1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
|
{
"metadata": {
"name": "",
"signature": "sha256:2b6bc93922bd7b11c4334e4b77fa7e0b05d2efd84a162a89a3c4553815d1a094"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Chapter 5 :\n",
"Air Compressors"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 5.1 Page no : 250"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"# Variables\n",
"D = 0.2;\t\t\t#Cylinder diameter in m\n",
"L = 0.3;\t\t\t#Cylinder Stroke in m\n",
"P1 = 1.;\t\t\t#Pressure at entry in bar\n",
"T1 = 300.;\t\t\t#Temperature at entry in K\n",
"P2 = 8.;\t\t\t#Pressure at exit in bar\n",
"n = 1.25;\t\t\t#Adiabatic gas constant\n",
"N = 100.;\t\t\t#Speed in rpm\n",
"R = 287.;\t\t\t#Universal gas constant in J/kg-K\n",
"\n",
"# Calculations\n",
"x = (n-1)/n;\t\t\t#Ratio\n",
"V1 = (3.147*L*(D**2))/4;\t\t\t#Volume of cylinder in m**3/cycle\n",
"W = (P1*(10**5)*V1*(((P2/P1)**x)-1))/x;\t\t\t#Work done in J/cycle\n",
"Pc = (W*100)/(60*1000);\t\t\t#Indicated power of compressor in kW\n",
"m = (P1*(10**5)*V1)/(R*T1);\t\t\t#Mass of air delivered in kg/cycle\n",
"md = m*N;\t\t\t#Mass delivered per minute in kg\n",
"T2 = T1*((P2/P1)**x);\t\t\t#Temperature of air delivered in K\n",
"\n",
"# Results\n",
"print 'Indicated power of compressor is %3.2f kW \\\n",
"\\nMass of air delivered by compressor per minute is %3.2f kg \\\n",
"\\nTemperature of air delivered is %3.1fK'%(Pc,md,T2)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Indicated power of compressor is 4.06 kW \n",
"Mass of air delivered by compressor per minute is 1.10 kg \n",
"Temperature of air delivered is 454.7K\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 5.2 Page no : 251"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"import math \n",
"\n",
"# Variables\n",
"IP = 37.;\t\t\t#Indicated power in kW\n",
"P1 = 0.98;\t\t\t#Pressure at entry in bar\n",
"T1 = 288.;\t\t\t#Temperature at entry in K\n",
"P2 = 5.8;\t\t\t#Pressure at exit in bar\n",
"n = 1.2;\t\t\t#Adiabatic gas constant\n",
"N = 100.;\t\t\t#Speed in rpm\n",
"Ps = 151.5;\t\t\t#Piston speed in m/min\n",
"a = 2.;\t\t\t#For double acting compressor\n",
"\n",
"# Calculations\n",
"L = Ps/(2*N);\t\t\t#Stroke length in m\n",
"x = (n-1)/n;\t\t\t#Ratio\n",
"r = (3.147*L)/4;\t\t\t#Ratio of volume to bore\n",
"D = math.sqrt((IP*1000*60*x)/(N*a*r*P1*(10**5)*(((P2/P1)**x)-1)));\t\t\t#Cylinder diameter in m\n",
"\n",
"# Results\n",
"print 'Stroke length of cylinder is %3.4f m \\\n",
"\\nCylinder diameter is %3.4f m'%(L,D)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Stroke length of cylinder is 0.7575 m \n",
"Cylinder diameter is 0.3030 m\n"
]
}
],
"prompt_number": 2
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 5.3 Page no : 251"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math \n",
"\n",
"# Variables\n",
"IP = 11.;\t\t\t#Indicated power in kW\n",
"P1 = 1.;\t\t\t#Pressure at entry in bar\n",
"P2 = 7.;\t\t\t#Pressure at exit in bar\n",
"n = 1.2;\t\t\t#Adiabatic gas consmath.tant\n",
"Ps = 150.;\t\t\t#Piston speed in m/s\n",
"a = 2.; \t\t\t#For double acting compressor\n",
"r = 1.5;\t\t\t#Storke to bore ratio\n",
"\n",
"# Calculations\n",
"x = (n-1)/n;\t\t\t#Ratio\n",
"y = 3.147/(4*(r**2));\t\t\t#Ratio of volume to the cube of stroke\n",
"z = (P1*(10**2)*y*(((P2/P1)**x)-1))/x;\t\t\t#Ratio of workdone to the cube of stroke\n",
"L = (math.sqrt(IP/(z*Ps)))*1000;\t\t\t#Stroke in mm\n",
"D = (L/r);\t\t\t#Bore in mm\n",
"\n",
"# Results\n",
"print 'Stroke length of cylinder is %3.0f mm \\\n",
