1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
|
{
"metadata": {
"name": "",
"signature": "sha256:a0a25762305b1c74ca417d46a7390eaac10578c3f22cb04bddc542c61d85667c"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Chapter6-Turning Moment Diagram and Flywheel"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex1-pg175"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"##CHAPTER 6 ILLUSRTATION 1 PAGE NO 175\n",
"##TITLE:Turning Moment Diagram and Flywheel\n",
"\n",
"k=1.## radius of gyration of flywheel in m\n",
"m=2000.## mass of the flywheel in kg\n",
"T=1000.## torque of the engine in Nm\n",
"w1=0.## speedin the begining\n",
"t=10.## time duration\n",
"##==============================\n",
"I=m*k**2.## mass moment of inertia in kg-m**2\n",
"a=T/I## angular acceleration of flywheel in rad/s**2\n",
"w2=w1+a*t## angular speed after time t in rad/s\n",
"K=I*w2**2/2.## kinetic energy of flywheel in Nm\n",
"##==============================\n",
"print'%s %.1f %s %.1f %s '%('Angular acceleration of the flywheel=',a,' rad/s**2'' Kinetic energy of flywheel= ',K,' N-m')\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Angular acceleration of the flywheel= 0.5 rad/s**2 Kinetic energy of flywheel= 25000.0 N-m \n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex2-pg176"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"##CHAPTER 6 ILLUSRTATION 2 PAGE NO 176\n",
"##TITLE:Turning Moment Diagram and Flywheel\n",
"import math\n",
"pi=3.141\n",
"N1=225.## maximum speed of flywheel in rpm\n",
"k=.5## radius of gyration of flywheel in m\n",
"n=720.## no of holes punched per hour\n",
"E1=15000.## energy required by flywheel in Nm\n",
"N2=200.## mimimum speedof flywheel in rpm\n",
"t=2.## time taking for punching a hole\n",
"##==========================\n",
"P=E1*n/3600.## power required by motor per sec in watts\n",
"E2=P*t## energy supplied by motor to punch a hole in N-m\n",
"E=E1-E2## maximum fluctuation of energy in N-m\n",
"N=(N1+N2)/2.## mean speed of the flywheel in rpm\n",
"m=E/(pi**2./900.*k**2.*N*(N1-N2))\n",
"print'%s %.1f %s %.1f %s'%('Power of the motor= ',P,' watts''Mass of the flywheel required= ',m,' kg')\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Power of the motor= 3000.0 wattsMass of the flywheel required= 618.2 kg\n"
]
}
],
"prompt_number": 3
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex3-pg176"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"##CHAPTER 6 ILLUSRTATION 3 PAGE NO 176\n",
"##TITLE:Turning Moment Diagram and Flywheel\n",
"import math\n",
"pi=3.141\n",
"d=38.## diameter of hole in cm\n",
"t=32.## thickness of hole in cm\n",
"e1=7.## energy required to punch one square mm\n",
"V=25.## mean speed of the flywheel in m/s\n",
"S=100.## stroke of the punch in cm\n",
"T=10.## time required to punch a hole in s\n",
"Cs=.03## coefficient of fluctuation of speed\n",
"##===================\n",
"A=pi*d*t## sheared area in mm**2\n",
"E1=e1*A## energy required to punch entire area in Nm\n",
"P=E1/T## power of motor required in watts\n",
"T1=T/(2.*S)*t## time required to punch a hole in 32 mm thick plate\n",
"E2=P*T1## energy supplied by motor in T1 seconds\n",
"E=E1-E2## maximum fluctuation of energy in Nm\n",
"m=E/(V**2.*Cs)## mass of the flywheel required\n",
"print'%s %.1f %s'%('Mass of the flywheel required= ',m,' kg')\n",
"\n",
"\t\t"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Mass of the flywheel required= 1197.8 kg\n"
]
}
],
"prompt_number": 4
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex4-pg177"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"##CHAPTER 6 ILLUSRTATION 4 PAGE NO 177\n",
"##TITLE:Turning Moment Diagram and Flywheel\n",
"##figure 6.4\n",
"import math\n",
"##===================\n",
"pi=3.141\n",
"N=480.## speed of the engine in rpm\n",
"k=.6## radius of gyration in m\n",
"Cs=.03## coefficient of fluctuaion of speed \n",
"Ts=6000.## turning moment scale in Nm per one cm\n",
"C=30.## crank angle scale in degrees per cm\n",
"a=[0.5,-1.22,.9,-1.38,.83,-.7,1.07]## areas between the output torque and mean resistance line in sq.cm\n",
"##======================\n",
"w=2.*pi*N/60.## angular speed in rad/s\n",
