summaryrefslogtreecommitdiff
path: root/Theory_Of_Machines/ch2.ipynb
blob: b4603f2275c6a6991615879b348fd05a5296555c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
{
 "metadata": {
  "name": "",
  "signature": "sha256:1f1031fc7a31a26f2df358a4d88897e7d62132cd9ac575d363637d46b39b8c4e"
 },
 "nbformat": 3,
 "nbformat_minor": 0,
 "worksheets": [
  {
   "cells": [
    {
     "cell_type": "heading",
     "level": 1,
     "metadata": {},
     "source": [
      "Chapter 2 : Kinematics of Motion"
     ]
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 2.1 Page No: 13 "
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math \n",
      "\n",
      "# Variables:\n",
      "u1 = 0\n",
      "v1 = 72.*1000./3600 \t\t\t#m/s\n",
      "s1 = 500. \t\t\t                #m\n",
      "\n",
      "# Solution:\n",
      "# Calculating the initial acceleration of the car\n",
      "a1 = (v1**2-u1**2)/(2*s1) \t\t\t#m/s**2\n",
      "#Calculating time taken by the car to attain the speed\n",
      "t1 = (v1-u1)/a1 \t\t\t#seconds\n",
      "#Parameters for the second case\n",
      "u2 = v1\n",
      "v2 = 90.*1000/3600 \t\t\t#m/s\n",
      "t2 = 10.         \t\t\t#seconds\n",
      "\n",
      "#Calculating the acceleration for the second case\n",
      "a2 = (v2-u2)/t2 \t\t\t#m/s**2\n",
      "#Calculating the distance moved by the car in the second case\n",
      "s2 = (u2*t2)+(a2/2*t2**2)\n",
      "#Parameters for the third case\n",
      "u3 = v2\n",
      "v3 = 0 \t\t\t#m/s\n",
      "t3 = 5 \t\t\t#seconds\n",
      "#Calculating the distance moved by the car\n",
      "s3 = (u3+v3)*t3/2 \t\t\t#m\n",
      "\n",
      "#Results:\n",
      "print \" The acceleration of the car, a  =  %.1f m/s**2. \"%(a1)\n",
      "print \" The car takes t  =  %d s to attain the speed.\"%(t1)\n",
      "print \" The acceleration of the car in the second case, a  =  %.1f m/s**2.\"%(a2)\n",
      "print \" The distance moved by the cars  =  %d m.\"%(s2)\n",
      "print \" The distance travelled by the car during braking, s  =  %.1f m.\"%(s3)\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        " The acceleration of the car, a  =  0.4 m/s**2. \n",
        " The car takes t  =  50 s to attain the speed.\n",
        " The acceleration of the car in the second case, a  =  0.5 m/s**2.\n",
        " The distance moved by the cars  =  225 m.\n",
        " The distance travelled by the car during braking, s  =  62.5 m.\n"
       ]
      }
     ],
     "prompt_number": 1
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 2.2 Page no : 14"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "# variables\n",
      "t = 1.           # second\n",
      "v = 6.25         # m/s\n",
      "\n",
      "# calculations and results\n",
      "C1 = v - 0.25 +t -5\n",
      "\n",
      "# when t = 2\n",
      "t = 2.\n",
      "v = t**4/4 - t**3 + 5*t + 2\n",
      "print \"Velocity at t=2 seconds, V = %.f m/s\"%v\n",
