summaryrefslogtreecommitdiff
path: root/Thermal_Engineering_by_A._V._Arasu/ch3.ipynb
blob: 8b9a3246697ff84000b8ef9145f556e52ee00974 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
{
 "metadata": {
  "name": "",
  "signature": "sha256:3e461b166983dbc4e8640a4c60ebf5164b7675ebb01d9440eb0b63f7316d9dde"
 },
 "nbformat": 3,
 "nbformat_minor": 0,
 "worksheets": [
  {
   "cells": [
    {
     "cell_type": "heading",
     "level": 1,
     "metadata": {},
     "source": [
      "Chapter 3 :\n",
      "Internal Combustion Engines"
     ]
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 3.1  Page no : 139"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "# Variables\n",
      "d = 200.;\t\t\t#diameter of cylinder in mm\n",
      "L = 300.;\t\t\t#stroke of cylinder in mm\n",
      "Vc = 1.73;\t\t\t#Clearance volume in litres\n",
      "imep = 650.;\t\t\t#indicated mean effective pressure in kN/(m**2)\n",
      "g = 6.2;\t\t\t#gas consumption in (m**3)/h\n",
      "CV = 38.5;\t\t\t#Calorific value in MJ/(m**3)\n",
      "y = 1.4;\t\t\t#Ratio of specific heats\n",
      "N = 150.;\t\t\t#No. of firing cycles per minute\n",
      "\n",
      "# Calculations\n",
      "Vs = ((3.1415/4)*(d**2)*L)*(10**-6);\t\t\t#Stroke volume in litres\n",
      "Vt = Vs+Vc;\t\t\t#Total volume in litres\n",
      "rv = (Vt/Vc);\t\t\t#Compression ratio\n",
      "n = (1-(1/rv**(y-1)))*100;\t\t\t#Air standard efficiency\n",
      "IP = imep*(Vs*10**-3)*(N/60);\t\t\t#Indicated power in kW\n",
      "F = (g*CV*1000)/3600;\t\t\t#Fuel energy input in kW\n",
      "nT = (IP/F)*100;\t\t\t#Indicated thermal efficiency\n",
      "\n",
      "# Results\n",
      "# 1st answer is wrong in book\n",
      "print 'Air Standard Efficiency is %3.1f percent  \\\n",
      "\\nIndicated Power is %3.1f kW \\\n",
      "\\nIndicated thermal efficiency is %3.0f percent'%(n,IP,nT)\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Air Standard Efficiency is 52.5 percent  \n",
        "Indicated Power is 15.3 kW \n",
        "Indicated thermal efficiency is  23 percent\n"
       ]
      }
     ],
     "prompt_number": 1
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 3.2  Page no : 140"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "# Variables\n",
      "Vs = 0.0008;\t\t\t#Swept volume in m**3\n",
      "Vc = 0.00015;\t\t\t#Clearance volume in m**3\n",
      "CV = 38.;\t\t\t#Calorific value in MJ/(m**3)\n",
      "v = 0.45;\t\t\t#volume in m**3\n",
      "IP = 81.5;\t\t\t#Indicated power in kW\n",
      "y = 1.4;\t\t\t#Ratio of specific heats\n",
      "\n",
      "# Calculations\n",
      "rv = (Vs+Vc)/Vc;\t\t\t#Compression ratio\n",
      "n = (1-(1/rv**(y-1)));\t\t\t#Air standard efficiency\n",
      "Ps = (v*CV*1000.)/60;\t\t\t#Power supplied in kW\n",
      "nact = IP/Ps;\t\t\t#Actual efficiency\n",
      "nr = (nact/n)*100;\t\t\t#Relative efficiency\n",
      "\n",
      "\n",
      "# Results\n",
      "print 'Relative Efficiency is %3.2f percent'%(nr)\n",
      "\n",
      "# rounding error in book answer. please check."
