction of benzene in vapor phase 0.810\n"
]
}
],
"prompt_number": 3
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example Problem 9.6, Page Number 212"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Variable Declaration\n",
"m = 4.50 #Mass of substance dissolved, g\n",
"ms = 125.0 #Mass of slovent (CCl4), g\n",
"TbE = 0.65 #Boiling point elevation, \u00b0C\n",
"Kf, Kb = 30.0, 4.95 #Constants for freezing point elevation \n",
" # and boiling point depression for CCl4, K kg/mol\n",
"Msolvent = 153.8 #Molecualr wt of solvent, g/mol\n",
"#Calculations\n",
"DTf = -Kf*TbE/Kb\n",
"Msolute = Kb*m/(ms*1e-3*TbE)\n",
"nsolute = m/Msolute\n",
"nsolvent = ms/Msolvent \n",
"x = 1.0 - nsolute/(nsolute + nsolvent)\n",
"\n",
"#Results\n",
"print 'Freezing point depression %5.2f K'%DTf\n",
"print 'Molecualr wt of solute %4.1f g/mol'%Msolute\n",
"print 'Vapor pressure of solvent is reduced by a factor of %4.3f'%x"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Freezing point depression -3.94 K\n",
"Molecualr wt of solute 274.2 g/mol\n",
"Vapor pressure of solvent is reduced by a factor of 0.980\n"
]
}
],
"prompt_number": 69
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example Problem 9.7, Page Number 214"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Variable Declaration\n",
"csolute = 0.500 #Concentration of solute, g/L\n",
"R = 8.206e-2 #Gas constant L.atm/(mol.K)\n",
"T = 298.15 #Temperature of the solution, K\n",
"\n",
"#Calculations\n",
"pii = csolute*R*T\n",
"\n",
"#Results\n",
"print 'Osmotic pressure %4.2f atm'%pii\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Osmotic pressure 12.23 atm\n"
]
}
],
"prompt_number": 70
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example Problem 9.8, Page Number 220"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Variable Declaration\n",
"xCS2 = 0.3502 #Mol fraction of CS2, g/L\n",
"pCS2 = 358.3 #Partial pressure of CS2, torr\n",
"p0CS2 = 512.3 #Total pressure, torr\n",
"\n",
"#Calculations\n",
"alpha = pCS2/p0CS2\n",
"gama = alpha/xCS2\n",
"\n",
"#Results\n",
"print 'Activity of CS2 %5.4f atm'%alpha\n",
"print 'Activity coefficinet of CS2 %5.4f atm'%gama"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Activity of CS2 0.6994 atm\n",
"Activity coefficinet of CS2 1.9971 atm\n"