      "\n",
      "# when t = 1 seconds and s = 8.30 m.\n",
      "t = 1.\n",
      "s = 8.30\n",
      "C2 = s - 1./20 + 1./4 - 5./2 - 2\n",
      "t = 2.       # seconds\n",
      "s = t**5/20 - t**4/4 + 5*t**2/2 + 2*t + 4\n",
      "print \"Displacement = %.1f m\"%s\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Velocity at t=2 seconds, V = 8 m/s\n",
        "Displacement = 15.6 m\n"
       ]
      }
     ],
     "prompt_number": 1
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 2.3 Page No: 15"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math \n",
      "from scipy.integrate import quad \n",
      "\n",
      "# Variables:\n",
      "#Initial parameters\n",
      "v0 = 100. \t\t\t#kmph\n",
      "t0 = 0\n",
      "#Parameters at the end of 40 seconds\n",
      "v1 = 90./100*v0 \t\t\t#kmph\n",
      "t1 = 40.         \t\t\t#seconds\n",
      "\n",
      "#Solution:\n",
      "#The acceleration is given by\n",
      "#a = (-dv/dt) = k*v\n",
      "#Integrating\n",
      "#we get ln(v) = -k*t+C\n",
      "#Calculating the constant of integration\n",
      "def f3(v): \n",
      "    return 1./v\n",
      "\n",
      "C =  quad(f3,1,100)[0]\n",
      "\n",
      "#Calculating the constant of proportionality\n",
      "k = (C-2.3*math.log10(90))/40\n",
      "#Time after 120 seconds\n",
      "t2 = 120. \t\t\t#seconds\n",
      "#Calculating the velocity after 120 seconds\n",
      "v120 = 10**((-k*t2+C)/2.29)\n",
      "\n",
      "#Results:\n",
      "print \" The velocity at the end of 120 seconds =  %.1f kmph.\"%(v120)\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        " The velocity at the end of 120 seconds =  73.5 kmph.\n"
       ]
      }
     ],
     "prompt_number": 2
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 2.5 Page No: 17"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "%matplotlib inline\n",
      "\n",
      "import math \n",
      "from matplotlib.pyplot import *\n",
      "\n",
      "# Variables:\n",
      "s = 500.        #mm\n",
      "s1 = 125.       #mm\n",
      "s2 = 250.       #mm\n",
      "s3 = 125. \t\t#mm\n",
      "t = 1. \t\t\t#second\n",
      "\n",
      "#Solution:\n",
      "#Matrices for the velocity vs. time graph\n",
      "V = [0 ,750.,750.,0] \t\t\t#The velocity matrix\n",
      "T = [0,1./3,2./3,1] \t\t\t#The time matrix\n",
      "plot(T,V)\n",
      "xlabel(\"Time\")\n",
      "ylabel(\"Velocity\")\n",
      "#Calculating the time of uniform acceleration\n",
      "\n",
      "#Equating the time taken to complete the stroke to 1 second\n",
      "v = (125/(1./2)+250/1+125/(1./2))/1 \t\t\t#mm/s\n",
      "\n",
      "#Results:\n",
      "show()\n",
      "print \" The maximum cutting speed  v  =  %d mm/s.\"%(v)\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Populating the interactive namespace from numpy and matplotlib\n"
       ]
      },
      {
       "metadata": {},