"\\nBore diameter of cylinder is %3.0f mm'%(L,D)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Stroke length of cylinder is 30 mm \n",
"Bore diameter of cylinder is 20 mm\n"
]
}
],
"prompt_number": 3
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 5.4 Page no : 252"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"# Variables\n",
"x = 0.05 # ratio\n",
"P1 = 1.;\t\t\t#Pressure at point 1 in bar\n",
"T1 = 310.;\t\t\t#Temperature at point 1 in K\n",
"n = 1.2;\t\t\t#Adiabatic gas constant\n",
"P2 = 7.;\t\t\t#Pressure at point 2 in bar\n",
"Pa = 1.01325;\t\t\t#Atmospheric pressure in bar\n",
"Ta = 288.;\t\t\t#Atmospheric temperature in K\n",
"\n",
"# Calculations\n",
"V1 = 1+x;\t\t\t#Ratio of volume of air sucked to stroke volume\n",
"V4 = ((P2/P1)**(1/n))/20;\t\t\t#Ratio of volume delivered to stroke volume\n",
"DV = V1-V4;\t\t\t#Difference in volumes\n",
"nv1 = DV*100;\t\t\t#Volumetric efficiency\n",
"V = (P1*DV*Ta)/(T1*Pa);\t\t\t#Ratio of volumes referred to atmospheric conditions\n",
"nv2 = V*100;\t\t\t#Volumetric efficiency referred to atmospheric conditions\n",
"W = (n*0.287*T1*((P2/P1)**((n-1)/n)-1))/(n-1);\t\t\t#Work required in kJ/kg\n",
"\n",
"# Results\n",
"print 'Volumetric efficiency is %3.1f percent \\\n",
"\\nVolumetric efficiency referred to atmospheric conditions is %3.1f percent \\\n",
"\\nWork required is %3.1f kJ/kg'%(nv1,nv2,W)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Volumetric efficiency is 79.7 percent \n",
"Volumetric efficiency referred to atmospheric conditions is 73.1 percent \n",
"Work required is 204.5 kJ/kg\n"
]
}
],
"prompt_number": 2
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 5.5 Page no : 253"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"# Variables\n",
"D = 0.2;\t\t\t#Bore in m\n",
"L = 0.3;\t\t\t#Stroke in m\n",
"P1 = 1.;\t\t\t#Pressure at point 1 in bar\n",
"P2 = 7.;\t\t\t#Pressure at point 2 in bar\n",
"n = 1.25;\t\t\t#Adiabatic gas constant\n",
"lc = 0.015\n",
"\n",
"# Calculations\n",
"V3 = (3.147*(D**2)*lc)/4.;\t\t\t#Clearance volume in m**3\n",
"Vs = (3.147*(D**2)*L)/4.;\t\t\t#Stoke volume in m**3\n",
"C = V3/Vs;\t\t\t#Clearance ratio\n",
"nv = (1+C-(C*((P2/P1)**(1/n))))*100;\t\t\t#Volumetric efficiency\n",
"DV = (nv*Vs)/100.;\t\t\t#Volume of air taken in (m**3)/stroke\n",
"\n",
"# Results\n",
"print 'Theoretical volume of air taken in per stroke is %.2e m**3/stroke'%(DV)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Theoretical volume of air taken in per stroke is 7.67e-03 m**3/stroke\n"
]
}
],
"prompt_number": 4
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 5.6 Page no : 254"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"import math \n",
"\n",
"# Variables\n",
"D = 0.2;\t\t\t#Bore in m\n",
"L = 0.3;\t\t\t#Stroke in m\n",
"P1 = 1.;\t\t\t#Pressure at point 1 in bar\n",
"r = 0.05 # ratio\n",
"T1 = 293.;\t\t\t#Temperature at point 1 in K\n",
"P2 = 5.5;\t\t\t#Pressure at point 2 in bar\n",
"n = 1.3;\t\t\t#Adiabatic gas constant\n",
"N = 500.;\t\t\t#Speed of compressor in rpm\n",
"\n",
"# Calculations\n",
"x = (n-1)/n;\t\t\t#Ratio\n",
"Vs = (3.147*L*(D**2))/4;\t\t\t#Stroke volume in m**3\n",
"Vc = r*Vs;\t\t\t#Clearance volume in m**3\n",
"V1 = Vc+Vs;\t\t\t#Volume at point 1 in m**3\n",
"V4 = Vc*((P2/P1)**(1/n));\t\t\t#Volume at point 4 in m**3\n",
"EVs = V1-V4;\t\t\t#Effective swept volume in m**3\n",
"W = (P1*(10**5)*EVs*(((P2/P1)**x)-1))/x;\t\t\t#Work done in J/cycle\n",
"MEP = (W/Vs)/(10**5);\t\t\t#Mean effective pressure in bar\n",
"P = (W*N)/(60*1000);\t\t\t#Power required in kW\n",
"\n",
"# Results\n",
