1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
|
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Chapter 10 - Refrigeration and Air Conditioning"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 1 - pg 10.42"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Power rating of the compressor-motor unit if the cop of the plant is 2.1 is (kW) = 40.4\n"
]
}
],
"source": [
"#pg 10.42\n",
"#calculate the Power rating of compressor-motor\n",
"#Input data\n",
"T1=273.;#The temperature of ice in K\n",
"T2=298.;#Temperature of water at room in K\n",
"COP=2.1;#Cop of the plant\n",
"ne=90.;#Overall electrochemical efficiency in percentage\n",
"w=15.;#Weight of ice produced per day in tonnes\n",
"cw=4.187;#Specific heat of water in kJ/kg degrees celcius\n",
"Li=335.;#Latent heat of ice in kJ/kg\n",
"mi=1.;#Mass of ice produced at 0 degrees celcius\n",
"\n",
"#Calculations\n",
"m=(w*1000.)/(24*60);#Mass of ice produced in kg/min\n",
"h=(mi*cw*(T2-T1))+Li;#Heat extracted from 1kg of water at 25 degrees celcius to produce 1kg of ice at 0 degrees celcius in kJ/kg\n",
"Q=m*h;#Total heat extracted in kJ\n",
"W=Q/COP;#Work done by the compressor in kJ/kg\n",
"P=W/(60.*(ne/100));#Power of compressor in kW\n",
"\n",
"#Output\n",
"print 'Power rating of the compressor-motor unit if the cop of the plant is 2.1 is (kW) = ',round(P,1)\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 2 - pg 10.43"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The refrigeration capacity of the plant is (TR) = 0.541\n"
]
}
],
"source": [
"#pg 10.43\n",
"#calculate the refrigeration capacity\n",
"#Input data\n",
"m=400.;#Mass of fruits supplied to a cold storage in kg\n",
"T1=293.;#Temperature at which fruits are stored in K\n",
"T2=268.;#Temperature of cold storage in K\n",
"t=8.;#The time untill which fruits are cooled in hours\n",
"hfg=105.;#Latent heat of freezing in kJ/kg\n",
"Cf=1.25;#Specific heat of fruit\n",
"TR=210.;#One tonne refrigeration in kJ/min\n",
"\n",
"#Calculations\n",
"Q1=m*Cf*(T1-T2);#Sensible heat in kJ\n",
"Q2=m*hfg;#Latent heat of freezing in kJ\n",
"Q=Q1+Q2;#Heat removed from fruits in 8 hrs\n",
"Th=(Q1+Q2)/(t*60);#Total heat removed in one minute in kJ/kg\n",
"Rc=Th/TR;#Refrigerating capacity of the plant in TR\n",
"\n",
"#Output\n",
"print 'The refrigeration capacity of the plant is (TR) = ',round(Rc,3)\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 3 - pg 10.44"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"(a)COP of the machine when it is operated as a refrigerating machine is 5.0\n",
"(b)COP when it is operated as heat pump is 6.0\n",
"(c)COP or efficiency of the Heat engine is (percent) = 16.67\n"
]
}
],
"source": [
"#pg 10.44\n",
"#calculate the COP of machine in all cases\n",
"#Input data\n",
"T1=300.;#The maximum temperature at which carnot cycle operates in K\n",
"T2=250.;#The minimum temperature at which carnot cycle operates in K\n",
"\n",
"#Calculations\n",
"COPr=T2/(T1-T2);#COP of the refrigerating machine\n",
"COPh=T1/(T1-T2)#COP of heat pump\n",
"n=((T1-T2)/T1)*100;#COP or efficiency of the heat engine in percentage\n",
"\n",
"#Output data\n",
"print '(a)COP of the machine when it is operated as a refrigerating machine is ',COPr\n",
"print '(b)COP when it is operated as heat pump is ',COPh\n",
"print '(c)COP or efficiency of the Heat engine is (percent) = ',round(n,2)\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 4 - pg 10.45"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"(a)Capacity of the plant is (TR) = 48.31\n",
"(b)Time taken to achieve cooling is (hours) = 10.67\n"
]
}
],
"source": [
"#pg 10.45\n",
"#calculate the capacity of the plant and time taken\n",