       "output_type": "display_data",
       "png": "iVBORw0KGgoAAAANSUhEUgAAAYkAAAEPCAYAAAC3NDh4AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3X9UVXW+//EnmFa3sUgBnYDSaMpAjpI/ytIZSpHE25SK\nF+xKY14draV37KdNtQTMK6XjjHrvmsa1zLvWDHeWkrpGDcarjp2cHA2/6AiaEjl24+CoBxmyER1B\n9vePrYQKcYCzzz4/Xo+1WEvwnH3ebvW8z2d/Pp/XDjMMw0BERKQV4XYXICIi/ktNQkRE2qQmISIi\nbVKTEBGRNqlJiIhIm9QkRESkTZY2iZycHO69914GDBhARkYG9fX11NbWkpqaisPhIC0tjbq6uubH\n5+fnk5CQQFJSEtu2bbOyNBER8UCYVfskPv/8c8aOHcvRo0fp0aMHmZmZjB07lj//+c/Ex8czb948\nli9fzvHjx1mxYgWlpaXMnj2bvXv3cvLkSUaOHElFRQU9evSwojwREfGAZSOJXr160b17d86dO0dj\nYyP19fXceeedFBcXk52dDcDUqVMpKioCoKioiKysLLp160ZMTAyJiYmUlJRYVZ6IiHjA0ibx0ksv\nceedd3LHHXcQERFBamoqbreb3r17AxAZGcnp06cBqK6uJjY2tvn5sbGxuFwuq8oTEREPWNYkjh07\nxvLly/niiy84ceIEf//73ykoKLDq5URExAI3WHXgkpISHn744eZRw8SJE9m9ezdRUVHU1NQQGRmJ\n2+0mOjoaMEcOVVVVzc93uVzExcVdd9x77rmHY8eOWVW2iEhQio+P5/PPP+/w8ywbSdxzzz3s3buX\n8+fPYxgGO3bsID4+nvT09OYRRUFBAenp6QCkp6ezbt06GhsbcblcHDp0iOHDh1933GPHjmEYhr4M\ng5ycHNtr8JcvnQudC52Lb//q7Idry0YSw4YNIyMjA4fDQXh4OMnJycyZM4f6+noyMzNZs2YNffv2\npbCwEIAhQ4YwYcKE5sevWrWK7t27W1WeiIh4wLImAZCbm0tubu5VP7vpppvYvn17q49//fXXef31\n160sSUREOkA7rgNYSkqK3SX4DZ2Lb+hcfEPnouss20xnlbCwMAKsZBER23X2vVMjCRERaZOahIiI\ntElNQkRE2qQmISIibVKTEBGRNqlJiIhIm9QkRESkTZbuuBa5oqkJ0tJg7167K5HOSkiAjz8GpeWE\nFjUJ8Yn16+Fvf4PqaggLs7sa6YxJk+C992D2bLsrEV/SjmuxXEOD+Sn03XdhzBi7q5HO2r8fnngC\nPvsMbrnF7mqko7TjWvzWmjXQr58aRKB74AEYNQpWrrS7EvEljSTEUvX18L3vwaZNMHSo3dVIV1VW\nwsMPQ0UF9OpldzXSERpJiF9asQIeeUQNIlh873uQkQH5+XZXIr6ikYRYprYW7rsPdu+Ge++1uxrx\nlhMnICkJDh6E2Fi7qxFPdfa9U01CLPPqq/DVV7Bqld2ViLe9/jqcPg2rV9tdiXhKTUL8issFgwZB\nWRnExNhdjXhbXZ05Oty1CwYMsLsa8YSahPiVmTOhd294+227KxGrLF1qbo7csMHuSsQTfjlxXVFR\nQXJycvPXbbfdxsqVK6mtrSU1NRWHw0FaWhp1dXXNz8nPzychIYGkpCS2bdtmZXlikaNH4Xe/g/nz\n7a5ErDRnDpSUmF8SvHw2kmhqaiImJoaSkhKWLFlCfHw88+bNY/ny5Rw/fpwVK1ZQWlrK7Nmz2bt3\nLydPnmTkyJFUVFTQo0ePbwrWSMLvZWTAsGFqEqFg9Wr47W/hD3/QTnp/55cjiZZ27NjBPffcQ1xc\nHMXFxWRnZwMwdepUioqKACgqKiIrK4tu3boRExNDYmIiJfqYElD27YM9e2DuXLsrEV+YNs1c7bR9\nu92ViFV81iTWrl3LlClTAHC73fTu3RuAyMhITp8+DUB1dTWxLdbUxcbG4nK5fFWidJFhwGuvQU4O\n/NM/2V2N+MINN8B//If5997UZHc1YgWfNImLFy+yZcsWJk+e7IuXE5vs2GGuapo+3e5KxJcmTjSb\nxfvv212JWMEnKbC///3vGTJkCFFRUQBERUVRU1NDZGQkbreb6OhowBw5VFVVNT/P5XIRFxd33fFy\nc3Obf52SkkJKSoql9Uv7mprMT5OLFplvGBI6wsLMVWyzZpkNQ1Hi/sHpdOJ0Ort8HJ9MXGdlZTFu\n3Dh+9KMfATB37tzmietf/OIXHD9+nJUrVzZPXO/Zs6d54rqyspLuLf7VaeLaPxUWwpIl5pyEJjBD\nU1oaTJigKHF/5bf7JM6dO8ddd93F8ePH6dmzJwC1tbVkZmZy6tQp+vbtS2FhIREREQAsXryYgoIC\nwsPDWbZsGWlpaVcXrCbhdxQFLqAocX/nt03C29Qk/M+qVeZNhbTCRbKyzJ32P/2p3ZXItdQkxBaK\nApeWFCXuv/x+n4QEJ0WBS0uKEg8+GklIpykKXFqjKHH/pMtN4nOKApe2KErc/6hJiE8pCly+jaLE\n/Y+ahPiUosClPYoS9y9qEuIzR4/CqFHmevjbb7e7GvFX58+bo4kNG2D4cLurEa1uEp958014+WU1\nCPl2N99shj2+9poZ/iiBSU1COkRR4NIRihIPfGoS4jFFgUtHKUo88KlJiMcUBS6doSjxwKaJa/FI\nU5N5S9LXXgPdFkQ6audOM0r8008VJW4XTVyLpdavNyPAMzLsrkQC0WOPQf/+8N57dlciHaWRhLRL\nUeDiDYoSt5dGEmKZNWugXz81COmaBx4w99esWGF3JdIRGknIt1IUuHjTlSjxo0fNHfviOxpJiCUU\nBS7edCVKXHEugUMjCWmTosDFCooSt4eym8TrFAUuVlGUuO/57eWmuro6Jk+ezKBBg7j//vvZu3cv\ntbW1pKam4nA4SEtLo66urvnx+fn5JCQkkJSUxLZt26wuT9rgcpnLFRcssLsSCUavvgqbN5tzE+Lf\nLG8SM2fOZOLEiRw8eJDDhw+TkJBATk4O48ePp6ysjHHjxpGTkwNAaWkpGzdupLy8nK1btzJr1iwu\nXrxodYnSirw8Mw5c94oQK0REwCuvwBtv2F2JtMfSy01nzpzhoYceorKy8qqfx8fHU1JSQu/evamp\nqeGhhx7i888/Z+HChdxyyy289NJLAPzzP/8zr732GiNHjvymYF1uspyiwMUXFCXuW355uamyspKo\nqCj+5V/+hYEDB/LMM8/w9ddf43a76X15/VtkZCSnT58GoLq6mtgWM1mxsbG4XC4rS5RWKApcfEFR\n4oHhBisP3tTUxL59+1ixYgXDhg1j3rx5vPXWW10+bm5ubvOvU1JSSElJ6fIxxbRvn3k3sV//2u5K\nJBRMmwY/+5kZJT52rN3VBBen04nT6ezycSxtEnFxccTExDBs2DAAMjIyWLhwIdHR0dTU1BAZGYnb\n7SY6OhowRw5VVVXNz3e5XMTFxV133JZNQrznShT4ggWKAhffaBklPmYMhGvnltdc+wE6Ly+vU8ex\n9K8kLi6OyMhIPvvsMwB27NjB/fffz7hx4ygoKACgoKCA9PR0ANLT01m3bh2NjY24XC4OHTrEcF2s\n9BlFgYsdFCXu3yzfJ3Hw4EFmzJhBfX09d911F//zP/+DYRhkZmZy6tQp+vbtS2FhIREREQAsXryY\ngoICwsPDWbZsGWlpaVcXrIlrSygKXOykKHHraTOddElhISxZYs5JhIXZXY2EorFjzVHF7Nl2VxKc\n1CSk0xQFLv5AUeLW8sslsBIYFAUu/kBR4v5JI4kQpyhw8SeKEreORhLSKYoCF3+iKHH/o5FECFMU\nuPgjRYlbQxPX0mGKAhd/pShx71OTkA5xuWDQICgrU9Kr+J+6OnN0u2sXDBhgdzXBQU1COmTmTHNi\nUNd+xV8tXWrmiG3YYHclwUFNQjymKHAJBIoS9y6tbhKPKQpcAoGixP2DmkSIuRIFPneu3ZWItG/a\nNHO10/btdlcSutQkQoiiwCXQtIwSb2qyu5rQpCYRQhQFLoFIUeL20sR1iFAUuAQyRYl3nSau5Vut\nX29GgGdk2F2JSMc99hj076/NdXbQSCIEKApcgkFpqRklXlmpKPHO0EhC2vTee4oCl8A3ZIiixO2g\nkUSQUxS4BBNFiXeeRhLSKkWBSzBRlLjvWT6S6NevH7feeivdunWje/fulJSUUFtbS2ZmJqdOneK7\n3/0u69atIyIiAoD8/Hx+85vf0K1bN5YtW8bYsWOvLlgjCY8pClyCkaLEO8dvs5v69+9PaWkpvXr1\nav7Z3LlziY+PZ968eSxfvpzjx4+zYsUKSktLmT17Nnv37uXkyZOMHDmSiooKevTo8U3BahIeUxS4\nBCtFiXecX19uuraw4uJisrOzAZg6dSpFRUUAFBUVkZWVRbdu3YiJiSExMZGSkhJflBh0XC5zwnrB\nArsrEfG+V1+FzZvNuQmxluVNIiwsjNTUVBwOB//1X/8FgNvtpvflWafIyEhOnz4NQHV1NbEtxo+x\nsbG4XC6rSwxKeXlmHLjuFSHBKCICXnkF3njD7kqC3w1Wv8DevXuJjo7G7Xbz+OOPM8ALdxDJzc1t\n/nVKSgopKSldPmYwOXoUfvc7MwpcJFjNmQMrV0JJiaLEW+N0OnE6nV0+juVNIjo6GoCoqCgyMjLY\nt28fUVFR1NTUEBkZidvtbn5MbGwsVVVVzc91uVzExcVdd8yWTUKupyhwCQUto8T/8AczUUC+ce0H\n6Ly8vE4dx9LLTfX19dTX1wNw7tw5tm7dSmJiIunp6RQUFABQUFBAeno6AOnp6axbt47GxkZcLheH\nDh1iuD4idIiiwCWUKErcepaOJE6dOsVTTz1FWFgY9fX1ZGVl8cMf/pCRI0eSmZnJmjVr6Nu3L4WF\nhQAMGTKECRMm4HA4CA8PZ9WqVXRXmpfHFAUuoaZllPiYMRCunV9epx3XQWT7dvM67eHD5n8ekVBg\nGPDgg/DSS5CZaXc1/stv90l4m5pE6xQFLqFMUeLt8+t9EmI9RYFLKFOUuHU0kggCigIXUZR4ezSS\nCGGKAhdRlLhVNJIIcIoCF/lGZSWMGAEVFYoSv5ZGEiFKUeAi31CUuPe1O5IYMmQI06dP5+mnn+Z2\nP9jCq5HENxQFLnI9RYm3zrKRxNq1a6murmbYsGFkZWXxv//7v3qT9hNvvw0TJ6pBiLR0xx3mclil\n93iHx3MSTU1NfPDBBzz33HOEh4czbdo0fvKTnxAZGWl1jVfRSMLkcsGgQVBWpqRXkWvV1Zkfnnbt\nAi9kigYFS+ckDh48yIsvvsgrr7zCpEmTeP/997n99tuvu2uc+I6iwEXapihx7/FoTuK2225jxowZ\nTJo0iRtvvLH59yZNmsSGDRssL7IljSTMKPBRo8wocD+YJhLxS+fPm6OJDRsUJQ4WxnL85S9/4e67\n777qZ8ePH6d///4dfjFvUJMwV28MGwbz59tdiYh/W70afvtbRYmDhZebMlrJeZg0aVKHX0i8Q1Hg\nIp5TlHjXtZkVeuTIET799FPq6urYuHEjhmEQFhbGuXPn+Prrr31Zo1ymKHCRjlGUeNe12SQqKirY\nsmULX331FVu2bGn++c0338xqpWjZYscOc1XT9Ol2VyISOCZOhHfegcJCyMqyu5rA0+6cxJ49exgx\nYoSv6mlXqM5JKApcpPN27oQf/xiOHAndKHGvT1y/8847zJ8/n7mtXPwOCwtj5cqVHa/SC0K1SRQW\nwpIl5pxEqE/AiXTG2LEwYQI895zdldijs++dbV5uSkhIAMwlsGEt3pWuzE2I7zQ0mOu9331XDUKk\ns/LzzSjxZ55RlHhHKAU2APzqV+Zab63QEOmazEwzqeD11+2uxPcsWwI7evRozp492/x9XV0dqamp\nHr/ApUuXSE5O5oknngCgtraW1NRUHA4HaWlp1NXVNT82Pz+fhIQEkpKS2LZtW0f+HEGrvh7eesv8\nFCQiXbNoEfz853DmjN2VBI52m0RtbS233npr8/cRERHU1NR4/AIrVqwgISGh+RJVTk4O48ePp6ys\njHHjxpGTkwNAaWkpGzdupLy8nK1btzJr1iwuXrzY0T9P0FEUuIj3KEq849ptEpcuXaK6urr5e5fL\nRUNDg0cHd7lcFBcXM2PGjOZhTnFxMdnZ2QBMnTqVoqIiAIqKisjKyqJbt27ExMSQmJhISUlJh/9A\nwaS21vzUs2iR3ZWIBI8FC2DNGnM5ubSvzYnrKxYuXMjQoUMZPXo0ADt37uSXv/ylRwd/4YUXWLp0\n6VWXq9xuN70v3zIqMjKS06dPA1BdXc1jjz3W/LjY2FhcIf63qChwEe9rGSWuLV/ta7dJPPXUUzz4\n4IPs3r0bgGXLltGnT592D/zBBx8QHR1NcnIyTqezy4W2lNsiKD4lJYWUlBSvHt8fuFzmvavLy+2u\nRCT4vPqq+eHr6NHgjRJ3Op1eee9tt0kA7Nq1iz/+8Y+AuQR2sge7uf70pz+xefNmiouLuXDhAmfP\nniU7O5uoqChqamqIjIzE7XYTHR0NmCOHqqqq5ue7XC7i4uJaPXZuCNxN5EoU+B132F2JSPBpGSXu\n4yBrn7n2A3ReXl6njtPuEth58+Zx+PBhpkyZgmEYFBYWcv/997N8+XKPX+Sjjz7iZz/7GVu2bGHu\n3LnEx8czb948fvGLX3D8+HFWrlxJaWkps2fPZs+ePZw8eZKRI0dSWVlJ92u2R4bCElhFgYtYL9Si\nxL2+me6Kbdu2cejQIcIvJ2M9++yzJCYmdqpAMLtZZmYma9asoW/fvhQWFgLmpr0JEybgcDgIDw9n\n1apV1zWIUPHmm/Dyy2oQIla6+WbIyTGjbhQl3rZ2RxIJCQn86U9/IiIiAjD3SYwYMYIjR474pMBr\nBftIYt8+Mzrgs8+U9CpitcZGGDgQVq40YzuCmWUjiVdeeYWBAwcyZswYDMNg586dLFy4sFNFyrdT\nFLiIbylKvH0exXJ8+eWX7N27l7CwMEaMGEFsbKwvamtVMI8ktm+HOXPg8GHzH6+IWM8w4MEH4cUX\ngztK3OspsKWlpdcF+115IYAHHnigM3V2WbA2CUWBi9gnFKLEvd4kUlJSvjXt9cMPP+zwi3lDsDaJ\ndetg6VJFgYvYJdijxL3eJPxVMDaJhgZISDCjwMeMsbsakdBUWmpGiVdWBmeUuGUpsF9//TVvvvkm\n0y/fM/PYsWNX3c5Uuu6996BfPzUIETsNGWLuT1qxwu5K/Eu7I4knn3yShx9+mF//+tccPnyYCxcu\nMHz4cMrKynxV41WCbSRRX28mU27apKRXEbtVVsKIEVBRAZcj5oKGZSOJv/zlL8yfP58ePXoAcNNN\nNzVvrJOuUxS4iP9QlPj12l1o2aNHD86fP9/8/ZdffmlpQaHkShT45exEEfEDCxZAUhL85Cdg42p/\nv9HmkOD555/n448/Jicnh9GjR+NyuXjmmWd45JFHyNdt0rxCUeAi/ueOO8zlsCGQI+qRNuckli9f\nzrp16zhx4gSjR49mwIAB3H333YwaNcqjqHCrBMuchMtl3mu3vFxJryL+pq7O/PC2a1fwRIlbtgT2\niy++YO3ataxdu5bz58/z9NNPM2XKFO616eNvsDSJmTPNiTFd+xTxT0uXwt69wRMl7pN9EgcOHODZ\nZ5+lvLycS5cudfjFvCEYmoSiwEX8X7BFiVu2uqmxsZHNmzfz9NNP8/jjjzNgwAA2btzYqSLFpChw\nEf/XMko8wD+XdkmbI4lt27axdu1aioqKGD58OFOmTOGHP/wh3/nOd3xd41UCfSShKHCRwBFMUeJe\nv9z02GOPMWXKFCZNmkSvXr26XKC3BHKTMAxzV3Vmprl6QkT834YNZpz4//t/gR0lruymAKAocJHA\nEyxR4moSfk5R4CKBKxiixC2buBbveP99MwI8I8PuSkSkox57DO6+G1avtrsS37OsSVy4cIFhw4aR\nnJzMvffeywsvvABAbW0tqampOBwO0tLSqKura35Ofn4+CQkJJCUlsW3bNqtK87mGBnNF09tv614R\nIoEqPx/eegvOnbO7Et+yrEncdNNN7Nq1iwMHDvDpp5+yZ88ePvzwQ3Jychg/fjxlZWWMGzeOnJwc\nwLwT3saNGykvL2fr1q3MmjWLixcvWlWeTykKXCTwhWqUuKWXm26++WYALl68yKVLl4iOjqa4uJjs\n7GwApk6dSlFREQBFRUVkZWXRrVs3YmJiSExMpKSkxMryfKK+3vz0obgrkcC3aJEZynnmjN2V+I6l\nTaKpqYnBgwfTp08fHn30URITE3G73fS+HNQeGRnJ6dOnAaiuria2ReRibGwsLpfLyvJ8QlHgIsEj\nFKPELV2IGR4ezp///Ge++uor0tLSvHZf7NwW8YwpKSmkpKR45bjepihwkeATKFHiTqcTp9PZ5eP4\nZLX+bbfdxvjx4/nkk0+IioqipqaGyMhI3G430dHRgDlyqKqqan6Oy+UiLi6u1ePlBkiGr6LARYJP\nyyhxf17tdO0H6Ly8vE4dx7LLTWfOnOHrr78G4Pz582zfvp2kpCTS09MpKCgAoKCggPT0dADS09NZ\nt24djY2NuFwuDh06xPAATtVyucwJ68vz8iISRObPh82bzbDOYGfZSOLEiRM888wzGIbBhQsXePrp\npxk/fjwjRowgMzOTNWvW0LdvXwoLCwEYMmQIEyZMwOFwEB4ezqpVq+geqLtWgLw8Mw5c94oQCT4R\nEfDKK/DGG8ETJd4W7bi2gKLARYJfoEWJa8e1H1EUuEjwC5UocTUJL9u3z7yb1dy5dlciIlabNg1O\nnIAgCoi4jpqEFxmG+aliwQLdK0IkFNxwgxkj/tOfmiGewUhNwot27DBXNU2fbnclIuIrEyeazeLy\nGpygo4lrL1EUuEjoCoQocU1c20xR4CKhK5ijxDWS8IKGBkhIgHffVdKrSKgqLYUnnoDKSrjlFrur\nuZ5GEjZSFLiIBGuUuEYSXVRfbyZDbtqkpFeRUFdZCSNGQEUFXA679hsaSdhEUeAickUwRolrJNEF\ntbVw331mFLiSXkUEzM11SUlw8KB/RYl39r1TTaILXn0VvvoKVq2yuxIR8Sc//Sm43f612klNwsdc\nLhg0CMrLlfQqIlerqzMvPf3xjzBggN3VmNQkfGzmTHNiKpiuPYqI9yxZAp984j9R4moSPqQocBFp\nj79FiWt1kw8pClxE2hMsUeJqEh2kKHAR8VQwRImrSXSAosBFpCOCIUpcTaIDFAUuIh0V6FHiljaJ\nqqoqvv/975OUlMR9993HkiVLAKitrSU1NRWHw0FaWhp1dXXNz8nPzychIYGkpCS2+dEYranJHEUs\nWmT+hYuIeCIszFwF+eabZhhooLG0SfTo0YNf/vKXlJeXU1payurVqzl48CA5OTmMHz+esrIyxo0b\nR05ODgClpaVs3LiR8vJytm7dyqxZs7h48aKVJXpMUeAi0lmBHCVuaZPo06cPAwcOBOA73/kODoeD\n6upqiouLyc7OBmDq1KkUFRUBUFRURFZWFt26dSMmJobExERKSkqsLNEjDQ3mp4C33zYbhYhIR+Xn\nw1tvwblzdlfSMT6bk/jiiy/Yt28fI0eOxO120/tyRGJkZCSnT58GoLq6mtgWYSexsbG4XC5fldgm\nRYGLSFcFapS4T66u//3vfycjI4MVK1Zw6623dvl4ubm5zb9OSUkhJSWly8dsS3292f03bbLsJUQk\nRCxaZEaJz5plfZS40+nE6XR2+TiWN4mGhgYmTZrEv/7rv/LUU08BEBUVRU1NDZGRkbjdbqKjowFz\n5FBVVdX8XJfLRVxc3HXHbNkkrKYocBHxlpZR4kuXWvta136AzsvL69RxLL3cZBgG//Zv/0ZCQgIv\nvPBC88/T09MpKCgAoKCggPT09Oafr1u3jsbGRlwuF4cOHWK4jfvZa2vh5z83u7+IiDcsWABr1pjL\n6QOBpdlNH3/8Md///vdxOByEXZ7xzc/PZ/jw4WRmZnLq1Cn69u1LYWEhERERACxevJiCggLCw8NZ\ntmwZaWlpVxfsw+wmRYGLiBXsiBJXwJ+XKQpcRKxiR5S4moSXKQpcRKzk6yhxNQkvUhS4iFjt/Hlz\nNLFhAzz4oPWvp6hwL1IUuIhYLVCixNUkrqEocBHxlWefhb/+1b+jxNUkWlAUuIj4UiBEiatJtLB9\nu6LARcS3/D1KXBPXlzU1wbBh5khi8mSvH15EpE07d8KPfwxHjkD37ta8hiauu0hR4CJiF3+OEtdI\nAjMKPCEB3n1XSa8iYo/SUnjiCaishFtu8f7xNZLoAkWBi4jd/DVKPORHEvX15oaWTZuU9Coi9qqs\nNKPEKyq8HyWukUQnKQpcRPxFyyhxfxHSI4naWrjvPti9G+691yuHFBHpkhMnICkJDh6EFjfq7DJl\nN3WCosBFxB9ZESWuJtFBigIXEX9lRZS4mkQHKQpcRPyZt6PE1SQ6QFHgIuLvvB0lrtVNHaAocBHx\nd/4SJR5yTUJR4CISKPwhStzSJjF9+nT69OlDUlJS889qa2tJTU3F4XCQlpZGXV1d8+/l5+eTkJBA\nUlIS2yw4K4oCF5FA4g9R4pY2iWeffZatW7de9bOcnBzGjx9PWVkZ48aNIycnB4DS0lI2btxIeXk5\nW7duZdasWVy8eNGr9SgKXEQCjd1R4pY2iVGjRnH7NRf+i4uLyc7OBmDq1KkUFRUBUFRURFZWFt26\ndSMmJobExERKSkq8VktTk9mNFy0yT7iISCAICzNXYb75phlG6ms+n5Nwu930vhxKEhkZyenTpwGo\nrq4mtsX2wtjYWFwul9de9/33ITxcUeAiEnjsjBIPyM/Uubm5zb9OSUkhJSXlWx/f0GB24V/9yuzK\nIiKBJj/fjBJ/5hnPosSdTidOp7PLr+vzJhEVFUVNTQ2RkZG43W6io6MBc+RQVVXV/DiXy0VcXFyr\nx2jZJDxxJQp89OjOVi0iYq+WUeKvv97+46/9AJ2Xl9ep1/X55ab09HQKCgoAKCgoID09vfnn69at\no7GxEZfLxaFDhxg+fHiXX6++Ht56y+zCIiKBbNEi+PnP4cwZ372mpTuup0yZwkcffURNTQ19+vRh\n4cKFPPkkbM6YAAAIpElEQVTkk2RmZnLq1Cn69u1LYWEhERERACxevJiCggLCw8NZtmwZaWlp1xfc\nwV2D+flw4ID/3mRcRKQjZs+Gnj1h6dKOPU+xHK1QFLiIBJvORomrSbRCUeAiEow6EyWuJnENRYGL\nSLC6EiW+axfcf79nz1GTuIaiwEUkmHU0SlxNogVFgYtIsOtolLiiwltQFLiIBDtfRYkHXZNQFLiI\nhIpnnzVXO1kZJR5UTUJR4CISSnwRJR5UTUJR4CISaiZNsjZKPGgmrpuaYNgwcyQxebINhYmI2GTn\nTvjxj+HIEejevfXHhPzEtaLARSRUWRklHhQjiYYGSEgwo8CV9Coioai01IwSr6xsPUo8pEcSigIX\nkVDXMkrcmwJ+JFFfb24o2bQJhg61sTAREZtVVsKIEVBRYSZOtBSyI4kVK+CRR9QgRES+9z1zXtab\ncUQBPZJQFLiIyNXaihIPyewmRYGLiFyvtSjxkGsSigIXEWlda1HiIdckFAUuItK2a6PEg2bieuvW\nrSQlJZGQkMA777zT6mOOHoXf/Q7mz/dxcSIiAWLuXLNJfPJJ147jV03iH//4B8899xxbt26lrKyM\n9evXc+DAgesepyhwk9PptLsEv6Fz8Q2di2+E8rnwVpS4XzWJTz75hMTERGJiYrjhhhvIzMykqKjo\nuscpCtwUyv8BrqVz8Q2di2+E+rnwRpS4XzUJl8tFXFxc8/exsbG4XK7rHqcocBGR9rWMEu8sv2oS\nYWFhHj1OUeAiIp65EiXeaYYf2bVrlzF+/Pjm75csWWIsWrToqsfEx8cbgL70pS996asDX/Hx8Z16\nX/arJbAXLlxgwIAB7N69m+joaB5++GFWrVrFAw88YHdpIiIhqSuDEK+76aabePfdd0lLS6OpqYns\n7Gw1CBERG/nVSEJERPyLX01ct+TJprp///d/JzExkQceeKDV/RTBor1z8Zvf/AaHw0FSUhJDhw6l\ntLTUhip9w5N/FwD79u3jhhtuYOPGjT6szrc8ORdOp5Phw4czePBgfvCDH/i4Qt9p71ycPHmS0aNH\nk5iYyH333ceqIA18mz59On369CEpKanNx3T4fbPTs8wWunDhgtGvXz/D5XIZDQ0NxtChQ439+/df\n9Zj169cbTz75pGEYhrF//35j0KBBdpRqOU/OxSeffGKcPXvWMAzD+P3vf28MHjzYjlIt58m5MAzD\naGxsNB599FFj/Pjxxvr1622o1HqenIu//vWvRmJionHq1CnDMAzjzJkzdpRqOU/OxRtvvGG89tpr\nhmEYhtvtNiIiIowLFy7YUa6ldu3aZezfv98YOHBgq7/fmfdNvxxJeLKprri4mOzsbACSk5NpbGxs\ndU9FoPPkXAwfPpyePXsC8Mgjj1BdXW1HqZbzdLPlf/7nf5KRkUFUVJQNVfqGJ+di7dq1ZGZmEh0d\nDUCvXr3sKNVynpyLuLg4zp49C8DZs2eJiorixhtvtKNcS40aNYrbvyWKojPvm37ZJDzZVOfpxrtA\n19E/56pVq3jyySd9UZrPeXIuqqur2bRpE8899xzg+d6bQOPJuaioqODEiROMGDECh8PB6pa50UHE\nk3Mxc+ZMDh8+zB133MGgQYNY4e17fAaIzrxv+tXqpis8/Y9tXDPnHoxvCB35MzmdTtasWcPu3bst\nrMg+npyLefPm8fbbbzcnXl77byRYeHIuLl26xKFDh9i5cyf19fU89NBDjBgxgsTERB9U6DuenIvF\nixczePBgnE4nx44dIzU1lYMHDzaPwENJR983/XIkERsbS1VVVfP3VVVVV3W/1h7jcrmIbXkbpiDh\nybkAKCsrY8aMGWzevPlbh5uBzJNzUVpaSlZWFv3792fDhg08//zzbN682delWs6Tc3HnnXcyduxY\nbr75Znr37s0PfvADysrKfF2q5Tw5Fx9//DGTJ08GID4+nv79+3PkyBGf1ukPOvW+6bUZEy86f/68\ncddddxkul8u4ePGiMXToUKO0tPSqx6xfv9546qmnDMMwjNLSUsPhcNhRquU8ORf/93//Z8THxxt7\n9uyxqUrf8ORctDRt2jRjw4YNPqzQdzw5F/v37zdGjx5tNDY2GufOnTMSEhKMAwcO2FSxdTw5F88/\n/7yRm5trGIZhnDx50ujbt2/zhH6wOX78+LdOXHf0fdMvLze1tanuyrK1WbNmMWnSJD788EMSExO5\n8cYb+e///m+bq7aGJ+di4cKF/O1vf2u+Dt+9e3dKSkrsLNsSnpyLUOHJuUhOTubxxx/H4XDQ0NDA\njBkzGDx4sM2Ve58n52LBggVMnTqVhIQELl26xKJFi5on9IPJlClT+Oijj6ipqSEuLo68vDwaGhqA\nzr9vajOdiIi0yS/nJERExD+oSYiISJvUJEREpE1qEiIi0iY1CRERaZOahIiItElNQuRbnDlzhuTk\nZJKTk/nud79LbGwsycnJ9OzZkzlz5thdnojltE9CxEN5eXn07NmTF1980e5SRHxGIwmRDrjymcrp\ndPLEE08AkJuby49+9CMeffRR+vXrx8aNG3n55ZdxOByMHj2af/zjHwDs2bOnOZH10UcfDdpIdwku\nahIiXvDFF1+wc+dONm/ezNSpU0lLS6OsrIzbbruNLVu2cPHiRebMmcMHH3xAWVkZs2fPZv78+XaX\nLdIuv8xuEgkkYWFhPP7444SFhTFw4ECamppITU0FICkpiaqqKsrLy/n8888ZM2YMYMZ49+nTx86y\nRTyiJiHiBT169AAgPDyc7t27N/88PDycpqYmDMNg0KBB7Nq1y64SRTpFl5tEusiTtR8Oh4Mvv/yy\n+cbzjY2NVFRUWF2aSJepSYh0wJW7eIWFhbX665aPafl9jx49eP/995k9ezaDBw9m8ODBfPTRR74r\nXKSTtARWRETapJGEiIi0SU1CRETapCYhIiJtUpMQEZE2qUmIiEib1CRERKRNahIiItImNQkREWnT\n/wcnH4HjeqCFSgAAAABJRU5ErkJggg==\n",
       "text": [
        "<matplotlib.figure.Figure at 0x7f5ef004da50>"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        " The maximum cutting speed  v  =  750 mm/s.\n"
       ]
      }
     ],
     "prompt_number": 3