"print 'Mean effective pressure is %3.2f bar \\\n",
"\\nPower required is %3.2f kW'%(MEP,P)\n",
"\n",
"# rounding off error"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Mean effective pressure is 1.81 bar \n",
"Power required is 14.21 kW\n"
]
}
],
"prompt_number": 5
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 5.7 Page no : 255"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math \n",
"\n",
"# Variables\n",
"D = 0.2;\t\t\t#Bore in m\n",
"L = 0.3;\t\t\t#Stroke in m\n",
"P1 = 97.;\t\t\t#Pressure at entry in kN/(m**2)\n",
"P4 = P1;\t\t\t#Pressure at point 4 in kN/(m**2)\n",
"T1 = 293.;\t\t\t#Temperature at point 1 in K\n",
"P2 = 550.;\t\t\t#Compression Pressure in kN/(m**2)\n",
"P3 = P2;\t\t\t#Pressure at point 3 in kN/(m**2)\n",
"n = 1.3;\t\t\t#Adiabatic gas constant\n",
"N = 500.;\t\t\t#Speed of compressor in rpm\n",
"Pa = 101.325;\t\t\t#Air pressure in kN/(m**2)\n",
"Ta = 288.;\t\t\t#Air temperature in K\n",
"\n",
"# Calculations\n",
"x = (n-1)/n;\t\t\t#Ratio\n",
"DV = (3.147*L*(D**2))/4;\t\t\t#Difference in volumes in m**3\n",
"V3 = r*DV;\t\t\t#Clearance volume in m**3\n",
"V1 = V3+DV;\t\t\t#Volume at point 1 in m**3\n",
"V4 = V3*((P3/P4)**(1/n));\t\t\t#Volume at point 4 in m**3\n",
"Vs = V1-V4;\t\t\t#Effective swept volume in m**3\n",
"EVs = Vs*N;\t\t\t#Effective swept volume per min\n",
"Va = (P1*EVs*Ta)/(Pa*T1);\t\t\t#Free air delivered in (m**3)/min\n",
"nV = ((V1-V4)/(V1-V3))*100;\t\t\t#Volumetric effciency\n",
"T2 = T1*((P2/P1)**x);\t\t\t#Air delivery temperature in K\n",
"t2 = T2-273;\t\t\t#Air delivery temperature in oC\n",
"W = (n*P1*(V1-V4)*(((P2/P1)**x)-1))*N/((n-1)*60);\t\t\t#Cycle power in kW\n",
"Wiso = P1*V1*(math.log(P2/P1));\t\t\t#Isothermal workdone\n",
"niso = (Wiso/(4.33*0.493))*100;\t\t\t#Isothermal efficiency\n",
"\n",
"# Results\n",
"print 'Free air delivered is %3.3f m**3/min \\\n",
"\\nVolumetric efficiency is %3.0f percent \\\n",
"\\nAir delivery temperature is %3.1f oC \\\n",
"\\nCycle power is %3.0f kW \\\n",
"\\nIsothermal efficiency is %3.1f percent'%(Va,nV,t2,W,round(niso,-1))\n",
"\n",
"# rounding off error"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Free air delivered is 3.820 m**3/min \n",
"Volumetric efficiency is 86 percent \n",
"Air delivery temperature is 164.3 oC \n",
"Cycle power is 14 kW \n",
"Isothermal efficiency is 80.0 percent\n"
]
}
],
"prompt_number": 12
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 5.8 Page no : 257"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"import math \n",
"\n",
"# Variables\n",
"Ve = 30.;\t\t\t#Volume of air entering compressor per hour in m**3\n",
"P1 = 1.;\t\t\t#Presure of air entering compressor in bar\n",
"N = 450.;\t\t\t#Speed in rpm\n",
"P2 = 6.5;\t\t\t#Pressure at point 2 in bar\n",
"nm = 0.8;\t\t\t#Mechanical efficiency\n",
"nv = 0.75;\t\t\t#Volumetric efficiency\n",
"niso = 0.76;\t\t\t#Isothermal efficiency\n",
"\n",
"# Calculations\n",
"Vs = Ve/(nv*3600);\t\t\t#Swept volume per sec in (m**3)/s\n",
"V = (Vs*60)/N;\t\t\t#Swept volume per cycle in m**3\n",
"V1 = (Ve*60)/(3600*N);\t\t\t#Volume at point 1 in m**3\n",
"Wiso = P1*100*V1*math.log(P2/P1);\t\t\t#Isothermal workdone per cycle\n",
"Wact = Wiso/niso;\t\t\t#Actual workdone per cycle on air\n",
"MEP = (Wact/V)/100;\t\t\t#Mean effective pressure in bar\n",
"IP = (Wact*N)/60;\t\t\t#Indicated power in kW\n",
"BP = IP/nm;\t\t\t#Brake power in kW\n",
"\n",
"# Results\n",
"print 'Mean effective pressure is %3.3f bar \\\n",
"\\nBrake power is %3.2f kW'%(MEP,BP)\n",
"\n",