"#Input data\n",
"m=20000.;#The storage capacity of fish in a storage plant in kg\n",
"T1=298.;#Supplied temperature of fish in K\n",
"T2=263.;#Temperature of cold storage in which fish are stored in K\n",
"T3=268.;#Freezing point of fish in K\n",
"Caf=2.95;#Specific heat of fish above freezing point in kJ/kg K\n",
"Cbf=1.25;#Specific heat of below freezing point in kJ/kg K\n",
"W=75.;#Work required by the plant in kW\n",
"TR=210.;#One tonne refrigeration in kJ/min\n",
"hfg=230.;#Latent heat of fish in kJ/kg\n",
"\n",
"#Calculations\n",
"COPr=T2/(T1-T2);#COP of reversed carnot cycle\n",
"COPa=0.3*COPr;#Given that actual COP is 0.3 times of reversed COP\n",
"Hr=(COPa*W)*60;#Heat removed by the plant in kJ/min\n",
"C=Hr/TR;#Capacity of the plant in TR\n",
"Q1=m*Caf*(T1-T3);#Heat removed from the fish above freezing point in kJ\n",
"Q2=m*Cbf*(T3-T2);#Heat removed from fish below freezing point in kJ\n",
"Q3=m*hfg;#Total latent heat of the fish in kJ\n",
"Q=Q1+Q2+Q3;#Total heat removed by the plant in kJ\n",
"T=(Q/Hr)/60;#Time taken to achieve cooling in hrs \n",
"\n",
"#Output data\n",
"print '(a)Capacity of the plant is (TR) = ',round(C,2)\n",
"print '(b)Time taken to achieve cooling is (hours) = ',round(T,2)\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 5 - pg 10.46"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Theoretical COP for a CO2 machine working at given temperatures = 4.39\n",
"The answer in textbook is wrong. Please check using a calculator\n"
]
}
],
"source": [
"#pg 10.46\n",
"#calculate the Theoretical COP\n",
"#Input data\n",
"T2=298.;#Maximum temperature at which CO2 machine works in K\n",
"T1=268.;#Minimum temperature at which CO2 machine works in K\n",
"sf1=-0.042;#Liquid entropy at 268 K in kJ/kg K\n",
"hfg1=245.3;#Latent heat of gas at 268 K in kJ/kg\n",
"sf2=0.251;#Liquid entropy in kJ/kg K\n",
"hfg2=121.4;#Latent heat of gas at 298 K in kJ/kg\n",
"hf1=-7.54;#Liquid enthalpy at 268 K in kJ/kg\n",
"hf2=81.3;#Liquid enthalpy at 298 K in kJ/kg\n",
"hf3=81.3;#Enthalpy at point 3 in graph in kJ/kg\n",
"\n",
"#Calculations\n",
"s2=sf2+(hfg2/T2);#Entropy at point 2 from the graph in kJ/kg K\n",
"x1=(s2-sf1)/(hfg1/T1);#Dryness fraction at point 1\n",
"h1=hf1+(x1*hfg1);#Enthalpy at point 1 in kJ/kg\n",
"h2=hf2+hfg2;#Enthalpy at point 2 in kJ/kg\n",
"COP=(h1-hf3)/(h2-h1);#Coefficient of performance for a CO2 machine working at given temperatures\n",
"\n",
"#Output data\n",
"print 'Theoretical COP for a CO2 machine working at given temperatures = ',round(COP,2)\n",
"print 'The answer in textbook is wrong. Please check using a calculator'"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 6 - pg 10.48"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The capacity of refrigerator is (TR) = 24.0\n"
]
}
],
"source": [
"#pg 10.48\n",
"#calculate the capacity of refrigerator\n",
"#Input data\n",
"T2=298.;#Maximum temperature at which ammonia refrigerating system works in K\n",
"T1=263.;#Minimum temperature at which ammonia refrigerating system works in K\n",
"mf=5.;#Fluid flow rate in kg/min\n",
"sf1=0.5443;#Liquid entropy at 298 K in kJ/kg K\n",
"sf2=1.1242;#Liquid entropy at 263 K in kJ/kg K\n",
"hfg1=1297.68;#Latent heat at 298 K in kJ/kg\n",
"hfg2=1166.94;#Latent heat at 263 K in kJ/kg\n",
"hf1=135.37;#Liquid enthalpy at point 1 in graph in kJ/kg\n",
"hf2=298.9;#Liquid enthalpy at point 2 in graph in kJ/kg\n",
"TR=210.;#One tonne refrigeration in TR\n",
"\n",
"#Calculations\n",
"s2=sf2+(hfg2/T2);#Entropy at point 2 in kJ/kg\n",
"x1=(s2-sf1)/(hfg1/T1);#Dryness fraction at point 1\n",
"h1=hf1+(x1*hfg1);#Enthalpy at point 1 in kJ/kg\n",
"h=h1-hf2;#Heat extracted of refrigerating effect produced per kg of refrigerant in kJ/kg\n",
"ht=mf*h;#Total heat extracted at a fluid flow rate of 5 kg/min in kJ/min\n",
"C=ht/TR;#Capacity of refrigerating in TR\n",
"\n",
"#Output\n",
"print 'The capacity of refrigerator is (TR) = ',round(C,0)\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 7 - pg 10.49"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The theoretical COP of a ammonia refrigerating machine working between given temperatures = 5.56\n"
]
}
],
"source": [
"#pg 10.49\n",
"#calculate the theoretical COP\n",
"#Input data\n",
"T1=263.;#Minimum temperature at which ammonia refrigerating machine works in K\n",
"T2=303.;#Maximum temperature at which ammonia refrigerating machine works in K\n",
"x1=0.6;#Dryness fraction of ammonia during suction stroke\n",
"sf1=0.5443;#Liquid entropy at 263 K in kJ/kg K\n",
"hfg1=1297.68;#Latent heat at 263 K in kJ/kg\n",
"sf2=1.2037;#Liquid entropy at 303 K in kJ/kg K\n",
"hfg2=1145.8;#Latent heat at 303 K in kJ/kg\n",
"hf1=135.37;#Liquid enthalpy at 263 K in kJ/kg\n",
"hf2=323.08;#Liquid enthalpy at 303 K in kJ/kg\n",
"\n",
"#Calculations\n",
"s1=sf1+((x1*hfg1)/T1);#Entropy at point 1 in kJ/kg K\n",
"x2=(s1-sf2)/(hfg2/T2);#Entropy at point 2 in kJ/kg K\n",
"h1=hf1+(x1*hfg1);#Enthalpy at point 1 in kJ/kg\n",
"h2=hf2+(x2*hfg2);#Enthalpy at point 2 in kJ/kg\n",
"COP=(h1-hf2)/(h2-h1);#Theoretical COP of ammonia refrigerating machine\n",
"\n",
"#Output\n",
"print 'The theoretical COP of a ammonia refrigerating machine working between given temperatures = ',round(COP,2)\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 8 - pg 10.51"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The amount of ice produced is (kg/kW hr) = 11.44\n"
]
}
],
"source": [
"#pg 10.51\n",
"#calculate the amount of ice\n",
"#Input data\n",
"T1=263.;#Minimum temperature at which Vapour compression refrigerator using methyl chloride operates in K\n",
"T2=318.;#Maximum temperature at which Vapour compression refrigerator using methyl chloride operates in K\n",
"sf1=0.183;#Entropy of the liquid in kJ/kg K\n",
"hfg1=460.7;#Enthalpy of the liquid in kJ/kg\n",
"sf2=0.485;#Entropy of the liquid in kJ/kg K\n",
"hfg2=483.6;#Enthalpy of the liquid in kJ/kg\n",
"x2=0.95;#Dryness fraction at point 2\n",
"hf3=133.0;#Enthalpy of the liquid in kJ/kg\n",
"W=3600.;#Work to be spent corresponding to 1kW/hour\n",
"Cw=4.187;#Specific heat of water in kJ/kg degrees celcius\n",
"mi=1;#Mass of ice produced at 0 degrees celcius\n",
"Li=335.;#Latent heat of ice in kJ/kg\n",
"hf1=45.4;#Enthalpy of liquid at 263 K in kJ/kg\n",
"hf2=133.;#Enthalpy of liquid at 318 K in kJ/kg\n",
"\n",
"#Calculations\n",
"s2=sf2+((x2*(hfg2-hf2))/T2);#Enthalpy at point 2 in kJ/kg\n",
"x1=(s2-sf1)/((hfg1-hf1)/T1);#Dryness fraction at point 1\n",
"h1=hf1+(x1*hfg1);#Enthalpy at point 1 in kJ/kg\n",
"h2=hf2+(x2*hfg2);#Enthalpy at point 2 in kJ/kg\n",
"COP=(h1-hf3)/(h2-h1);#Theoretical COP\n",
"COPa=0.6*COP;#Actual COP which is 60 percent of theoretical COP\n",
"H=W*COPa;#Heat extracted or refrigeration effect produced per kW hour in kJ\n",
"Hw=(mi*Cw*10)+Li;#Heat extracted from water at 10 degrees celcius for the formation of 1 kg of ice at 0 degrees celcius\n",
"I=H/Hw;#Amount of ice produced in kg/kW hr\n",
"\n",
"#Output\n",
"print 'The amount of ice produced is (kg/kW hr) = ',round(I,2)\n"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 2",
"language": "python",
"name": "python2"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 2
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython2",
"version": "2.7.9"
}
},
"nbformat": 4,
"nbformat_minor": 0
}
|