1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
|
{
"metadata": {
"name": "",
"signature": "sha256:6f6f9834675f8099d2eeff645403e77a31c86a5aa089d3f5df9c6f15fe0a122e"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Chapter 14 : Gyroscopic Couple and Precessional Motion"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 14.1 Page No : 484"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math \n",
"\n",
"# Variables:\n",
"d = 300./1000\n",
"r = d/2\n",
"l = 600./1000 \t\t\t#m\n",
"m = 5. \t\t\t#kg\n",
"N = 300. \t\t\t#rpm\n",
"\n",
"#Solution:\n",
"#Calculating the angular speed of the disc\n",
"omega = 2*math.pi*N/60 \t\t\t#rad/s\n",
"#Calculating the mass moment of inertia of the disc\n",
"#about an axis through its centre of gravity and perpendicular to the plane of the disc\n",
"I = m*r**2/2 \t\t\t#kg-m**2\n",
"#Calculating the couple due to mass of disc\n",
"C = m*9.81*l \t\t\t#N-m\n",
"#Calculating the speed of precession\n",
"omegaP = C/(I*omega) \t\t\t#rad/s\n",
"\n",
"#Results:\n",
"print \" Speed of precession, omegaP = %.1f rad/s.\"%(omegaP)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
" Speed of precession, omegaP = 16.7 rad/s.\n"
]
}
],
"prompt_number": 2
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 14.2 Page No : 485"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math \n",
"\n",
"# Variables:\n",
"d = 150./1000\n",
"r = d/2\n",
"x = 100./1000 \t\t\t#m\n",
"m = 5. \t\t\t #kg\n",
"N = 1000.\n",
"NP = 60. \t\t\t#rpm\n",
"\n",
"#Solution:\n",
"#Calculating the angular speed of the disc\n",
"omega = round(2*math.pi*N/60,1) \t\t\t#rad/s\n",
"#Calculating the speed of precession of the axle\n",
"omegaP = round(2*math.pi*NP/60,3) \t\t\t#rad/s\n",
"#Calculating the mass moment of inertia of the disc\n",
"# about an axis through its centre of gravity and perpendicular to the plane of disc\n",
"I = round(m*r**2/2,3) \t\t\t#kg-m**2\n",
"#Calculating the gyroscopic couple acting on the disc\n",
"C = round(I*omega*omegaP,1) \t\t\t#N-m\n",
"#Calculating the force at each bearing due to the gyroscopic couple\n",
"F = C/x \t\t\t#N\n",
"#Calculating the reactions at the bearings A and B\n",
"RA = m/2*9.81 \t\t\t#N\n",
"RB = round(RA,1) \t\t\t#N\n",
"#Resulmath.tant reaction at each bearing:\n",
"#Calculating the resultant reaction at the bearing A\n",
"RA1 = F+RA \t\t\t#N\n",
"#Calculating the resultant reaction at the bearing B\n",
"RB1 = F-RB \t\t\t#N\n",
"\n",
"#Results:\n",
"print \" Resultant reaction at the bearing A RA1 = %.1f N upwards.\"%(RA1)\n",
"print \" Resultant reaction at the bearing B RB1 = %.1f N downwards.\"%( RB1)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
" Resultant reaction at the bearing A RA1 = 116.5 N upwards.\n",
" Resultant reaction at the bearing B RB1 = 67.5 N downwards.\n"
]
}
],
"prompt_number": 7
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 14.3 Page No : 487"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math \n",
"\n",
"# Variables:\n",
"R = 50.\n",
"k = 0.3 \t\t\t#m\n",
"v = 200.*1000/3600 \t\t\t#m/s\n",
"m = 400. \t\t\t#kg\n",
"N = 2400. \t\t\t#rpm\n",
"\n",
"#Solution:\n",
"#Calculating the angular speed of the engine\n",