"# rounding off error"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Mean effective pressure is 1.847 bar \n",
"Brake power is 2.57 kW\n"
]
}
],
"prompt_number": 13
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 5.9 Page no : 258"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"import math \n",
"\n",
"# Variables\n",
"Va = 15.;\t\t\t#Volume of air in (m**3)/min\n",
"Pa = 1.01325;\t\t\t#Pressure of air in bar\n",
"Ta = 302.;\t\t\t#Air temperature in K\n",
"P1 = 0.985;\t\t\t#Pressure at point 1 in bar\n",
"r = 0.04 # ratio\n",
"T1 = 313.;\t\t\t#Temperature at point 1 in K\n",
"y = 1.3;\t\t\t#Ratio of stroke to bore diameter\n",
"N = 300.;\t\t\t#Speed in rpm\n",
"n = 1.3;\t\t\t#Adiabatic gas constant\n",
"P2 = 7.5;\t\t\t#Pressure at point 2 in bar\n",
"\n",
"# Calculations\n",
"x=((P2/P1)**(1./n))-1;\n",
"a = x*r;\t\t\t#Ratio of volume at point 4 to swept volume\n",
"nv = 1-a;\t\t\t#Volumetric efficiency\n",
"V1 = (Pa*Va*T1)/(Ta*P1);\t\t\t#Volume at point 1 in (m**3)/min\n",
"Vs = V1/(nv*N*2);\t\t\t#Swept volume in m**3\n",
"D = ((Vs*4)/(math.pi*y))**(1./3);\t\t\t#Bore in m\n",
"L = y*D;\t\t\t#Stroke in m\n",
"\n",
"# Results\n",
"print 'Cylinder bore in %3.3f m \\\n",
"\\nCylinder stroke %3.3f m'%(D,L)\n",
"\n",
"# rounding off error"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Cylinder bore in 0.313 m \n",
"Cylinder stroke 0.407 m\n"
]
}
],
"prompt_number": 22
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 5.10 Page no : 259"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"import math \n",
"\n",
"# Variables\n",
"P1 = 0.98;\t\t\t#Pressure at point 1 in bar\n",
"P4 = P1;\t\t\t#Pressure at point 4 in bar\n",
"P2 = 7.;\t\t\t#Pressure at point 2 in bar\n",
"P3 = P2;\t\t\t#Pressure at point 3 in bar\n",
"n = 1.3;\t\t\t#Adiabatic gas consmath.tant\n",
"Ta = 300.;\t\t\t#Air temperature in K\n",
"Pa = 1.013;\t\t\t#Air pressure in bar\n",
"T1 = 313.;\t\t\t#Temperature at point 1 in K\n",
"Va = 15.;\t\t\t#Volume of air delivered in m**3\n",
"R = 0.287;\t\t\t#Universal gas constant in kJ/kg-K\n",
"c = 0.04\n",
"\n",
"# Calculations\n",
"x = (n-1)/n;\t\t\t#Ratio\n",
"r = (P2/P1)**(1/n);\t\t\t#Ratio of volumes\n",
"a = r*c;\t\t\t#Ratio of volume at point 4 to swept volume\n",
"DV = 1+c-a;\t\t\t#Difference in volumes\n",
"V = (P1*DV*Ta)/(T1*Pa);\t\t\t#Volume of air delivered per cycle\n",
"nv = V*100;\t\t\t#Volumetric efficiency\n",
"DV1 = (Pa*Va*T1)/(Ta*P1);\t\t\t#Difference in volumes\n",
"T2 = T1*((P2/P1)**x);\t\t\t#Temperature at point 2 in K\n",
"ma = (Pa*100*Va)/(R*Ta);\t\t\t#Mass of air delivered in kg/min\n",
"IP = (ma*R*(T2-T1))/(x*60);\t\t\t#Indicated power in kW\n",
"Piso = (ma*R*T1*math.log(P2/P1))/60;\t\t\t#Isothermal indicated power in kW\n",
"niso = (Piso/IP)*100;\t\t\t#Isothermal efficiency\n",
"\n",
"# Results\n",
"print 'Volumetric efficiency is %3.1f percent \\\n",
"\\nIndicated power is %3.2f kW \\\n",
"\\nIsothermal efficiency is %3.0f percent'%(nv,IP,niso)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Volumetric efficiency is 79.6 percent \n",
"Indicated power is 65.74 kW \n",
"Isothermal efficiency is 79 percent\n"
]
}
],
"prompt_number": 23
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 5.11 Page no : 261"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"# Variables\n",
"V1 = 7.*(10**-3);\t\t\t#Volume of air in (m**3)/s\n",
"P1 = 1.013;\t\t\t#Pressure of air in bar\n",
"T1 = 288.;\t\t\t#Air temperature in K\n",
"P2 = 14.;\t\t\t#Pressure at point 2 in bar\n",
"n = 1.3;\t\t\t#Adiabatic gas constant\n",
"nm = 0.82;\t\t\t#Mechanical efficiency\n",
"\n",
"# Calculations\n",
