1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
|
{
"metadata": {
"name": "",
"signature": "sha256:7cd73e591684a9b750091e874ca08a72b326eee20de62e33004e879fa5300f72"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Chapter 08: Phase Diagrams and the Relative Stability of Solids, Liquids, and Gases"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example Problem 8.2, Page Number 186 "
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from math import log, exp\n",
"\n",
"#Varialble Declaration\n",
"Tn = 353.24 #normal boiling point of Benzene, K\n",
"pi = 1.19e4 #Vapor pressure of benzene at 20\u00b0C, Pa\n",
"DHf = 9.95 #Latent heat of fusion, kJ/mol\n",
"pv443 = 137. #Vapor pressure of benzene at -44.3\u00b0C, Pa\n",
"R = 8.314 #Ideal Gas Constant, J/(mol.K)\n",
"Pf = 101325 #Std. atmospheric pressure, Pa\n",
"T20 = 293.15 #Temperature in K\n",
"P0 = 1.\n",
"Pl = 10000.\n",
"Ts = -44.3 #Temperature of solid benzene, \u00b0C\n",
"\n",
"#Calculations\n",
"Ts = Ts + 273.15\n",
"#Part a\n",
"\n",
"DHv = -(R*log(Pf/pi))/(1./Tn-1./T20)\n",
"#Part b\n",
"\n",
"DSv = DHv/Tn\n",
"DHf = DHf*1e3\n",
"#Part c\n",
"\n",
"Ttp = -DHf/(R*(log(Pl/P0)-log(pv443/P0)-(DHv+DHf)/(R*Ts)+DHv/(R*T20)))\n",
"Ptp = exp(-DHv/R*(1./Ttp-1./Tn))*101325\n",
"\n",
"#Results\n",
"print 'Latent heat of vaporization of benzene at 20\u00b0C %4.1f kJ/mol'%(DHv/1000)\n",
"print 'Entropy Change of vaporization of benzene at 20\u00b0C %3.1f J/mol'%DSv\n",
"print 'Triple point temperature = %4.1f K for benzene'%Ttp\n",
"print 'Triple point pressure = %4.2e Pa for benzene'%Ptp"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Latent heat of vaporization of benzene at 20\u00b0C 30.7 kJ/mol\n",
"Entropy Change of vaporization of benzene at 20\u00b0C 86.9 J/mol\n",
"Triple point temperature = 267.3 K for benzene\n",
"Triple point pressure = 3.53e+03 Pa for benzene\n"
]
}
],
"prompt_number": 39
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example Problem 8.3, Page Number 191"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from math import cos, pi\n",
"\n",
"#Varialble Declaration\n",
"gama = 71.99e-3 #Surface tension of water, N/m\n",
"r = 1.2e-4 #Radius of hemisphere, m\n",
"theta = 0.0 #Contact angle, rad\n",
"\n",
"#Calculations\n",
"DP = 2*gama*cos(theta)/r\n",
"F = DP*pi*r**2\n",
"\n",
"#Results\n",
"print 'Force exerted by one leg %5.3e N'%F"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Force exerted by one leg 5.428e-05 N\n"
]
}
],
"prompt_number": 40
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example Problem 8.4, Page Number 191"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from math import cos\n",
"\n",
"#Varialble Declaration\n",
"gama = 71.99e-3 #Surface tension of water, N/m\n",
"r = 2e-5 #Radius of xylem, m\n",
"theta = 0.0 #Contact angle, rad\n",
"rho = 997.0 #Density of water, kg/m3\n",
"g = 9.81 #gravitational acceleration, m/s2\n",
"H = 100 #Height at top of redwood tree, m\n",
"\n",
"#Calculations\n",
"h = 2*gama/(rho*g*r*cos(theta))\n",
"\n",
"#Results\n",
"print 'Height to which water can rise by capillary action is %3.2f m'%h\n",
"print 'This is very less than %4.1f n, hence water can not reach top of tree'%H"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Height to which water can rise by capillary action is 0.74 m\n",
"This is very less than 100.0 n, hence water can not reach top of tree\n"
]
}
],
"prompt_number": 41
}
],
"metadata": {}
}
]
}
|