"omega = 2*math.pi*N/60 \t\t\t#rad/s\n",
"#Calculating the mass moment of inertia of the engine and the propeller\n",
"I = m*k**2 \t\t\t#kg-m**2\n",
"#Calculating the angular velocity of precession\n",
"omegaP = v/R \t\t\t#rad/s\n",
"#Calculating the gyroscopic couple acting on the aircraft\n",
"C = I*omega*omegaP/1000 \t\t\t#kN-m\n",
"\n",
"#Results:\n",
"print \" Gyroscopic couple acting on the aircraft, C = %.3f kN-m.\"%(C)\n",
"print \" The effect of the gyroscopic couple is to lift the nose upwards and tail downwards.\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
" Gyroscopic couple acting on the aircraft, C = 10.053 kN-m.\n",
" The effect of the gyroscopic couple is to lift the nose upwards and tail downwards.\n"
]
}
],
"prompt_number": 5
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 14.4 Page No : 491"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math \n",
"\n",
"# Variables:\n",
"m = 8.*1000 \t\t\t#kg\n",
"k = 0.6\n",
"R = 75. \t\t\t#m\n",
"N = 1800. \t\t\t#rpm\n",
"v = 100.*1000/3600 \t\t\t#m/s\n",
"\n",
"#Solution:\n",
"#Calculating the angular speed of the rotor\n",
"omega = round(2*math.pi*N/60,1) \t\t\t#rad/s\n",
"#Calculating the mass moment of inertia of the rotor\n",
"I = m*k**2 \t\t\t#kg-m**2\n",
"#Calculating the angular velocity of precession\n",
"omegaP = round(v/R,2) \t\t\t#rad/s\n",
"#Calculating the gyroscopic couple\n",
"C = I*omega*omegaP/1000 \t\t\t#kN-m\n",
"\n",
"#Results:\n",
"print \" Gyroscopic couple, C = %.3f kN-m.\"%(C)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
" Gyroscopic couple, C = 200.866 kN-m.\n"
]
}
],
"prompt_number": 11
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 14.5 Page No : 491"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math \n",
"\n",
"# Variables:\n",
"N = 1500. \t\t\t#rpm\n",
"m = 750. \t\t\t#kg\n",
"omegaP = 1. \t\t\t#rad/s\n",
"k = 250./1000 \t\t\t#m\n",
"\n",
"#Solution:\n",
"#Calculating the angular speed of the rotor\n",
"omega = 2*math.pi*N/60 \t\t\t#rad/s\n",
"#Calculating the mass moment of inertia of the rotor\n",
"I = m*k**2 \t\t\t#kg-m**2\n",
"#Calculating the gyroscopic couple transmitted to the hull\n",
"C = I*omega*omegaP/1000 \t\t\t#kN-m\n",
"\n",
"#Results:\n",
"print \" Gyroscopic couple transmitted to the hull, C = %.3f kN-m.\"%(C)\n",
"print \" When the pitching is upward, the relative gyroscopic couple acts in the clockwise direction.\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
" Gyroscopic couple transmitted to the hull, C = 7.363 kN-m.\n",
" When the pitching is upward, the relative gyroscopic couple acts in the clockwise direction.\n"
]
}
],
"prompt_number": 7
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 14.6 Page No : 492"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math \n",
"\n",
"# Variables:\n",
"m = 3500. \t\t\t#kg\n",
"k = 0.45 \t\t\t#m\n",
"N = 3000. \t\t\t#rpm\n",
"\n",
"#Solution:\n",
"#Calculating the angular speed of the rotor\n",
"omega = 2*math.pi*N/60 \t\t\t#rad/s\n",
"#When the ship is steering to the left:\n",
"R = 100. \t\t\t#m\n",
"v = 36.*1000/3600 \t\t\t#m/s\n",
"\n",
"#Calculating the mass moment of inertia of the rotor\n",
"I = m*k**2 \t\t\t#kg-m**2\n",