]
}
],
"prompt_number": 72
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example Problem 9.9, Page Number 220"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Variable Declaration\n",
"xCS2 = 0.3502 #Mol fraction of CS2, g/L\n",
"pCS2 = 358.3 #Partial pressure of CS2, torr\n",
"kHCS2 = 2010. #Total pressure, torr\n",
"\n",
"#Calculations\n",
"alpha = pCS2/kHCS2\n",
"gama = alpha/xCS2\n",
"\n",
"#Results\n",
"print 'Activity of CS2 %5.4f atm'%alpha\n",
"print 'Activity coefficinet of CS2 %5.4f atm'%gama"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Activity of CS2 0.1783 atm\n",
"Activity coefficinet of CS2 0.5090 atm\n"
]
}
],
"prompt_number": 73
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example Problem 9.10, Page Number 221"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Variable Declaration\n",
"rho = 789.9 #Density of acetone, g/L\n",
"n = 1.0 #moles of acetone, mol\n",
"M = 58.08 #Molecular wt of acetone, g/mol\n",
"kHacetone = 1950 #Henrys law constant, torr\n",
"#Calculations\n",
"H = n*M*kHacetone/rho\n",
"\n",
"#Results\n",
"print 'Henrys constant = %5.2f torr'%H"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Henrys constant = 143.38 torr\n"
]
}
],
"prompt_number": 76
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example Problem 9.11, Page Number 221"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Variable Declaration\n",
"m = 0.5 #Mass of water, kg\n",
"ms = 24.0 #Mass of solute, g\n",
"Ms = 241.0 #Molecular wt of solute, g/mol\n",
"Tfd = 0.359 #Freezinf point depression, \u00b0C or K\n",
"kf = 1.86 #Constants for freezing point depression for water, K kg/mol\n",
"\n",
"#Calculations\n",
"msolute = ms/(Ms*m)\n",
"gama = Tfd/(kf*msolute)\n",
"\n",
"#Results\n",
"print 'Activity coefficient = %4.3f'%gama"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Activity coefficient = 0.969\n"
]
}
],
"prompt_number": 81
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example Problem 9.12, Page Number 223"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Variable Declaration\n",
"m = 70.0 #Mass of human body, kg\n",
"V = 5.00 #Volume of blood, L\n",
"HN2 = 9.04e4 #Henry law constant for N2 solubility in blood, bar\n",
"T = 298.0 #Temperature, K\n",
"rho = 1.00 #density of blood, kg/L\n",