"A=Ts*C*pi/180.## 1 cm**2 of turning moment diagram in Nm\n",
"E1=a[0]## max energy at B refer figure\n",
"E2=a[0]+a[1]+a[2]+a[3]\n",
"E=(E1-E2)*A## fluctuation of energy in Nm\n",
"m=E/(k**2.*w**2*Cs)## mass of the flywheel in kg\n",
"print'%s %.1f %s'%('Mass of the flywheel= ',m,' kg')\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Mass of the flywheel= 195.8 kg\n"
]
}
],
"prompt_number": 5
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex5-pg178"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"##CHAPTER 6 ILLUSRTATION 5 PAGE NO 178\n",
"##TITLE:Turning Moment Diagram and Flywheel\n",
"##==============\n",
"pi=3.141\n",
"P=500.*10**3.## power of the motor in N\n",
"k=.6## radius of gyration in m\n",
"Cs=.03## coefficient of fluctuation of spped \n",
"OA=750.## REFER FIGURE\n",
"OF=6.*pi## REFER FIGURE\n",
"AG=pi## REFER FIGURE\n",
"BG=3000.-750.## REFER FIGURE\n",
"GH=2.*pi## REFER FIGURE\n",
"CH=3000.-750.## REFER FIGURE\n",
"HD=pi## REFER FIGURE\n",
"LM=2.*pi## REFER FIGURE\n",
"T=OA*OF+1./2.*AG*BG+BG*GH+1./2.*CH*HD## Torque required for one complete cycle in Nm\n",
"Tmean=T/(6.*pi)## mean torque in Nm\n",
"w=P/Tmean## angular velocity required in rad/s\n",
"BL=3000.-1875.## refer figure\n",
"KL=BL*AG/BG## From similar trangles\n",
"CM=3000.-1875.## refer figure\n",
"MN=CM*HD/CH##from similar triangles\n",
"E=1./2.*KL*BL+BL*LM+1./2.*CM*MN## Maximum fluctuaion of energy in Nm\n",
"m=E*100./(k**2*w**2.*Cs)## mass of flywheel in kg\n",
"print'%s %.1f %s'%('Mass of the flywheel= ',m,' kg')\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Mass of the flywheel= 1150.3 kg\n"
]
}
],
"prompt_number": 6
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex6-pg179"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"##CHAPTER 6 ILLUSRTATION 6 PAGE NO 179\n",
"##TITLE:Turning Moment Diagram and Flywheel\n",
"import math\n",
"pi=3.141\n",
"PI=180.##in degrees\n",
"theta1=0.\n",
"theta2=PI\n",
"m=400.## mass of the flywheel in kg\n",
"N=250.## speed in rpm\n",
"k=.4## radius of gyration in m\n",
"n=2.*250./60000.## no of working strokes per minute\n",
"W=1000.*pi-150.*math.cos((2*theta2)/57.3)-250.*math.sin((2*theta2)/57.3)-(1000.*theta1-150.*math.cos((2*theta1)/57.3)-250.*math.sin((2*theta1)/57.3))## workdone per stroke in Nm\n",
"P=W*n## power in KW\n",
"Tmean=W/pi## mean torque in Nm\n",
"twotheta=math.atan((500/300)/57.3)## angle at which T-Tmean becomes zero\n",
"THETA1=twotheta/2.\n",
"THETA2=(180.+twotheta)/2.\n",
"E=-150.*math.cos((2.*THETA2)/57.3)-250.*math.sin((2.*THETA2)/57.3)-(-150*math.cos((2.*THETA1)/57.3)-250.*math.sin((2*THETA1)/57.3))## FLUCTUATION OF ENERGY IN Nm\n",
"w=2.*pi*N/60.## angular speed in rad/s\n",
"Cs1=E*100./(k**2.*w**2.*m)## fluctuation range\n",
"Cs=Cs1/2.## tatal percentage of fluctuation of speed\n",
"Theta=60.\n",
"T1=300.*math.sin((2*Theta)/57.3)-500.*math.cos((2*Theta)/57.3)## Accelerating torque in Nm(T-Tmean)\n",
"alpha=T1/(m*k**2.)## angular acceleration in rad/s**2\n",
"print'%s %.1f %s %.3f %s %.3f %s '%('Power delivered=',P,' kw''Total percentage of fluctuation speed=',Cs,' ''Angular acceleration=',alpha,'rad/s**2')\n",
"#in book ans is given wrong \n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Power delivered= 26.2 kwTotal percentage of fluctuation speed= 0.342 Angular acceleration= 7.965 rad/s**2 \n"
]
}
],
"prompt_number": 7
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex7-pg181"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"##CHAPTER 6 ILLUSRTATION 7 PAGE NO 181\n",
"##TITLE:Turning Moment Diagram and Flywheel\n",
"\n",
"pi=3.141\n",
"m=200.## mass of the flywheel in kg\n",
"k=.5## radius of gyration in m\n",
"N1=360.## upper limit of speed in rpm\n",
"N2=240.## lower limit of speed in rpm\n",
"##==========\n",
"I=m*k**2.## mass moment of inertia in kg m**2\n",
"w1=2.*pi*N1/60.\n",
"w2=2.*pi*N2/60.\n",
"E=1./2.*I*(w1**2.-w2**2.)## fluctuation of energy in Nm\n",
"Pmin=E/(4.*1000.)## power in kw\n",
"Eex=Pmin*12.*1000.## Energy expended in performing each operation in N-m\n",
"print'%s %.1f %s %.1f %s '%('Mimimum power required= ',Pmin,' kw' ' Energy expended in performing each operation= ',Eex,' N-m')\n",