"#Calculating the angular velocity of precession\n",
"omegaP = v/R \t\t\t#rad/s\n",
"#Calculating the gyroscopic couple\n",
"C = I*omega*omegaP/1000 \t\t\t#kN-m\n",
"\n",
"#Results:\n",
"print \" Gyroscopic couple when the ship is steering to the left. C = %.2f kN-m.\"%(C)\n",
"print \" When the rotor rotates clockwise and the ship takes a left turn.\\\n",
" the effect of the reactive gyroscopic couple is to raise the bow and lower the stern.\"\n",
"#When the ship is pitching with the bow falling:\n",
"tp = 40. \t\t\t#s\n",
"#Calculating the amplitude of swing\n",
"phi = 12./2*math.pi/180 \t\t\t#rad\n",
"#Calculating the angular velocity of the simple harmonic motion\n",
"omega1 = 2*math.pi/tp \t\t\t#rad/s\n",
"#Calculating the maximum angular velocity of precession\n",
"omegaP = phi*omega1 \t\t\t#rad/s\n",
"#Calculating the gyroscopic couple\n",
"C = I*omega*omegaP/1000 \t\t\t#kN-m\n",
"\n",
"#Results:\n",
"print \" Gyroscopic couple when the ship is pitching with the bow falling, C = %.3f kN-m.\"%(C)\n",
"print \" When the bow is falling, the effect of the reactive gyroscopic couple is to move\\\n",
" the ship towards port side.\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
" Gyroscopic couple when the ship is steering to the left. C = 22.27 kN-m.\n",
" When the rotor rotates clockwise and the ship takes a left turn. the effect of the reactive gyroscopic couple is to raise the bow and lower the stern.\n",
" Gyroscopic couple when the ship is pitching with the bow falling, C = 3.663 kN-m.\n",
" When the bow is falling, the effect of the reactive gyroscopic couple is to move the ship towards port side.\n"
]
}
],
"prompt_number": 8
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 14.7 Page No : 492"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math \n",
"\n",
"# Variables:\n",
"m = 20.*1000 \t\t\t#kg\n",
"k = 0.6 \t\t\t#m\n",
"N = 2000. \t\t\t#rpm\n",
"phi = 6.*math.pi/180 \t\t\t#rad\n",
"tp = 30. \t\t\t#s\n",
"\n",
"#Solution:\n",
"#Calculating the angular speed of the rotor\n",
"omega = 2*math.pi*N/60 \t\t\t#rad/s\n",
"#Maximum gyroscopic couple:\n",
"#Calculating the mass moment of inertia of the rotor\n",
"I = m*k**2 \t\t\t#kg-m**2\n",
"#Calculating the angular velocity of the simple harmonic motion\n",
"omega1 = 2*math.pi/tp \t\t\t#rad/s\n",
"#Calculating the maximum angular velocity of precession\n",
"omegaPmax = phi*omega1 \t\t\t#rad/s\n",
"#Calculating the maximum gyroscopic couple\n",
"Cmax = I*omega*omegaPmax/1000 \t\t\t#kN-m\n",
"#Calculating the maximum angular acceleration during pitching\n",
"alphamax = phi*omega1**2 \t\t\t#Maximum angular acceleration during pitching rad/s**2\n",
"\n",
"#Results:\n",
"print \" Maximum gyroscopic couple, Cmax = %.3f kN-m.\"%(Cmax)\n",
"print \" Maximum angular acceleration during pitching = %.4f rad/s**2.\"%(alphamax)\n",
"print \" When the rotation of the rotor is clockwise when looking from the left and when\\\n",
" the bow is rising, then the reactive gyroscopic couple acts in the direction which\\\n",
" tends to turn the bow towrds right.\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
" Maximum gyroscopic couple, Cmax = 33.073 kN-m.\n",