"x = (n-1)/n;\t\t\t#Ratio\n",
"W = (P1*100*V1*(((P2/P1)**x)-1))/x;\t\t\t#Work done by compressor in kW\n",
"P = W/nm;\t\t\t#Power requred to drive compressor in kW\n",
"\n",
"# Results\n",
"print 'Power requred to drive compressor is %3.2f kW'%(P)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Power requred to drive compressor is 3.12 kW\n"
]
}
],
"prompt_number": 24
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 5.12 Page no : 261"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"# Variables\n",
"L = 0.15;\t\t\t#Stroke in mm\n",
"D = 0.15;\t\t\t#Bore in mm\n",
"N = 8.;\t\t\t#Speed in rps\n",
"P1 = 100.;\t\t\t#Pressure at point 1 in kN/(m**2)\n",
"P2 = 550.;\t\t\t#Pressure at point 2 in kN/(m**2)\n",
"n = 1.32;\t\t\t#Adiabatic gas constant\n",
"C = 0.06 # RATIO\n",
"\n",
"# Calculations\n",
"x = (n-1)/n;\t\t\t#Ratio\n",
"nv = (1+C-(C*((P2/P1)**(1/n))))*100;\t\t\t#Volumetric efficiency\n",
"DV = (3.147*(D**2)*L)/4;\t\t\t#Difference in volumes at points 1 and 3\n",
"DV1 = (nv*DV)/100;\t\t\t#Difference in volumes at points 1 and 4\n",
"V2 = DV1*((P1/P2)**(1/n))*N;\t\t\t#Volume of air delivered per second\n",
"W = (P1*DV1*(((P2/P1)**x)-1))*N/x;\t\t\t#Power of compressor in kW\n",
"\n",
"# Results\n",
"print 'Theoretical volume efficiency is %3.1f percent \\\n",
"\\nVolume of air delivered is %3.5f m**3/s \\\n",
"\\nPower of compressor is %3.3f kW'%(nv,V2,W)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Theoretical volume efficiency is 84.2 percent \n",
"Volume of air delivered is 0.00491 m**3/s \n",
"Power of compressor is 3.774 kW\n"
]
}
],
"prompt_number": 26
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 5.13 Page no : 262"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"import math \n",
"\n",
"# Variables\n",
"V = 16.;\t\t\t#Volume of air compresssed in m**3\n",
"P1 = 1.;\t\t\t#Pressure at point 1 in bar\n",
"P3 = 10.5;\t\t\t#Pressure at point 3 in bar\n",
"T1 = 294.;\t\t\t#Temperature at point 1 in K\n",
"Tc = 25.;\t\t\t#Temperature of cooling water in oC\n",
"n = 1.35;\t\t\t#Adiabatics gas constant\n",
"R = 0.287;\t\t\t#Universal gas constant in kJ/kg-K\n",
"Cp = 1.005;\t\t\t#Specific heat at constant pressure in kJ/kg-K\n",
"Cw = 4.187;\t\t\t#Specific heat of water in kJ/kg-K\n",
"\n",
"# Calculations\n",
"x = (n-1)/n;\t\t\t#Ratio\n",
"P2 = math.sqrt(P1*P3);\t\t\t#Pressure at point 2 in bar\n",
"W1 = (2*P1*100*V*(((P2/P1)**x)-1))/(x*60);\t\t\t#Indicated power of compressor from P1 to P2 in kW\n",
"W2 = (P1*100*V*(((P3/P1)**x)-1))/(x*60);\t\t\t#Indicated power of compressor from P1 to P3 in kW\n",
"T4 = T1*((P2/P1)**x);\t\t\t#Maximum temperature for two stage compression in K\n",
"T2 = T1*((P3/P1)**x);\t\t\t#Maximum temperature for single stage compression in K\n",
"m = (P1*100*V)/(R*T1);\t\t\t#Mass of air compressed in kg/min\n",
"Q = m*Cp*(T4-T1);\t\t\t#Heat rejected by air in kJ/min\n",
"mc = Q/(Cw*Tc);\t\t\t#Mass of cooling water in kg/min\n",
"\n",
"# Results\n",
"print 'Minimum indicated power required for 2 stage compression is %3.1f kW \\\n",
"\\nPower required for single stage compression is 18 percent more than that for \\\n",
"two stage compression with perfect intercooling \\\n",
"\\nMaximum temperature for two stage compression is %3.1f K \\\n",
"\\nMaximum temperature for single stage compression is %3.1f K \\\n",
"\\nHeat rejected by air is %3.1f kJ/min \\\n",
"\\nMass of cooling water required is %3.1f kg/min'%(W1,T4,T2,Q,mc)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Minimum indicated power required for 2 stage compression is 73.3 kW \n",