"Mw = 18.02 #Molecualr wt of water, g/mol\n",
"X = 80 #Percent of N2 at sea level\n",
"p1, p2 = 1.0, 50.0 #Pressures, bar\n",
"R = 8.314e-2 #Ideal Gas constant, L.bar/(mol.K)\n",
"#Calculations\n",
"nN21 = (V*rho*1e3/Mw)*(p1*X/100)/HN2\n",
"nN22 = (V*rho*1e3/Mw)*(p2*X/100)/HN2\n",
"V = (nN22-nN21)*R*T/p1\n",
"#Results\n",
"print 'Number of moles of nitrogen in blood at 1 and 50 bar are %3.2e,%3.3f mol'%(nN21,nN22)\n",
"print 'Volume of nitrogen released from blood at reduced pressure %4.3f L'%V"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Number of moles of nitrogen in blood at 1 and 50 bar are 2.46e-03,0.123 mol\n",
"Volume of nitrogen released from blood at reduced pressure 2.981 L\n"
]
}
],
"prompt_number": 90
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example Problem 9.14, Page Number 226"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from numpy import arange,array,ones,linalg, divide\n",
"from pylab import plot,show\n",
"\n",
"#Variable Declaration\n",
"cCB = array([1e-6,2e-6,3e-6,5e-6,10e-6])\n",
"nu = array([0.006,0.012,0.018,0.028,0.052])\n",
"y = nu/cCB\n",
"print y\n",
"xlim(0.0, 0.06)\n",
"ylim(5000,6300)\n",
"#Calculations\n",
"A = array([ nu, ones(size(nu))])\n",
"print A\n",
"# linearly generated sequence\n",
"\n",
"w = linalg.lstsq(A.T,y)[0] # obtaining the parameters\n",
"print 'slope %8.1f'%w[0]\n",
"print 'Intercept %8.1f' %w[1]\n",
"# Use w[0] and w[1] for your calculations and give good structure to this ipython notebook\n",
"# plotting the line\n",
"line = w[0]*nu+w[1] # regression line\n",
" \n",
"#Results\n",
"plot(nu,line,'r-',nu,y,'o')\n",
"show()"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"[ 6000. 6000. 6000. 5600. 5200.]\n",
"[[ 0.006 0.012 0.018 0.028 0.052]\n",
" [ 1. 1. 1. 1. 1. ]]"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"slope -19188.2\n",
"Intercept 6205.2\n"
]
},
{
"metadata": {},
"output_type": "display_data",
"png": "iVBORw0KGgoAAAANSUhEUgAAAYMAAAD7CAYAAACIYvgKAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xl8VPW5x/HPQyJEkLq86qUIWBFRiCs7FoERFXGFe9u6\n9Na6UKtFCW5YFltCrXVfCNa2at1eVqql6lVABNQobgSUPdACFSsoilqlqCDLc//4HeiYRjLJTOZM\nJt/365VXzvzOMs+PhHlynnN+v2PujoiING5N4g5ARETip2QgIiJKBiIiomQgIiIoGYiICEoGIiIC\nFMYdQDIz032uIiJ14O6Wzv45d2bg7nn7NW7cuNhjUP/Uv8bWt8bQv0zIuWQgIiLZp2QgIiJKBtmU\nSCTiDqFeqX8NVz73DfK/f5lgmao3ZYKZeS7FIyLSEJgZnm8XkEVEJPuUDERERMlARESUDEREBCUD\nERFByUBEREghGZjZXmY22cyWmVmlmfU2s5uj1wvN7HEz2zNp+9FmtsLMlpvZwKT2bma2OFo3ob46\nJCIitZfKmcEEYJq7dwaOAJYBM4BD3f1I4G/AaAAzKwbOBIqBQcBdZrbj3tffAkPdvSPQ0cwGZbQn\nIiJSZ7tMBtFf/H3d/T4Ad9/q7p+6+0x33x5tNgdoGy0PBia5+xZ3Xw2sBHqZWWugpbtXRNs9BAzJ\ncF9ERKSOajozaA+sN7P7zexNM7vHzJpX2eYCYFq0vB+wJmndGqBNNe1ro3YREckBNSWDQqArcJe7\ndwU+A0btWGlmY4Ev3f2R+gtRRETqW00Pt1kDrHH3udHryUTJwMzOA04Gjkvafi3QLul12+gYa/l3\nKWlH+9rq3rC0tHTnciKR0ARTIiJVlJeXU15entFj1jhRnZm9BPzY3f9mZqXA7sALwK1Af3f/MGnb\nYuARoCehDDQLOMjd3czmACVABTAVKHP36VXeSxPViYjUUiYmqkvlsZfDgT+aWVNgFeEawVygKTAz\nulnoNXcf5u6VZvYYUAlsBYYlfboPAx4gJJNpVROBiIjER1NYi4g0cJrCWkREMkLJQERElAxERETJ\nQEREUDIQERGUDEREBCUDERFByUBERFAyEBERlAxERAQlAxERQclARERQMhAREZQM/pNmTRWRRkjJ\nIJk7DBoEt94KW7bEHY2ISNYoGSQzg4kTYdYsOOIImDkz7ohERLJCD7epjjs8/TRcfjkceSTcdhsc\ncEDcUYmIVEsPt6kvZnD66bB0KXTtCt26wfjx8MUXcUcmIlIvlAx2pagIrrkG5s8PiaG4GJ54QheZ\nRSTvqExUG88/D8OHQ5s2UFYGnTrFHZGIiMpEWTdgACxYACefDH37wlVXwYYNcUclIpI2JYPa2m03\nuOwyWLIEPv4YOneGhx6C7dvjjkxEpM5UJkrXnDlw6aXQtGm4LbVr17gjEpFGRmWiXNCrV0gI558f\nykcXXwwffRR3VCIitaJkkAlNmsCPfwzLloUzhM6d4a67YNu2uCMTEUmJykT1YfHicNfRJ5/AnXfC\nMcfEHZGI5LGslInMbC8zm2xmy8ys0sx6mdk+ZjbTzP5mZjPMbK+k7Ueb2QozW25mA5Pau5nZ4mjd\nhHSCznmHHw4vvACjR8PZZ8MPfwjvvht3VCIiX6vGMwMzexB40d3vM7NCoAUwFvjQ3W8ys58Be7v7\nKDMrBh4BegBtgFlAR3d3M6sALnX3CjObBpS5+/Qq7xXrmcHUqS9RVjaDzZsLadZsKyUlAznllH7p\nHXTjRvj1r+Huu+Hqq8OdSE2bZjeGOsiVOESkZpk4M8Ddv/YL2BP4ezXty4FW0fK3gOXR8mjgZ0nb\nTQd6A62BZUntZwG/q+a4HpcpU170Dh3GeBheHL46dBjjU6a8mJk3WLHC/ZRT3A8+2P2ZZ+KJIUW5\nEoeIpCb67Nzl53lNXzWVidoD683sfjN708zuMbMWUSJ4P9rmfaBVtLwfsCZp/zWEM4Sq7Wuj9pxR\nVjaDVauu+0rbqlXXMXFihmYuPeggmDIlTI996aUweDD8/e/ZjSFFuRKHiGRPYQrruxLKO3PN7A5g\nVPIG7u5mlrHaTmlp6c7lRCJBIpHI1KF3afPm6v8pNm0qyOwbnXoqHH98mAm1Rw+45BIYNQqaN89e\nDDXIlThEpHrl5eWUl5dn9Jg1JYM1wBp3nxu9nkwoBa0zs2+5+zozaw18EK1fC7RL2r9tdIy10XJy\n+9rq3jA5GWRTs2Zbq20vKqqH20OLimDMGDjnHBg5MtyKeuutNGtW/QN16iWGXcjqv4WI1FrVP5TH\njx+f9jF3WSZy93XAO2Z2cNR0PLAUeBo4N2o7F3gyWn4KOMvMmppZe6AjUBEdZ0N0J5IB5yTtkxNK\nSgbSocPYr7R16DCG4cNPqL83bdcO/vQnePBBGD+eknUv0qHdyOzGUI1Y/i1EJFap3E10JHAv0BRY\nBZwPFACPAfsDq4Ez3P2TaPsxwAXAVmCEuz8btXcDHgB2B6a5e0k17+U1xVOfpk59iYkTZ7JpUwFF\nRdsYPvyE7N1Bs3Ur3HUXU6+5kYn7HM2mtp0o2sOyG0OSWP8tRKRWMnE3kQad5ZoPPgglpKlTwy2p\n554bRjiLiHwNJYN8NnduuOvILIxi7t497ohEJEdporp81qMHvPYaXHQRnHYaXHghrF8fd1QikqeU\nDHJZkyZhNtRly2CPPcJjN++8M1xfEBHJIJWJGpIlS6CkBD78MDw7oX//uCMSkRygawaNkTtMnhwe\nufmd78DNN0PbtjXvJyJ5S9cMGiMz+P73obIyTHFx1FFw/fWweXPckYlIA6Zk0FC1aAHXXhuesvba\na3DYYeF2VBGROlCZKF888wyMGAGHHAK33x7OGkSkUVCZSP7tpJPCE9aOOQZ694axY+Gzz+KOSkQa\nCCWDfNKsGfzsZ7BwIaxeHSbAe/TRcNFZRGQXVCbKZ7Nnh2cx7703lJWFx3GKSN5RmUh2rW9fmDcv\n3H103HHhmsInn8QdlYjkICWDfFdYCMOGhVtRN22CTp3gD3+A7dvjjkxEcojKRI3NG2+E0tHWrWFq\ni549445IRNKkMpHUXrdu8PLLYUbUIUNg6NAwbbaINGpKBo1Rkybwox/B8uXh4vKhh8KECbCl+sdu\nikj+U5lIwqyoJSXw3nthArxjj407IhGpBU1UJ5njDk88AVdcEa4j3HIL7L9/3FGJSAp0zUAyxwz+\n53/CXUfFxdC1K1x3XbgDSUTynpKBfFXz5lBaGsYnzJsXJsB7+mmNYhbJcyoTya7NmBGuJxx4INxx\nBxx8cNwRiUgVKhNJ/Rs4EBYtggEDwsN0Ro2CjRvjjkpEMkzJQGrWtGl4strixfDuu2ECvEmTVDoS\nySMqE0ntvfJKGMXcsmW4FfWII+KOSKRRU5lI4tGnD8ydCz/4AZxwQhjN/PHHcUclImmoMRmY2Woz\nW2Rm882sImrraWYVUdtcM+uRtP1oM1thZsvNbGBSezczWxytm1A/3ZGsKSiAiy4Kt6Ju3x5KR3ff\nDdu2xR2ZiNRBjWUiM3sL6ObuHye1lQPXu/uzZnYScLW7H2tmxcAjQA+gDTAL6OjuHiWSS929wsym\nAWXuPr3Ke6lM1FAtWBDOEDZtCqWjo4+OOyKRRiObZaKqb/IesGe0vBewNloeDExy9y3uvhpYCfQy\ns9ZAS3eviLZ7CBhS56gl9xx1VHiYzuWXh+cnnHcerFsXd1QikqJUkoEDs8xsnpldGLWNAm41s38A\nNwOjo/b9gDVJ+64hnCFUbV8btUs+MYP//d8w11GrVuHJarfdpgnwRBqAwhS26ePu75nZvsBMM1sO\njANK3P0JM/s+cB9wQiYCKi0t3bmcSCRIJBKZOKxkU8uWcOONcMEF4elq994bHrt5/PFxRyaSF8rL\nyykvL8/oMWt1a6mZjQM2AuPc/RtRmwGfuPueZjYKwN1viNZNJySOt4EX3L1z1H420N/dL65yfF0z\nyDfu8NRToXzUpUs4U/j2t+OOSiSv1Ps1AzNrbmYto+UWwEBgCbDSzPpHmw0A/hYtPwWcZWZNzaw9\n0BGocPd1wAYz6xUlj3OAJ9MJXBoIMxg8GJYuDdcVunaF8ePhiy/ijkxEkuzyzCD6QH8ielkI/NHd\nrzez7sBvgGbAF8Awd58f7TMGuADYCoxw92ej9m7AA8DuwDR3L6nm/XRmkO/efhuuvDI8fvP220Oi\nsLT+oBFp9PQ8A2m4nnsujGJu1y48Za1Tp7gjEmmwNAJZGq7jjoOFC2HQIOjbF0aOhA0b4o5KpNFS\nMpD47LZbuLC8eDF8+GEYxfzww5oATyQGKhNJ7nj99TCKuagojGLu0iXuiEQaBJWJJL/07g1z5sC5\n58JJJ8FPfwoffRR3VCKNgpKB5JaCArjwwjCKubAwlI5++1tNgCdSz1Qmkty2aFG462jDhlA6OuaY\nuCMSyTm6tVQaB3d49NFwx1EiATfdBK1bxx2VSM7QNQNpHMzgrLNC6aht2zAB3s03w5dfxh2ZSN5Q\nMpCGY4894Prr4bXXoLw8PG7z2WfjjkokL6hMJA3XlClw2WVw2GFhaov27eOOSCQWKhNJ43bqqbBk\nCfTsCd27wy9+AZ9/HndUIg2SkoE0bEVFMGZMeOzmX/8abkWdPFmjmEVqSWUiyS8vvAAlJeFJa2Vl\nUFwcd0Qi9U5lIpGqjj0W5s+H00+H/v3hiivg00/jjkok5ykZSP4pLAxnB0uXhsFqnTvDAw/A9u1x\nRyaSs1QmkvxXUREmwCsoCKOYu3ePOyKRjFKZSCQVPXuGGVEvvBBOOw1+8hNYvz7uqERyipKBNA5N\nmsAFF4RRzM