" Maximum angular acceleration during pitching = 0.0046 rad/s**2.\n",
" When the rotation of the rotor is clockwise when looking from the left and when the bow is rising, then the reactive gyroscopic couple acts in the direction which tends to turn the bow towrds right.\n"
]
}
],
"prompt_number": 9
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 14.8 Page No : 493"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math \n",
"\n",
"# Variables:\n",
"m = 5.*1000 \t\t\t#kg\n",
"N = 1000. \t\t\t#rpm\n",
"k = 0.5 \t\t\t#m\n",
"\n",
"#Solution:\n",
"#Calculating the angular speed of the rotor\n",
"omega = 2.*math.pi*2100/60 \t\t\t#rad/s\n",
"#When the ship steers to the left:\n",
"v = 30.*1000/3600 \t\t\t#m/s\n",
"R = 60. \t\t\t#m\n",
"#Calculating the angular velocity of precession\n",
"omegaP = round(v/R,2) \t\t\t#rad/s\n",
"#Calculating the mass moment of inertia of the rotor\n",
"I = m*k**2 \t\t\t#kg-m**2\n",
"#Calculating the gyroscopic couple\n",
"C = I*omega*omegaP/1000 \t\t\t#kN-m\n",
"\n",
"#Results:\n",
"print \" C = %.1f k N-m\"%C\n",
"\n",
"#When the ship pitches with the bow descending:\n",
"phi = round(6*math.pi/180,3) \t\t\t#rad\n",
"tp = 20. \t\t\t#s\n",
"#Calculating the angular velocity of simple harmonic motion\n",
"omega1 = round(2*math.pi/tp,4) \t\t\t#rad/s\n",
"#Calculating the maximum velocity of precession\n",
"omegaPmax = round(phi*omega1,3) \t\t\t#rad/s\n",
"#Calculating the maximum gyroscopic couple\n",
"Cmax = I*omega*omegaPmax \t\t\t#N-m\n",
"\n",
"#Results:\n",
"print \" Cmax = %.f N-m\"%Cmax\n",
"#When the ship rolls:\n",
"omegaP = 0.03 \t\t\t#rad/s\n",
"#Calculating the gyroscopic couple\n",
"C = I*omega*omegaP \t\t\t#N-m\n",
"\n",
"#Results:\n",
"print \" C = %.2f N-m\"%(round(C,-1))\n",
"#Calculating the maximum angular acceleration during pitching\n",
"alphamax = phi*omega1**2 \t\t\t#rad/s**2\n",
"\n",
"#Results:\n",
"print \" Maximum angular acceleration during pitching, alphamax = %.2f rad/s**2.\"%(alphamax)\n",
"\n",
"# rounding off error. please check."
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
" C = 38.5 k N-m\n",
" Cmax = 9071 N-m\n",
" C = 8250.00 N-m\n",
" Maximum angular acceleration during pitching, alphamax = 0.01 rad/s**2.\n"
]
}
],
"prompt_number": 30
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 14.9 Page No : 494"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math \n",
"\n",
"# Variables:\n",
"m = 2000. \t\t\t#kg\n",
"N = 3000. \t\t\t#rpm\n",
"k = 0.5\n",
"R = 100. \t\t\t#m\n",
"v = 16.1*1855/3600 \t\t\t#m/s\n",
"\n",
"#Solution:\n",
"#Calculating the angular speed of the rotor\n",
"omega = 2*math.pi*N/60 \t\t\t#rad/s\n",
"#Gyroscopic couple:\n",
"#Calculating the mass moment of inertia of the rotor\n",
"I = m*k**2 \t\t\t#kg-m**2\n",
"#Calculating the angular velocity of precession\n",
"omegaP = v/R \t\t\t#rad/s\n",
"#Calculating the gyroscopic couple\n",
"C = I*omega*omegaP/1000 \t\t\t#kN-m\n",
"#Torque during pitching:\n",
"tp = 50. \t\t\t#s\n",
"phi = 12./2*math.pi/180 \t\t\t#rad\n",
"#Calculating the angular velocity of simple harmonic motion\n",
"omega1 = 2*math.pi/tp \t\t\t#rad/s\n",
"#Calculating the maximum angular velocity of precession\n",