"Power required for single stage compression is 18 percent more than that for two stage compression with perfect intercooling \n",
"Maximum temperature for two stage compression is 398.8 K \n",
"Maximum temperature for single stage compression is 540.9 K \n",
"Heat rejected by air is 1996.6 kJ/min \n",
"Mass of cooling water required is 19.1 kg/min\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 5.14 Page no : 264"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"import math \n",
"\n",
"# Variables\n",
"V = 0.2;\t\t\t#Air flow rate in (m**3)/s\n",
"P1 = 0.1;\t\t\t#Intake pressure in MN/(m**2)\n",
"P3 = 0.7;\t\t\t#Final pressure in MN/(m**2)\n",
"T1 = 289.;\t\t\t#Intake temperature in K\n",
"n = 1.25;\t\t\t#Adiabatic gas constant\n",
"N = 10.;\t\t\t#Compressor speed in rps\n",
"\n",
"# Calculations\n",
"x = (n-1)/n;\t\t\t#Ratio\n",
"P2 = math.sqrt(P1*P3);\t\t\t#Intermediate pressure in MN/(m**2)\n",
"V1 = (V/N)*1000;\t\t\t#Total volume of LP cylinder in litres\n",
"V2 = ((P1*V1)/P2);\t\t\t#Total volume of HP cylinder in litres\n",
"W = ((2*P1*V*(((P2/P1)**x)-1))/x)*1000;\t\t\t#Cycle power in kW\n",
"\n",
"# Results\n",
"print 'Intermediate pressure is %3.3f MN/m**2 \\\n",
"\\nTotal volume of LP cylinder is %3.0f litres \\\n",
"\\nTotal volume of HP cylinder is %3.1f litres \\\n",
"\\nCycle power is %3.0f kW'%(P2,V1,V2,W)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Intermediate pressure is 0.265 MN/m**2 \n",
"Total volume of LP cylinder is 20 litres \n",
"Total volume of HP cylinder is 7.6 litres \n",
"Cycle power is 43 kW\n"
]
}
],
"prompt_number": 28
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 5.15 Page no : 265"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"# Variables\n",
"P1 = 1.;\t\t\t#Pressure at point 1 in bar\n",
"T1 = 290.;\t\t\t#Temperature at point 1 in K\n",
"P3 = 60.;\t\t\t#Pressure at point 3 in bar\n",
"P2 = 8.;\t\t\t#Pressure at point 2 in bar\n",
"T2 = 310.;\t\t\t#Temperature at point 2 in K\n",
"L = 0.2;\t\t\t#Stroke in m\n",
"D = 0.15;\t\t\t#Bore in m\n",
"n = 1.35;\t\t\t#Adiabatic gas constant\n",
"N = 200.;\t\t\t#Speed in rpm\n",
"\n",
"# Calculations\n",
"x = (n-1)/n;\t \t\t#Ratio\n",
"V1 = (3.147*(D**2)*L)/4;\t\t\t#Volume at point 1 in m**3\n",
"V2 = (P1*V1*T2)/(T1*P2);\t\t\t#Volume of air entering LP cylinder in m**3\n",
"W = ((P1*(10**5)*V1*(((P2/P1)**x)-1))/x)+((P2*(10**5)*V2*(((P3/P2)**x)-1))/x);\t\t\t#Workdone by compressor per cycle in J\n",
"P = (W*N)/(60*1000);\t\t \t#Power of compressor in kW\n",
"\n",
"# Results\n",
"print 'Power of compressor is %3.2f kW'%(P)\n",
"\n",
"# rounding off error"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Power of compressor is 6.59 kW\n"
]
}
],
"prompt_number": 2
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 5.16 Page no : 265"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math \n",
"\n",
"# Variables\n",
"N = 220.;\t\t\t#Speed of compressor in rpm\n",
"P1 = 1.;\t\t\t#Pressure entering LP cylinder in bar\n",
"T1 = 300.;\t\t\t#Temperature at point 1 in K\n",
"Dlp = 0.36;\t\t\t#Bore of LP cylinder in m\n",
"Llp = 0.4;\t\t\t#Stroke of LP cylinder in m\n",
"Lhp = 0.4;\t\t\t#Stoke of HP cylinder in m\n",
"P2 = 4.;\t\t\t#Pressure leaving LP cylinder in bar\n",
"P5 = 3.8;\t\t\t#Pressure entering HP cylinder in bar\n",
"T3 = 300.;\t\t\t#Temperature entering HP cylinder in K\n",
"P6 = 15.2;\t\t\t#Dicharge pressure in bar\n",
"n = 1.3;\t\t\t#Adiabatic gas constant\n",
"Cp = 1.0035;\t\t\t#Specific heat at constant pressure in kJ/kg-K\n",