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Relative Efficiency is 54.77 percent\n"
       ]
      }
     ],
     "prompt_number": 2
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 3.3  Page no : 141"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "# Variables\n",
      "n = 6.;\t\t\t    #No. of cylinders\n",
      "d = 0.61;\t\t\t#Diameter in m\n",
      "L = 1.25;\t\t\t#Stroke in m\n",
      "N = 2.;\t\t    \t#No.of revolutions per second\n",
      "m = 340.;\t\t\t#mass of fuel oil in kg\n",
      "CV = 44200.;\t\t#Calorific value in kJ/kg\n",
      "T = 108.;\t\t\t#Torque in kN-m\n",
      "imep = 775.;\t\t#Indicated mean efective pressure in kN/(m**2)\n",
      "\n",
      "# Calculations\n",
      "IP = (imep*L*3.1415*(d**2)*N)/(8);\t\t\t#Indicated power in kW\n",
      "TotalIP = (n*IP);\t\t\t    #Total indicated power in kW\n",
      "BP = (2*3.1415*N*T);\t\t\t#Brake power in kW\n",
      "PI = (m*CV)/3600.;\t\t\t    #Power input in kW\n",
      "nB = (BP/PI)*100.;\t\t    \t#Brake thermal efficiency\n",
      "bmep = (BP*8)/(n*L*3.1415*(d**2)*2);\t\t\t#Brake mean effective pressure in kN/(m**2)\n",
      "nM = (BP/TotalIP)*100;\t\t\t#Mechanical efficiency\n",
      "bsfc = m/BP;\t        \t\t#Brake specific fuel consumption in kg/kWh\n",
      "\n",
      "# Results\n",
      "print 'Total Indicated Power is %3.1f kW  \\\n",
      "\\nBrake Power is %3.1f kW \\\n",
      "\\nBrake thermal efficiency is %3.1f percent  \\\n",
      "\\nBrake mean effective pressure is %3.1f kN/m**2 \\\n",
      "\\nMechanical efficiency is %3.1f percent  \\\n",
      "\\nBrake specific fuel consumption is %3.3f kg/kW.hr'%(TotalIP,BP,nB,bmep,nM,bsfc)\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Total Indicated Power is 1698.6 kW  \n",
        "Brake Power is 1357.1 kW \n",
        "Brake thermal efficiency is 32.5 percent  \n",
        "Brake mean effective pressure is 619.2 kN/m**2 \n",
        "Mechanical efficiency is 79.9 percent  \n",
        "Brake specific fuel consumption is 0.251 kg/kW.hr\n"
       ]
      }
     ],
     "prompt_number": 2
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 3.4  Page no : 142"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "# Variables\n",
      "Hm = 21.;\t\t\t#Mean height of indicator diagram in mm\n",
      "isn = 27.;\t\t\t#indicator spring number in kN/(m**2)/mm\n",
      "Vs = 14.;\t\t\t#Swept volume in litres\n",
      "N = 6.6;\t\t\t#Speed of engine in rev/s\n",
      "Pe = 77.;\t\t\t#Effective brake load in kg\n",
      "Re = 0.7;\t\t\t#Effective vrake radius in m\n",
      "mf = 0.002;\t\t\t#fuel consumed in kg/s\n",
      "CV = 44000.;\t\t\t#Calorific value of fuel in kJ/kg\n",
      "mc = 0.15;\t\t\t#cooling water circulation in kg/s\n",
      "Ti = 311.;\t\t\t#cooling water inlet temperature in K\n",
      "To = 344.;\t\t\t#cooling water outlet temperature in K\n",
      "C = 4.18;\t\t\t#specific heat capacity of water in kJ/kg-K\n",
      "Ee = 33.6;\t\t\t#Energy to exhaust gases in kJ/s\n",
      "g = 9.81;\t\t\t#Acceleration due to geravity in m/(s**2)\n",
      "\n",
      "# Calculations\n",
      "imep = isn*Hm;\t\t\t#Indicated mean efective pressure in kN/(m**2)\n",
      "IP = (imep*Vs*N)/(2000);\t\t\t#Indicated Power in kW\n",
      "BP = (2*3.1415*N*g*Pe*Re)/1000;\t\t\t#Brake Power in kW\n",
      "nM = (BP/IP)*100;\t\t\t#Mechanical efficiency\n",
      "Ef = mf*CV;\t\t\t#Eneergy from fuel in kJ/s\n",
      "Ec = mc*C*(To-Ti);\t\t\t#Energy to cooling water in kJ/s\n",
      "Es = Ef-(BP+Ec+Ee);\t\t\t#Energy to surroundings in kJ/s\n",
      "p = (BP*100)/Ef;\t\t\t#Energy to BP in %\n",
