1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
|
{
"metadata": {
"name": "",
"signature": "sha256:5f892b8e3ed0a74f24a745bdf0e14528cdf96fe8388a860fc7931df67549db87"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Chapter10-Brakes and Dynamometers"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex1-pg268"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"##CHAPTER 10 ILLUSRTATION 1 PAGE NO 268\n",
"##TITLE:Brakes and Dynamometers\n",
"import math\n",
"#calculate torque transmitted by the block brake\n",
"##===========================================================================================\n",
"##INPUT DATA\n",
"d=0.32;##Diameter of the drum in m\n",
"qq=90.;##Angle of contact in degree\n",
"P=820.;##Force applied in N\n",
"U=0.35;##Coefficient of friction\n",
"\n",
"\n",
"U1=((4.*U*math.sin(45/57.3))/((qq*(3.14/180.))+math.sin(90./57.3)));##Equivalent coefficient of friction\n",
"F=((P*0.66)/((0.3/U1)-0.06));##Force value in N taking moments\n",
"TB=(F*(d/2.));##Torque transmitted in N.m\n",
"\n",
"print'%s %.4f %s'%('Torque transmitted by the block brake is ',TB,' N.m')\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Torque transmitted by the block brake is 120.4553 N.m\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex2-pg269"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"##CHAPTER 10 ILLUSRTATION 2 PAGE NO 269\n",
"##TITLE:Brakes and Dynamometers\n",
"import math\n",
"#calculate The bicycle travels a distance and makes turns before it comes to rest\n",
"##===========================================================================================\n",
"##INPUT DATA\n",
"m=120.;##Mass of rider in kg\n",
"v=16.2;##Speed of rider in km/hr\n",
"d=0.9;##Diameter of the wheel in m\n",
"P=120.;##Pressure applied on the brake in N\n",
"U=0.06;##Coefficient of friction\n",
"\n",
"F=(U*P);##Frictional force in N\n",
"KE=((m*(v*(5./18.))**2.)/2.);##Kinematic Energy in N.m\n",
"S=(KE/F);##Distance travelled by the bicycle before it comes to rest in m\n",
"N=(S/(d*3.14));##Required number of revolutions\n",
"\n",
"print'%s %.1f %s %.1f %s'%('The bicycle travels a distance of ',S,' m'and'',N,'turns before it comes to rest')\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The bicycle travels a distance of 168.8 59.7 turns before it comes to rest\n"
]
}
],
"prompt_number": 2
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex3-pg270"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"##CHAPTER 10 ILLUSRTATION 3 PAGE NO 270\n",
"##TITLE:Brakes and Dynamometers\n",
"import math\n",
"#evaluvate maximum torque absorbed\n",
"##===========================================================================================\n",
"##INPUT DATA\n",
"S=3500.;##Force on each arm in N\n",
"d=0.36;##Diamter of the wheel in m\n",
"U=0.4;##Coefficient of friction \n",
"qq=100.;##Contact angle in degree\n",
"\n",
"qqr=(qq*(3.14/180));##Contact angle in radians\n",
"UU=((4*U*math.sin(50/57.3))/(qqr+(math.sin(100./57.3))));##Equivalent coefficient of friction\n",
"F1=(S*0.45)/((0.2/UU)+((d/2.)-0.04));##Force on fulcrum in N\n",
"F2=(S*0.45)/((0.2/UU)-((d/2.)-0.04));##Force on fulcrum in N\n",
"TB=(F1+F2)*(d/2.);##Maximum torque absorbed in N.m\n",
"\n",
"print'%s %.2f %s'%('Maximum torque absorbed is ',TB,' N.m')\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Maximum torque absorbed is 1412.67 N.m\n"
]
}
],
"prompt_number": 3
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex4-pg271"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"##CHAPTER 10 ILLUSRTATION 4 PAGE NO 271\n",
"##TITLE:Brakes and Dynamometers\n",
"import math\n",
"#calculate The maximum braking torque on the drum\n",
"##===========================================================================================\n",
"##INPUT DATA\n",
"a=0.5;##Length of lever in m\n",
"d=0.5;##Diameter of brake drum in m\n",
"q=(5/8.)*(2*3.14);##Angle made in radians\n",
"b=0.1;##Distance between pin and fulcrum in m\n",
"P=2000.;##Effort applied in N\n",
"U=0.25;##Coefficient of friction\n",
"\n",
"T=math.exp(U*q);##Ratios of tension\n",
"T2=((P*a)/b);##Tension in N\n",
"T1=(T*T2);##Tension in N\n",
"TB=((T1-T2)*(d/2.))/1000.;##Maximum braking torque in kNm\n",
"\n",