"R = 0.287;\t\t\t#Universal gas constant in kJ/kg-K\n",
"T5 = T1;\t\t\t#Temperature at point 5 in K\n",
"C = 0.04\n",
"# Calculations\n",
"x = (n-1)/n;\t\t\t#Ratio\n",
"Vslp = round((math.pi*(Dlp**2)*Llp*N*2)/4,2);\t\t\t#Swept volume of LP cylinder in m**3/min\n",
"nv = round(1+C-(C*((P2/P1)**(1/n))),4);\t\t\t#Volumetric efficiency\n",
"V1 = nv*Vslp;\t\t\t#Volume of air drawn at point 1 in (m**3)/min\n",
"m = round((P1*100*V1)/(R*T1),2);\t\t\t#Mass of air in kg/min\n",
"T2 = round(T1*((P2/P1)**x));\t\t\t#Temperature at point 2 in K\n",
"QR = m*Cp*(T2-T5);\t\t\t#Heat rejected in kJ/min\n",
"V5 = (m*R*T5)/(P5*100);\t\t\t#Volume of air drawn in HP cylinder M**3/min\n",
"Plp = P2/P1;\t\t\t#Pressure ratio of LP cylinder\n",
"Php = P6/P5;\t\t\t#Pressure ratio of HP cylinder\n",
"Vshp = V5/nv;\t\t\t#Swept volume of HP cylinder in m**3/min\n",
"Dhp = math.sqrt((Vshp*4)/(3.147*Lhp*N*2));\t\t\t#Bore of HP cylinder in m\n",
"P = (m*R*(T2-T1))/(x*60);\t\t\t#Power required for HP cylinder in kW\n",
"\n",
"print V5,Plp,Php,Vshp,Dhp,P\n",
"# Results\n",
"print 'Heat rejected in intercooler is %3.1f kJ/min \\\n",
"\\nDiameter of HP cylinder is %3.4f m \\\n",
"\\nPower required for HP cylinder is %3.0f kW'%(QR,Dhp,P)\n",
"\n",
"# rounding off error. please check\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"4.35484736842 4.0 4.0 4.71405863652 0.184511219993 45.0178314444\n",
"Heat rejected in intercooler is 2179.5 kJ/min \n",
"Diameter of HP cylinder is 0.1845 m \n",
"Power required for HP cylinder is 45 kW\n"
]
}
],
"prompt_number": 8
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 5.17 Page no : 267"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math \n",
"\n",
"# Variables\n",
"P1 = 1.;\t\t\t#Pressure at point 1 in bar\n",
"P3 = 30.;\t\t\t#Pressure at point 3 in bar\n",
"T1 = 300.;\t\t\t#Temperature at point 1 in K\n",
"n = 1.3;\t\t\t#Adiabatics gas constant\n",
"\n",
"# Calculations\n",
"P2 = math.sqrt(P1*P3);\t\t\t#Intermediate pressure in bar\n",
"rD = math.sqrt(P2/P1);\t\t\t#Ratio of cylinder diameters\n",
"\n",
"# Results\n",
"print 'Ratio of cylinder diameters is %3.2f'%(rD)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Ratio of cylinder diameters is 2.34\n"
]
}
],
"prompt_number": 41
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 5.18 Page no : 268"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"# Variables\n",
"P1 = 1.013;\t\t\t#Pressure at point 1 in bar\n",
"T1 = 288.;\t\t\t#Temperaturea at point 1 in K\n",
"v1 = 8.4;\t\t\t#free air delivered by compressor in m**3\n",
"P4 = 70.;\t\t\t#Pressure at point 4 in bar\n",
"n = 1.2;\t\t\t#Adiabatic gas constant\n",
"Cp = 1.0035;\t\t\t#Specific heat at constant pressure in kJ/kg-K\n",
"\n",
"# Calculations\n",
"x = (n-1)/n;\t\t\t#Ratio\n",
"P2 = P1*((P4/P1)**(1./3));\t\t\t#LP cylinder delivery pressure in bar\n",
"P3 = P2*((P4/P1)**(1./3));\t\t\t#IP cylinder delivery pressure in bar\n",
"r = P2/P1;\t\t\t#Ratio of cylinder volumes\n",
"r1 = P3/P2;\t\t\t#Ratio of cylinder volumes\n",
"r2 = r*r1;\t\t\t#Ratio of cylinder volumes\n",
"V3 = 1;\t\t\t#Volume at point 3 in m**3\n",
"T4 = T1*((P2/P1)**x);\t\t\t#Three stage outlet temperature in K\n",
"QR = Cp*(T4-T1);\t\t\t#Heat rejected in intercooler in kJ/kg of air\n",
"W = ((3*P1*100*v1*(((P4/P1)**(x/3))-1))/(x*60));\t\t\t#Total indiacted power in kW\n",
"\n",
"# Results\n",
"print 'LP cylinder delivery pressure is %3.3f bar \\\n",
"\\nIP cylinder delivery pressure is %3.2f bar \\\n",
"\\nRatio of cylinder volumes is %3.2f:%3.1f:%3.0f \\\n",