      "q = (Ec*100)/Ef;\t\t\t#Energy to coolant in %\n",
      "r = (Ee*100)/Ef;\t\t\t#Energy to exhaust in %\n",
      "w = (Es*100)/Ef;\t\t\t#Energy to surroundings in %\n",
      "\n",
      "# Results\n",
      "print 'Indicated Power is %3.1f kW  \\\n",
      "\\nBrake Power is %3.0f kW  \\\n",
      "\\nMechanical Efficiency is %3.0f percent  \\\n",
      "\\nENERGY BALANCE                     kJ/s     Percentage \\\n",
      "\\nEnergy from fuel                  %3.0f        100 \\\n",
      "\\nEnergy to BP                      %3.0f        %3.0f \\\n",
      "\\nEnergy to coolant                 %3.01f       %3.1f \\\n",
      "\\nEnergy to exhaust                 %3.1f        %3.1f \\\n",
      "\\nEnergy to surroundings, etc       %3.1f        %3.1f'%(IP,BP,nM,Ef,BP,p,Ec,q,Ee,r,Es,w)\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Indicated Power is 26.2 kW  \n",
        "Brake Power is  22 kW  \n",
        "Mechanical Efficiency is  84 percent  \n",
        "ENERGY BALANCE                     kJ/s     Percentage \n",
        "Energy from fuel                   88        100 \n",
        "Energy to BP                       22         25 \n",
        "Energy to coolant                 20.7       23.5 \n",
        "Energy to exhaust                 33.6        38.2 \n",
        "Energy to surroundings, etc       11.8        13.4\n"
       ]
      }
     ],
     "prompt_number": 2
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 3.5  Page no : 143"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "# Variables\n",
      "t = 30.;\t\t\t#duration of trial in minutes\n",
      "N = 1750.;\t\t\t#speed in rpm\n",
      "T = 330.;\t\t\t#brake torque in Nm\n",
      "m = 9.35;\t\t\t#mass of fuel in kg\n",
      "CV = 42300.;\t\t\t#Calorific value in kJ/kg\n",
      "mj = 483.;\t\t\t#jacket cooling water circulation in kg\n",
      "Ti = 290.;\t\t\t#inlet temperature in K\n",
      "T0 = 350.;\t\t\t#outlet temperature in K\n",
      "ma = 182.;\t\t\t#air consumption in kg\n",
      "Te = 759.;\t\t\t#exhaust temperature in K\n",
      "Ta = 256.;\t\t\t#atmospheric temperature in K\n",
      "nM = 0.83;\t\t\t#Mechanical efficiency\n",
      "ms = 1.25;\t\t\t#mean specific heat capacity of exhaust gas in kJ/kg-K\n",
      "Cw = 4.18;\t\t\t#specific heat capacity of water in kJ/kg-K\n",
      "\n",
      "# Calculations\n",
      "BP = (2*3.1415*T*N)/(60*1000);\t\t\t#Brake power in kW\n",
      "sfc = (m*2)/BP;\t\t\t#specific fuel consumption in kg/kWh\n",
      "IP = BP/nM;\t\t\t#Indicated power in kW\n",
      "nIT = IP/(m*2/3600*CV)*100    \t\t\t#Indicated thermal efficiency\n",
      "Ef = (m/t*CV)     \t\t\t#Eneergy from fuel in kJ/min\n",
      "EBP = BP*60;\t\t\t#Energy to BP in kJ/min\n",
      "Ec = (mj*Cw*(T0-Ti))/t;\t\t\t#Energy to cooling water in kJ/min\n",
      "Ee = ((ma+m)*ms*(Te-Ti))/30;\t\t\t#Energy to exhaust in kJ/min\n",
      "Es = Ef-(EBP+Ec+Ee);\t\t\t#Energy to surroundings in kJ/min\n",
      "\n",
      "# Results\n",
      "print 'Break power is %3.1f kW  \\\n",
      "\\nSpecific fuel consumption is %3.3f kg/kWh  \\\n",
      "\\nIndicated thermal efficiency is %3.1f percent  \\\n",
      "\\nEnergy from fuel is %3.0f kJ/min  \\\n",
      "\\nEnergy to BP is %3.0f kJ/min  \\\n",
      "\\nEnergy to cooling water is %3.0f kJ/min  \\\n",
      "\\nEnergy to exhaust is %3.0f kJ/min  \\\n",
      "\\nEnergy to surroundings is %d kJ/min'%(BP,sfc,nIT,round(Ef,-2),EBP,Ec,Ee,Es)\n",
      "\n",
      "# rounding off error"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Break power is 60.5 kW  \n",
        "Specific fuel consumption is 0.309 kg/kWh  \n",