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 2.6 Page No: 19"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "# Variables:\n",
      "N0 = 0\n",
      "N = 2000. \t\t\t#rpm\n",
      "t = 20. \t\t\t#seconds\n",
      "\n",
      "#Solution:\n",
      "#Calculating the angular velocities\n",
      "omega0 = 0\n",
      "omega = 2*math.pi*N/60 \t\t\t#rad/s\n",
      "#Calculating the angular acceleration\n",
      "alpha = (omega-omega0)/t \t\t\t#rad/s**2\n",
      "#Calculating the angular distance moved by the wheel during 2000 rpm\n",
      "theta = (omega0+omega)*t/2 \t\t\t#rad\n",
      "#Calculating the number of revolutions made by the wheel\n",
      "n = theta/(2*math.pi)\n",
      "\n",
      "#Results:\n",
      "print \" The angular acceleration of the wheel, alpha  =  %.3f rad/s**2.\"%(alpha)\n",
      "print \" The wheel makes n  =  %.1f revolutions.\"%(n)\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        " The angular acceleration of the wheel, alpha  =  10.472 rad/s**2.\n",
        " The wheel makes n  =  333.3 revolutions.\n"
       ]
      }
     ],
     "prompt_number": 7
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 2.7 Page No: 21"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math \n",
      "\n",
      "# Variables:\n",
      "r = 1.5 \t\t\t#m\n",
      "N0 = 1200.\n",
      "N = 1500. \t\t\t#rpm\n",
      "t = 5. \t\t\t#seconds\n",
      "\n",
      "#Solution:\n",
      "#Calculating the angular velocities\n",
      "omega0 = 2*math.pi*N0/60\n",
      "omega = 2*math.pi*N/60 \t\t\t#rad/s\n",
      "#Calculating the linear velocity at the beginning\n",
      "v0 = r*omega0 \t\t\t#m/s\n",
      "#Calculating the linear velocity at the end of 5 seconds\n",
      "v5 = r*omega \t\t\t#m/s\n",
      "#Calculating the angular acceleration\n",
      "alpha = (omega-omega0)/t \t\t\t#ad/s**2\n",
      "#Calculating the math.tangential acceleration after 5 seconds\n",
      "TangentialAcceleration = alpha*(r/2) \t\t\t#m/s**2\n",
      "#Calculating the radial acceleration after 5 seconds\n",
      "RadialAcceleration = (round(omega)**2)*(r/2) \t\t\t#m/s**2\n",
      "\n",
      "#Results:\n",
      "print \" The linear velocity at the beginning, v0  =  %.1f m/s.\"%(v0)\n",
      "print \" The linear velocity after 5 seconds, v5  =  %.1f m/s.\"%(v5)\n",
      "print \" The tangential acceleration after 5 seconds is %.1f m/s**2.\"%(TangentialAcceleration)\n",
      "print \" The radial acceleration after 5 seconds is %.f m/s**2.\"%(RadialAcceleration)"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        " The linear velocity at the beginning, v0  =  188.5 m/s.\n",
        " The linear velocity after 5 seconds, v5  =  235.6 m/s.\n",
        " The tangential acceleration after 5 seconds is 4.7 m/s**2.\n",
        " The radial acceleration after 5 seconds is 18487 m/s**2.\n"
       ]
      }
     ],
     "prompt_number": 4
    }
   ],
   "metadata": {}
  }
 ]
}