2bw6GHwp13wtatcUcmkhNUJpLGacmScF3hww9DUujXL+6IROpME9WJpMMd/vxnuOoq\n6NMnzHfUtm3cUYnUmq4ZiKTDDM44I5SOOnSAI4+EG26AzZvjjkwk65QMRFq0gF/9Ktx19OqrYVbU\nadPijkokq1QmEqnqmWdgxAg45BC4445w1iCSw1QmEqkPJ50EixeH6wi9esHYsfDZZ3FHJVKvlAxE\nqtOsGYwaBQsXwltvhVHMjz6qCfAkb9WYDMxstZktMrP5ZlaR1D7czJaZ2RIzuzGpfbSZrTCz5WY2\nMKm9m5ktjtZNyHxXROpBmzbwyCPw8MPw61/DgAHhtlSRPJPKmYEDCXfv4u49AczsWOB04Ah3Pwy4\nJWovBs4EioFBwF1mtqOO9VtgqLt3BDqa2aDMdkWkHvXrB2+8Ad/7XkgII0bAJ5/EHZVIxqRaJqp6\nYeKnwPXuvgXA3XeM7R8MTHL3Le6+GlgJ9DKz1kBLd99xZvEQMCStyEXqaOrUlzjxxGtIJEo58cRr\nmDr1pdR2LCyESy4JE+B98QV06gT33acJ8CQvFKawjQOzzGwb8Ht3vwfoCPQzs18Dm4Cr3H0esB/w\netK+a4A2wJZoeYe1UbtIVk2d+hIjRjzLqlXX7WxbtWosAKeckuIo5H33hbvvDnMcDR8Ov/99mACv\nZ8/6CFkkK1I5M+jj7l2Ak4BLzKwvIYns7e69gZHAY/UYo0jGlJXN+EoiAFi16jomTpxZ+4N17w6v\nvALDhsGQITB0KHzwQYYiFcmuGs8M3P296Pt6M3sC6En4K//xqH2umW03s28S/uJvl7R722jbtdFy\ncvva6t6vtLR053IikSCRSKTeG5EabN5c/a/8pk0FdTtgkyZw7rkhGYwfHybAu+aaUE4qTOXEW6T2\nysvLKS8vz+gxdznozMyaAwXu/i8zawHMAMYD7YH93H2cmR0MzHL3/aMLyI8QEkYbYBZwkLu7mc0B\nSoAKYCpQ5u7Tq7yfBp1JvTrxxGuYMeNX1bT/nOnTr03/DSorwwR469aF0tGxx6Z/TJEaZGPQWStg\ntpktAOYAU9x9BnAfcKCZLQYmAT8CcPdKQsmoEngGGJb06T4MuBdYAaysmghEsqGkZCAdOoz9SluH\nDmMYPvyEzLxBcTHMnBnOEs4/H848E955JzPHFqlHmo5CGp2pU19i4sSZbNpUQFHRNoYPPyH1i8e1\n8fnncOON8JvfwOWXw5VXQlFR5t9HGj1NYS3SELz1FlxxRZji4o474NRT445I8oySgUhD8uyz4XrC\nQQeFpNCxY9wRSZ7QRHUiDcmJJ4azg0QCjj4aRo+GjRvjjkoEUDIQya6mTWHkSFi0CNasCRPgTZqk\nCfAkdioTicTplVfg0kvhG98It6IecUTcEUkDpDKRSEPXpw/Mmwdnnw3HHx+mt/jnP+OOShohJQOR\nuBUUwMUXh2cxb90aSkf33APbtsUdmTQiKhOJ5Jr588MZwqZNcOed0Lt33BFJjlOZSCQfdekCs2fD\nZZfBd78L550XprcQqUdKBiK5yAx++MNQOtp3XzjsMLjtNtiyJe7IJE+pTCTSECxfHp6u9s474a6j\n446LOyLJIRqBLNKYuMP//V+Y56hbN7j1Vvj2t+OOSnKArhmINCZm4bkJlZVhPELXrvDLX4ZHcIqk\nSclApKHZfXf4xS/gzTfDSOZDDw1nDDqrljSoTCTS0M2aFSbA239/mDABDjkk7ogky1QmEpEwcnnh\nQhg4MIxovvpq+Ne/4o5KGhglA5F8sNtu4ZkJS5bABx9Ap07w8MMqHUnKVCYSyUevvRZGMRcVhVHM\nRx0Vd0RSj1QmEpHqHX00zJkDP/pReI7CsGHw0UdxRyU5TMlAJF8VFMBPfhJGMTdpAsXF8LvfaQI8\nqZbKRCKNxcKFoXS0cWMYxdynT9wRSYZoBLKI1I57eLLa1VfDgAFw443QunXcUUmadM1ARGrHDH7w\ngzDX0X77weGHwy23wJdfxh2ZxEzJQKQx2mMPuOEGePVVeP75ML3FjBlxRyUxUplIpLFzhylTwvMT\njjgiTJXdvn3cUUktqEwkIukzg9NOg6VLoXt36NEDSks1AV4jU2MyMLPVZrbIzOabWUWVdVea2XYz\n2yepbbSZrTCz5WY2MKm9m5ktjtZNyGw3RCRtRUUwdmyYAK+yMjyL+fHHNYq5kaixTGRmbwHd3P3j\nKu3tgHuAQ3asN7Ni4BGgB9AGmAV0dHePEsml7l5hZtOAMnefXuWYKhOJ5Irnnw8T4LVuDWVlITlI\nTspmmai6N7kNuLpK22BgkrtvcffVwEqgl5m1Blq6+44zi4eAIXWIV0SyZcAAmD8fTj0V+vWDq66C\nDRvijkrqSSrJwIFZZjbPzC4EMLPBwBp3X1Rl2/2ANUmv1xDOEKq2r43aRSSX7bZbeNzm0qXwz3+G\nCfAeegi2b487MsmwwhS26ePu75nZvsBMM1sOjAYGJm2T1ulJstLS0p3LiUSCRCKRqUOLSF3913/B\nH/4Q5jsaPjxMa3HnneFpa5J15eXllJeXZ/SYtbq11MzGAduA4cDnUXNbwl/6vYDzAdz9hmj76cA4\n4G3gBXfvHLWfDfR394urHF/XDERy3fbtcP/94WLz4MFw3XXwzW/GHVWjVu/XDMysuZm1jJZbEM4G\nKty9lbu3d/f2hPJPV3d/H3gKOMvMmppZe6BjtP06YIOZ9TIzA84BnkwncBGJSZMmMHRoGMVcVBQm\nwPvNb2Dr1rgjkzTUdM2gFTDbzBYAc4Ap7l51mOLOP+XdvRJ4DKgEngGGJf2pPwy4F1gBrKx6J5GI\nNDB77RUes/ncczB5chijMHt23FFJHWkEsoikzx0eewxGjoS+feGmm6CN7hHJFo1AFpHcYAZnnhme\nnXDAAXDkkWFG1M2b445MUqRkICKZ06JFuKD8+uvw8sthVtTpqgg3BCoTiUj9mTYtjFMoLobbb4cD\nD4w7orykMpGI5LaTT4YlS8IzmXv2hJ//HD7/vOb9JOuUDESkfjVrBqNGwYIFsHJlmOPoz3/WBHg5\nRmUiEcmuF18Mo5j33TdMgHfooXFH1OCpTCQiDU///mGa7CFDIJGAyy+HTz+NO6pGT8lARLKvsDCc\nHVRWwsaNYQK8++/XBHgxUplIROI3d25IDgATJ4anrUnKVCYSkfzQowe8+ipcfDGcfjr8+Mewfn3c\nUTUqSgYikhuaNIHzzgsT4H3jG2FswsSJmgAvS1QmEpHctHRpeOzm+vUhKfTvH3dEOSsTZSIlAxHJ\nXe7wl7/AlVeGgWu33AJt28YdVc7RNQMRyW9m8L3vhQnwDj4YjjoKrr9eE+DVAyUDEcl9zZvDL38J\nFRXh0ZuHHQZTp8YdVV5RmUhEGp7p08MEeB07wh13wEEHxR1RrFQmEpHGadAgWLwY+vWD3r1hzBj4\n7LO4o2rQlAxEpGFq2hSuvhoWLYJ//CNMgPfoo5oAr45UJhKR/DB7dhjFvPfeYQK8ww+PO6KsUZlI\nRGSHvn3hjTfg+9+H444LYxQ++STuqBoMJQMRyR8FBTBsWJgA78svwwR4996rCfBSoDKRiOSvN98M\npaMtW8Io5l694o6oXqhMJCKyK127wssvh4Tw3/8NF1wA778fd1Q5SclARPKbGZxzTpgAb599woC1\nO+4IZwuyk8pEItK4LFsWBqy9+26462jAgLgjSltWykRmttrMFpnZfDOriNpuNrNlZrbQzB43sz2T\nth9tZivMbLmZDUxq72Zmi6N1E9IJWkSkzjp3hmefhWuvhaFD4YwzwjiFRq7GMwMzewvo5u4fJ7Wd\nADzn7tvN7AYAdx9lZsXAI0APoA0wC+jo7h4lkkvdvcLMpgFl7j69ynvpzEBEsueLL+Cmm2DiRKae\ndAZl6/Zk85ZmNGu2lZKSgZxySr+4I0xJJs4MClN9r+QX7j4z6eUc4LvR8mBgkrtvAVab2Uqgl5m9\nDbR094pou4eAIcBXkoGISFbtvjuMG8fUdsWMKHmGVZ/dtXPVqlVjARpMQkhXKheQHZhlZvPM7MJq\n1l8ATIuW9wPWJK1bQzhDqNq+NmoXEYld2aMLWfXZfV9pW7XqOiZOnPk1e+SfVM4M+rj7e2a2LzDT\nzJa7+2wAMxsLfOnuj2QqoNLS0p3LiUSCRCKRqUOLiFRr8+bqPwo3bSrIciSpKS8vp7y8PKPHrDEZ\nuPt70ff1ZvYE0BOYbWbnAScDxyVtvhZol/S6LeGMYG20nNy+trr3S04GIiLZ0KxZ9c9ZLiraluVI\nUlP1D+Xx48enfcxdlonMrLmZtYyWWwADgcVmNggYCQx2901JuzwFnGVmTc2sPdARqHD3dcAGM+tl\nZgacAzyZdvQiIhlQUjKQDh3GfqWtQ4cxDB9+QkwRZV9NZwatgCfC5zeFwB/dfYaZrQCaEspGAK+5\n+zB3rzSzx4BKYCswLOn2oGHAA8DuwLSqdxKJiMRlx0XiiRN/zqZNBRQVbWP48EGN5uIxaNCZiEiD\np7mJREQkI5QMREREyUBERJQMREQEJQMREUHJQEREUDIQERGUDEREBCUDERFByUBERFAyEBERlAxE\nRAQlAxERQclARERQMhAREZQMREQEJQMREUHJQEREUDIQERGUDEREBCUDERFByUBERFAyEBERlAxE\nRAQlAxERIYVkYGarzWyRmc03s4qobR8zm2lmfzOzGWa2V9L2o81shZktN7OBSe3dzGxxtG5C/XRH\nRETqIpUzAwcS7t7F3XtGbaOAme5+MPBc9BozKwbOBIqBQcBdZmbRPr8Fhrp7R6CjmQ3KYD8ahPLy\n8rhDqFfqX8OVz32D/O9fJqRaJrIqr08HHoyWHwSGRMuDgUnuvsXdVwMrgV5m1hpo6e4V0XYPJe3T\naOT7L6T613Dlc98g//uXCameGcwys3lmdmHU1srd34+W3wdaRcv7AWuS9l0DtKmmfW3ULiIiOaAw\nhW36uPt7ZrYvMNPMlievdHc3M6+f8EREJBvMPfXPcTMbB2wELiRcR1gXlYBecPdOZjYKwN1viLaf\nDowD3o626Ry1nw30d/eLqxxfSUVEpA7cvWo5v1Z2eWZgZs2BAnf/l5m1AAYC44GngHOBG6PvT0a7\nPAU8Yma3EcpAHYGK6Oxhg5n1AiqAc4CyTHdGRETqpqYyUSvgieiGoELgj+4+w8zmAY+Z2VBgNXAG\ngLtXmtljQCWwFRjm/z71GAY8AOwOTHP36Rnui4iI1FGtykQiIpKfsjYC2cwGRQPRVpjZz75mm7Jo\n/UIz61KbfeOWZv/uM7P3zWxx9iJOXV37ZmbtzOwFM1tqZkvMrCS7kacmjf4VmdkcM1tgZpVmdn12\nI09NOr+b0bqCaNDp09mJuHbS/L/3H4Nqc0mafdvLzCab2bLo97P3Lt/M3ev9CyggjDk4ANgNWAB0\nrrLNyYTyEUAv4PVU9437K53+Ra/7Al2AxXH3JcM/u28BR0XLewB/zcOfXfPoeyHwOnBM3H3KZP+i\ntiuAPwJPxd2fevj5vQXsE3c/6qlvDwIXJP1+7rmr98vWmUFPYKW7r3b3LcCfCAPUku0cyObuc4C9\nzOxbKe4bt3T6h7vPBv6ZxXhro659a+Xu69x9QdS+EVhGGHOSS+rcv+j159E2TQn/eT/OStSpS6t/\nZtaW8IFzL/85+DQXpNW/SC72C9Lom5ntCfR19/uidVvd/dNdvVm2kkEb4J2k1zsGo6WyzX4p7Bu3\ndPqX6+rat7bJG5jZAYSznzkZjzA9afUvKqEsIAy+fMHdK+sx1rpI93fzdmAksL2+AkxTuv2rblBt\nrkjnd7M9sN7M7jezN83snuju0K+VrWSQ6lXqXM3QNalr/xrC1fu0+2ZmewCTgRHRGUIuSat/7r7N\n3Y8i/AfsZ2aJDMaWCXXtn5nZqcAH7j6/mvW5It3PlmPcvQtwEnCJmfXNTFgZkc7vZiHQFbjL3bsC\nnxHNIfd1spUM1gLtkl6346vTU1S3Tdtom1T2jVtd+7e2nuPKhLT6Zma7AX8BHnb3J8k9GfnZRafg\nU4Hu9RBjOtLp33eA083sLWASMMDMHqrHWOsirZ+fu78bfV8PPEEozeSKdPq2Bljj7nOj9smE5PD1\nsnQhpBBYRbgQ0pSaL4T05t8XIWvcN+6vdPqXtP4AcvMCcjo/OyNMSnh73P2op/59E9grWt4deAk4\nLu4+Zfp3M2rvDzwdd38y/PNrTphAE6AF8AowMO4+ZepnF/0+HhwtlwI37vL9stixkwh3k6wERkdt\nFwEXJW2QtLXXAAAAj0lEQVRzZ7R+IdB1V/vm2lea/ZsEvAtsJtT/zo+7P5noG3AModa8AJgffQ2K\nuz8Z7N/hwJtR/xYBI+PuS6Z/N5PW9ycH7yZK8+d3YPSzWwAsycXPljQ/V44E5kbtj1PD3UQadCYi\nInrspYiIKBmIiAhKBiIigpKBiIigZCAiIigZiIgISgYiIoKSgYiIAP8PBAcNAieTgSEAAAAASUVO\nRK5CYII=\n",
"text": [
"<matplotlib.figure.Figure at 0x59f38d0>"
]
}
],
"prompt_number": 16
},
{
"cell_type": "code",
"collapsed": false,
"input": [],
"language": "python",
"metadata": {},
"outputs": []
}
],
"metadata": {}
}
]
}
|