"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Mimimum power required= 4.9 kw Energy expended in performing each operation= 59195.3 N-m \n"
]
}
],
"prompt_number": 8
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex8-pg182"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"##CHAPTER 6 ILLUSRTATION 8 PAGE NO 182\n",
"##TITLE:Turning Moment Diagram and Flywheel\n",
"import math\n",
"pi=3.141\n",
"b=8.## width of the strip in cm\n",
"t=2.## thickness of the strip in cm\n",
"w=1.2*10**3.## work required per square cm cut\n",
"N1=200.## maximum speed of the flywheel in rpm\n",
"k=.80## radius of gyration in m\n",
"N2=(1.-.15)*N1## minimum speed of the flywheel in rpm\n",
"T=3.## time required to punch a hole\n",
"##=======================\n",
"A=b*t## area cut of each stroke in cm**2\n",
"W=w*A## work required to cut a strip in Nm\n",
"w1=2.*pi*N1/60.## speed before cut in rpm\n",
"w2=2.*pi*N2/60.## speed after cut in rpm\n",
"m=2.*W/(k**2.*(w1**2.-w2**2.))## mass of the flywheel required in kg\n",
"a=(w1-w2)/T## angular acceleration in rad/s**2\n",
"Ta=m*k**2.*a## torque required in Nm\n",
"print'%s %.1f %s %.1f %s '%('Mass of the flywheel= ',m,' kg'' Amount of Torque required=',Ta,'Nm')\n",
"\n",
"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Mass of the flywheel= 493.1 kg Amount of Torque required= 330.4 Nm \n"
]
}
],
"prompt_number": 9
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex9-pg182"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"##CHAPTER 6 ILLUSRTATION 9 PAGE NO 182\n",
"##TITLE:Turning Moment Diagram and Flywheel\n",
"\n",
"pi=3.141\n",
"P=5.*10**3.## power delivered by motor in watts\n",
"N1=360.## speed of the flywheel in rpm\n",
"I=60.## mass moment of inertia in kg m**2\n",
"E1=7500.## energy required by pressing machine for 1 second in Nm\n",
"##========================\n",
"Ehr=P*60.*60.## energy sipplied per hour in Nm\n",
"n=Ehr/E1\n",
"E=E1-P## total fluctuation of energy in Nm\n",
"w1=2.*pi*N1/60.## angular speed before pressing in rpm \n",
"w2=((2.*pi*N1/60.)**2.-(2.*E/I))**.5## angular speed after pressing in rpm \n",
"N2=w2*60./(2.*pi)\n",
"R=N1-N2## reduction in speed in rpm\n",
"print'%s %.1f %s %.1f %s '%('No of pressings that can be made per hour= ',n,' Reduction in speed after the pressing is over= ',R,' rpm ')\n",
"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"No of pressings that can be made per hour= 2400.0 Reduction in speed after the pressing is over= 10.7 rpm \n"
]
}
],
"prompt_number": 10
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex10-pg183"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"##CHAPTER 6 ILLUSRTATION 10 PAGE NO 183\n",
"##TITLE:Turning Moment Diagram and Flywheel\n",
"import math\n",
"pi=3.141\n",
"Cs=.02## coefficient of fluctuation of speed \n",
"N=200.## speed of the engine in rpm\n",
"\n",
"theta1=math.acos(0/57.3)\n",
"theta2=math.asin((-6000/16000)/57.3)\n",
"theta2=180.-theta2\n",
"##===============================================\n",
"##largest area,representing fluctuation of energy lies between theta1 and theta2\n",
"E=6000.*math.sin(theta2/57.3)-8000./2.*math.cos((2*theta2)/57.3)-(6000.*math.sin((theta1)/57.3)-8000./2.*math.cos((2*theta1)/57.3))## total fluctuation of energy in Nm\n",
"Theta=180## angle with which cycle will be repeated in degrees\n",
"Theta1=0\n",
"Tmean=1/pi*((15000*pi+(-8000*math.cos((2*Theta)/57.3))/2.)-((15000*Theta1+(-8000*math.cos((2*Theta1)/57.3))/2.)))## mean torque of engine in Nm\n",
"P=2*pi*N*Tmean/60000.## power of the engine in kw\n",
"w=2*pi*N/60.## angular speed of the engine in rad/s\n",
"I=E/(w**2.*Cs)## mass moment of inertia of flywheel in kg-m**2\n",
"print'%s %.1f %s %.1f %s '%('Power of the engine= ',P,' kw'' minimum mass moment of inertia of flywheel=',-I,' kg-m**2'' E value calculated in the textbook is wrong. Its value is -15,124. In textbook it is given as -1370.28')\n",
"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Power of the engine= 314.1 kw minimum mass moment of inertia of flywheel= 19.5 kg-m**2 E value calculated in the textbook is wrong. Its value is -15,124. In textbook it is given as -1370.28 \n"
]
}
],
"prompt_number": 11
}
],
"metadata": {}
}
]
}
|