"print'%s %.2f %s'%('The maximum braking torque on the drum is',TB,' kNm')\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The maximum braking torque on the drum is 4.17 kNm\n"
]
}
],
"prompt_number": 4
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex5-pg271"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"##CHAPTER 10 ILLUSRTATION 5 PAGE NO 271\n",
"##TITLE:Brakes and Dynamometers\n",
"import math\n",
"#caculate the brake is self -locking and tension in the side \n",
"##===========================================================================================\n",
"##INPUT DATA\n",
"q=220.;##Angle of contact in degree\n",
"T=340.;##Torque in Nm\n",
"d=0.32;##Diameter of drum in m\n",
"U=0.3;##Coefficient of friction\n",
"\n",
"Td=(T/(d/2.));##Difference in tensions in N\n",
"Tr=math.exp(U*(q*(3.14/180.)));##Ratio of tensions\n",
"T2=(Td/(Tr-1.));##Tension in N\n",
"T1=(Tr*T2);##Tension in N\n",
"P=((T2*(d/2.))-(T1*0.04))/0.5;##Force applied in N\n",
"b=(T1/T2)*4.;##Value of b in cm when the brake is self-locking\n",
"\n",
"print'%s %.2f %s %.2f %s %.2f %s '%('The value of b is ',b,' cm' 'when the brake is self-locking ' 'Tensions in the sides are ',T1,' N and',T2,' N')\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The value of b is 12.65 cmwhen the brake is self-locking Tensions in the sides are 3107.70 N and 982.70 N \n"
]
}
],
"prompt_number": 5
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex6-pg272"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"##CHAPTER 10 ILLUSRTATION 6 PAGE NO 272\n",
"##TITLE:Brakes and Dynamometers\n",
"import math\n",
"#calculate torque required and thickness necessary to limit the tensile stress to 70 and secton of the lever taking stress to 60 mpa\n",
"##===========================================================================================\n",
"##INPUT DATA\n",
"d=0.5;##Drum diamter in m\n",
"U=0.3;##Coefficient of friction\n",
"q=250;##Angle of contact in degree\n",
"P=750;##Force in N\n",
"a=0.1;##Band width in m\n",
"b=0.8;##Distance in m\n",
"ft=(70*10**6);##Tensile stress in Pa\n",
"f=(60*10**6);##Stress in Pa\n",
"b1=0.1;##Distance in m\n",
"\n",
"T=math.exp(U*(q*(3.14/180.)));##Tensions ratio\n",
"T2=(P*b*10.)/(T+1.);##Tension in N\n",
"T1=(T*T2);##Tension in N\n",
"TB=(T1-T2)*(d/2.);##Torque in N.m\n",
"t=(max(T1,T2)/(ft*a))*1000.;##Thickness in mm\n",
"M=(P*b);##bending moment at fulcrum in Nm\n",
"X=(M/((1/6.)*f));##Value of th**2\n",
"##t varies from 10mm to 15 mm. Taking t=15mm,\n",
"h=math.sqrt(X/(0.015))*1000.;##Section of the lever in m\n",
"\n",
"print'%s %.1f %s %.1f %s %.1f %s'%('Torque required is ',TB,' N.m' 'Thickness necessary to limit the tensile stress to 70 MPa is ',t,' mm ''Section of the lever taking stress to 60 MPa is ',h,' mm')\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Torque required is 861.7 N.mThickness necessary to limit the tensile stress to 70 MPa is 0.7 mm Section of the lever taking stress to 60 MPa is 63.2 mm\n"
]
}
],
"prompt_number": 6
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex7-pg273"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"##CHAPTER 10 ILLUSRTATION 7 PAGE NO 273\n",
"##TITLE:Brakes and Dynamometers\n",
"#calculate value of x and value of power/bd ratio \n",
"import math\n",
"##===========================================================================================\n",
"##INPUT DATA\n",
"P1=30.;##Power in kW\n",
"N=1250.;##Speed in r.p.m\n",
"P=60.;##Applied force in N\n",
"d=0.8;##Drum diameter in m\n",
"q=310.;##Contact angle in degree\n",
"a=0.03;##Length of a in m\n",
"b=0.12;##Length of b in m\n",
"U=0.2;##Coefficient of friction\n",
"B=10.;##Band width in cm\n",
"D=80.;##Diameter in cm\n",
"\n",
"T=(P1*60000.)/(2.*3.14*N);##Torque in N.m\n",
"Td=(T/(d/2.));##Tension difference in N\n",
"Tr=math.exp(U*(q*(3.14/180.)));##Tensions ratio\n",
"T2=(Td/(Tr-1.));##Tension in N\n",
"T1=(Tr*T2);##Tension in N\n",
"x=((T2*b)-(T1*a))/P;##Distance in m;\n",
"X=(P1/(B*D));##Ratio\n",
"\n",
"print'%s %.3f %s %.3f %s'%('Value of x is ',x,' m '' Value of (Power/bD) ratio is ',X,'')\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Value of x is 0.155 m Value of (Power/bD) ratio is 0.037 \n"
]
}
],
"prompt_number": 7
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex8-pg274"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"##CHAPTER 10 ILLUSRTATION 8 PAGE NO 274\n",