        "Indicated thermal efficiency is 33.2 percent  \n",
        "Energy from fuel is 13200 kJ/min  \n",
        "Energy to BP is 3628 kJ/min  \n",
        "Energy to cooling water is 4038 kJ/min  \n",
        "Energy to exhaust is 3739 kJ/min  \n",
        "Energy to surroundings is 1777 kJ/min\n"
       ]
      }
     ],
     "prompt_number": 6
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 3.6  Page no : 144"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "# Variables\n",
      "BP0 = 12.;\t\t\t#Brake Power output in kW\n",
      "BP1 = 40.5;\t\t\t#Brake Power in trial 1 in kW\n",
      "BP2 = 40.2;\t\t\t#Brake Power in trial 2 in kW\n",
      "BP3 = 40.1;\t\t\t#Brake Power in trial 3 in kW\n",
      "BP4 = 40.6;\t\t\t#Brake Power in trial 4 in kW\n",
      "BP5 = 40.7;\t\t\t#Brake Power in trial 5 in kW\n",
      "BP6 = 40.0;\t\t\t#Brake Power in trial 6 in kW\n",
      "\n",
      "# Calculations\n",
      "BPALL = BP0+BP6;\t\t\t#Total Brake Power in kW\n",
      "IP1 = BPALL-BP1;\t\t\t#Indicated Power in trial 1 in kW\n",
      "IP2 = BPALL-BP2;\t\t\t#Indicated Power in trial 2 in kW\n",
      "IP3 = BPALL-BP3;\t\t\t#Indicated Power in trial 3 in kW\n",
      "IP4 = BPALL-BP4;\t\t\t#Indicated Power in trial 4 in kW\n",
      "IP5 = BPALL-BP5;\t\t\t#Indicated Power in trial 5 in kW\n",
      "IP6 = BPALL-BP6;\t\t\t#Indicated Power in trial 6 in kW\n",
      "IPALL = IP1+IP2+IP3+IP4+IP5+IP6;\t\t\t#Total Indicated Power in kW\n",
      "nM = (BPALL/IPALL)*100;\t\t\t#Mechanical efficiency\n",
      "\n",
      "# Results\n",
      "print 'Indicated Power of the engine is %3.1f kW  \\\n",
      "\\nMechanical efficiency of the engine is %3.1f percent'%(IPALL,nM)\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Indicated Power of the engine is 69.9 kW  \n",
        "Mechanical efficiency of the engine is 74.4 percent\n"
       ]
      }
     ],
     "prompt_number": 6
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 3.7  Page no : 145"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "import math\n",
      "\n",
      "# Variables\n",
      "n = 2.;\t\t\t#No. of cylinders\n",
      "N = 4000.;\t\t\t#speed of engine in rpm\n",
      "nV = 0.77;\t\t\t#Volumetric efficiency\n",
      "nM = 0.75;\t\t\t#Mechanical efficiency\n",
      "m = 10.;\t\t\t#fuel consumed in lit/h\n",
      "g = 0.73;\t\t\t#spcific gravity of fuel\n",
      "Raf = 18.;\t\t\t#air-fuel ratio\n",
      "Np = 600.;\t\t\t#piston speed in m/min\n",
      "imep = 5.;\t\t\t#Indicated mean efective pressure in bar\n",
      "R = 281.;\t\t\t#Universal gas constant in J/kg-K\n",
      "T = 288.;\t\t\t#Standard temperature in K\n",
      "P = 1.013;\t\t\t#Standard pressure in bar\n",
      "\n",
      "\n",
      "# Calculations\n",
      "L = Np/(2*N);\t\t\t#Piston stroke in m\n",
      "mf = m*g;\t\t\t#mass of fuel in kg/h\n",
      "ma = mf*Raf;\t\t\t#mass of air required in kg/h\n",
      "Va = (ma*R*T)/(P*60*(10**5));\t\t\t#volume of air required in (m**3)/min\n",
      "D = math.sqrt((2*Va)/(nV*L*N*3.1415));\t\t\t#Diameter in m\n",
      "IP = (2*imep*100*L*3.1415*(D**2)*N)/(4.*60);\t\t\t#Indicated Power in kW\n",
      "BP = nV*IP;\t\t\t#Brake Power in kW\n",
      "\n",
      "# Results\n",
      "print 'Piston Stroke is %3.3f m  \\\n",
      "\\nBore diameter is %3.4f m  \\\n",
      "\\nBrake power is %3.1f kW'%(L,D,BP)\n",
      "\n",
      "# rounding off error"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Piston Stroke is 0.075 m  \n",
        "Bore diameter is 0.0694 m  \n",
        "Brake power is 14.6 kW\n"
       ]
      }
     ],
     "prompt_number": 5
    }
   ],
   "metadata": {}
  }
 ]
}