"\\nTemperature at end of each stage is %3.2f K \\\n",
"\\nHeat rejected in each intercooler is %3.1f kJ/kg of air \\\n",
"\\nTotal indicated power is %3.2f kW'%(P2,P3,r2,r1,V3,T4,QR,W)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"LP cylinder delivery pressure is 4.157 bar \n",
"IP cylinder delivery pressure is 17.06 bar \n",
"Ratio of cylinder volumes is 16.84:4.1: 1 \n",
"Temperature at end of each stage is 364.41 K \n",
"Heat rejected in each intercooler is 76.7 kJ/kg of air \n",
"Total indicated power is 67.72 kW\n"
]
}
],
"prompt_number": 42
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 5.19 Page no : 269"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"# Variables\n",
"D = 0.45;\t\t\t#Bore in m\n",
"L = 0.3;\t\t\t#Stroke in m\n",
"P1 = 1.;\t\t\t#Pressure at point 1 inn bar\n",
"T1 = 291.;\t\t\t#Temperature at point 1 in K\n",
"P4 = 15.;\t\t\t#Pressure at point 4 in bar\n",
"n = 1.3;\t\t\t#Adiabatic gas constant\n",
"R = 0.29;\t\t\t#Universal gas constant in kJ/kg-K\n",
"\n",
"# Calculations\n",
"x = (n-1)/n;\t\t\t#Ratio\n",
"k = (P4/P1)**(1./3);\t\t\t#Pressure ratio\n",
"P2 = k*P1;\t\t\t#Pressure at point 2 in bar\n",
"P3 = k*P2;\t\t\t#Pressure at point 1 in bar\n",
"Vslp = (3.147*(D**2)*L)/4;\t\t\t#Swept volume of LP cylinder\n",
"V7 = C*Vslp;\t\t\t#Volume at point 7 in m**3\n",
"V1 = Vslp+V7;\t\t\t#Volume at point 1 in m**3\n",
"V8 = V7*(k**(1/n));\t\t\t#Volume at point 8 in m**3\n",
"EVs = (V1-V8)*1000;\t\t\t#Effective swept volume in litres\n",
"T4 = T1*(k**x);\t\t\t#Temperature at point 4 in K\n",
"t4 = T4-273;\t\t\t#Delivery temperature in oC\n",
"DV = ((P1*T4*(V1-V8))/(P4*T1))*1000;\t\t\t#Delivery volume per stroke in litres\n",
"W = (3*R*T1*((k**x)-1))/x;\t\t\t#Workdone per kg of air in kJ\n",
"\n",
"# Results\n",
"print 'Intermediate pressures are %3.3f bar and %3.3f bar \\\n",
"\\nEffective swept volume of LP cylinder is %3.2f litres \\\n",
"\\nTemperature of air delivered per stroke is %3.1f oC \\\n",
"\\nVolume of air delivered per stroke is %3.2f litres \\\n",
"\\nWork done per kg of air is %3.1f kJ'%(P2,P3,EVs,t4,DV,W)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Intermediate pressures are 2.466 bar and 6.082 bar \n",
"Effective swept volume of LP cylinder is 44.92 litres \n",
"Temperature of air delivered per stroke is 85.4 oC \n",
"Volume of air delivered per stroke is 3.69 litres \n",
"Work done per kg of air is 254.1 kJ\n"
]
}
],
"prompt_number": 43
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 5.20 Page no : 271"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"import math \n",
"\n",
"# Variables\n",
"P1 = 1.;\t\t\t#Pressure at point 1 in bar\n",
"Pns = 100.;\t\t\t#Maximum pressure in bar\n",
"p = 4.; \t\t\t#Pressure ratio\n",
"\n",
"# Calculations\n",
"Ns = math.log(Pns)/math.log(p);\t\t\t#Number of stages\n",
"y = math.ceil(Ns);\t \t\t#Rounding off to next higher integer\n",
"ps = (Pns/P1)**(1/y);\t\t\t #Exact stage pressure ratio\n",
"P2 = ps*P1;\t\t\t#Pressure at point 2 in bar\n",
"P3 = ps*P2;\t\t\t#Pressure at point 3 in bar\n",
"P4 = ps*P3;\t\t\t#Pressure at point 4 in bar\n",
"\n",
"# Results\n",
"print 'Number of stages are %3.2f \\\n",
"\\nExact stage pressure ratio is %3.3f \\\n",
"\\nIntermediate pressures are %3.3f bar, %3.2f bar, %3.2f bar'%(y,ps,P2,P3,P4)\n",
"\n",
"# rounding off error"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Number of stages are 4.00 \n",
"Exact stage pressure ratio is 3.162 \n",
"Intermediate pressures are 3.162 bar, 10.00 bar, 31.62 bar\n"
]
}
],
"prompt_number": 51
}
],
"metadata": {}
}
]
}
|