"##TITLE:Brakes and Dynamometers\n",
"import math\n",
"#calculate time required to bring the shaft to the rest from its running condition\n",
"##===========================================================================================\n",
"##INPUT DATA\n",
"m=80.;##Mass of flywheel in kg\n",
"k=0.5;##Radius of gyration in m\n",
"N=250;##Speed in r.p.m\n",
"d=0.32;##Diamter of the drum in m\n",
"b=0.05;##Distance of pin in m\n",
"q=260.;##Angle of contact in degree\n",
"U=0.23;##Coefficient of friction\n",
"P=20;##Force in N\n",
"a=0.35;##Distance at which force is applied in m\n",
"\n",
"Tr=math.exp(U*q*(3.14/180.));##Tensions ratio\n",
"T2=(P*a)/b;##Tension in N\n",
"T1=(Tr*T2);##Tension in N\n",
"TB=(T1-T2)*(d/2.);##Torque in N.m\n",
"KE=((1/2.)*(m*k**2)*((2.*3.14*N)/60.)**2);##Kinematic energy of the rotating drum in Nm\n",
"N1=(KE/(TB*2.*3.14));##Speed in rpm\n",
"aa=((2*3.14*N)/60.)**2/(4.*3.14*N1);##Angular acceleration in rad/s**2\n",
"t=((2.*3.14*N)/60.)/aa;##Time in seconds\n",
"\n",
"print'%s %.1f %s'%('Time required to bring the shaft to the rest from its running condition is ',t,' seconds')\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Time required to bring the shaft to the rest from its running condition is 12.7 seconds\n"
]
}
],
"prompt_number": 8
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex9-pg275"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"##CHAPTER 10 ILLUSRTATION 9 PAGE NO 275\n",
"##TITLE:Brakes and Dynamometers\n",
"import math\n",
"#calculate Minimum force required and Time taken to bring to rest \n",
"##===========================================================================================\n",
"##INPUT DATA\n",
"n=12.;##Number of blocks\n",
"q=15.;##Angle subtended in degree\n",
"P=185.;##Power in kW\n",
"N=300.;##Speed in r.p.m\n",
"U=0.25;##Coefficient of friction\n",
"d=1.25;##Diamter in m\n",
"b1=0.04;##Distance in m\n",
"b2=0.14;##Distance in m\n",
"a=1.;##Diatance in m\n",
"m=2400.;##Mass of rotor in kg\n",
"k=0.5;##Radius of gyration in m\n",
"\n",
"Td=(P*60000.)/(2.*3.14*N*(d/2.));##Tension difference in N\n",
"T=Td*(d/2.);##Torque in Nm\n",
"Tr=((1+(U*math.tan(7.5/57.3)))/(1.-(U*math.tan(7.5/57.3))))**n;##Tension ratio\n",
"To=(Td/(Tr-1.));##Tension in N\n",
"Tn=(Tr*To);##Tension in N\n",
"P=((To*b2)-(Tn*b1))/a;##Force in N\n",
"aa=(T/(m*k**2));##Angular acceleration in rad/s**2\n",
"t=((2*3.14*N)/60.)/aa;##Time in seconds\n",
"\n",
"print'%s %.1f %s %.1f %s'%('Minimum force required is ',P,' N' 'Time taken to bring to rest is ',t,' seconds')\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Minimum force required is 406.1 NTime taken to bring to rest is 3.2 seconds\n"
]
}
],
"prompt_number": 9
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Ex10-pg275"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"##CHAPTER 10 ILLUSRTATION 10 PAGE NO 275\n",
"##TITLE:Brakes and Dynamometers\n",
"import math\n",
"#calculate Maximum braking torque and Angular retardation of the drum and Time taken by the system to come to rest \n",
"##===========================================================================================\n",
"##INPUT DATA\n",
"n=12.;## Number of blocks\n",
"q=16.;##Angle subtended in degrees\n",
"d=0.9;##Effective diameter in m\n",
"m=2000.;##Mass in kg\n",
"k=0.5;##Radius of gyration in m\n",
"b1=0.7;##Distance in m\n",
"b2=0.03;##Distance in m\n",
"a=0.1;##Distance in m\n",
"P=180.;##Force in N\n",
"N=360.;##Speed in r.p.m\n",
"U=0.25;##Coefficient of friction\n",
"\n",
"Tr=((1.+(U*math.tan(8/57.3)))/(1.-(U*math.tan(8/57.3))))**n;##Tensions ratio\n",
"T2=(P*b1)/(a-(b2*Tr));##Tension in N\n",
"T1=(Tr*T2);##Tension in N\n",
"TB=(T1-T2)*(d/2.);##Torque in N.m\n",
"aa=(TB/(m*k**2.));##Angular acceleration in rad/s**2\n",
"t=((2.*3.14*N)/60.)/aa;##Time in seconds\n",
"\n",
"print'%s %.2f %s %.2f %s %.2f %s '%('(i) Maximum braking torque is ',TB,'Nm ''(ii) Angular retardation of the drum is ',aa,' rad/s**2''(iii) Time taken by the system to come to rest is ',t,' s')\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"(i) Maximum braking torque is 2481.63 Nm (ii) Angular retardation of the drum is 4.96 rad/s**2(iii) Time taken by the system to come to rest is 7.59 s \n"
]
}
],
"prompt_number": 10
}
],
"metadata": {}
}
]
}
|