"omegaPmax = phi*omega1 \t\t\t#rad/s\n",
"#Calculating the maximum gyroscopic couple during pitching\n",
"Cmax = I*omega*omegaPmax \t\t\t#N-m\n",
"#Calculating the maximum acceleration during pitching\n",
"alphamax = phi*omega1**2 \t\t\t#rad/s**2\n",
"\n",
"#Results:\n",
"print \" Torque during pitching, Cmax = %d N-m.\"%(Cmax)\n",
"print \" Maximum acceleration during pitching, alphamax = %.5f rad/s**2.\"%(alphamax)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
" Torque during pitching, Cmax = 2067 N-m.\n",
" Maximum acceleration during pitching, alphamax = 0.00165 rad/s**2.\n"
]
}
],
"prompt_number": 6
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 14.10 Page No : 497"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math \n",
"\n",
"# Variables:\n",
"m = 2500. \t\t\t#kg\n",
"x = 1.5\n",
"R = 30.\n",
"dW = 0.75\n",
"rW = dW/2\n",
"h = 0.9 \t\t\t#m\n",
"v = 24.*1000/3600 \t\t\t#m/s\n",
"G = 5.\n",
"IW = 18.\n",
"IE = 12. \t\t\t#kg-m**2\n",
"\n",
"#Solution:\n",
"#Calculating the road reaction on each wheel\n",
"r = m*9.81/4 \t\t\t#Road reaction on each wheel N\n",
"#Calculating the angular velocity o the wheels\n",
"omegaW = round(v/rW,1) \t\t\t#rad/s\n",
"#Calculating the angular velocity of precession\n",
"omegaP = round(v/R,2) \t\t\t#rad/s\n",
"#Calculating the gyroscopic couple due to one pair of wheels and axle\n",
"CW = round(2*IW*omegaW*omegaP) \t\t\t#N-m\n",
"#Calculating the gyroscopic couple due to the rotating parts of the motor and gears\n",
"CE = round(2*IE*G*omegaW*omegaP) \t\t\t#N-m\n",
"#Calculating the net gyroscopic couple\n",
"C = CW-CE \t\t\t#N-m\n",
"#Calculating the reaction due to gyroscopic couple at each of the outer or inner wheels\n",
"P = round((-C)/(2*x),1) \t\t\t#N\n",
"#Calculating the centrifugal force\n",
"FC = round(m*v**2/R,1) \t\t\t#N\n",
"#Calculating the overturning couple\n",
"CO = FC*h \t\t\t#N-m\n",
"#Calculating the reaction due to overturning couple at each of the outer and inner wheels\n",
"Q = 2*CO/(2*x) \t\t\t#N\n",
"#Calculating the vertical force exerted on each outer wheel\n",
"PO = m*9.81/4-P/2+Q/2 \t\t\t#N\n",
"#Calculating the vertical force exerted on each inner wheel\n",
"PI = m*9.81/4+P/2-Q/2 \t\t\t#N\n",
"\n",
"#Results:\n",
"print \" Vertical force exerted on each outer wheel, PO = %.2f N.\"%(PO)\n",
"print \" Vertical force exerted on each inner wheel, PI = %.2f N.\"%(PI)\n",
"\n",
"# note : value of Fc is calculated wrongly. please check using calculator. so answers are different."
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
" Vertical force exerted on each outer wheel, PO = 7187.51 N.\n",
" Vertical force exerted on each inner wheel, PI = 5074.99 N.\n"
]
}
],
"prompt_number": 41
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 14.11 pageno : 498"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"\n",
"# variables\n",
"R = 100 #m \n",
"IW = 2.5 # kg-m 2 \n",
"dW = 0.6 #m \n",
"rW = 0.3 #m \n",
"IE = 1.2 #kg-m 2 ;\n",
"G = 3. \n",
"m = 1600. # kg \n",
"h = 0.5 #m ; \n",
"x = 1.5 #m\n",
"v = 1.\n",
"\n",
"# calculations\n",
"road_reaction = m*9.81/4 #N\n",
"wW = v / rW\n",
"wP = v/R\n",
"cW = 4 * IW*wW*wP\n",
"cE = IE*G*wW*wP\n",
"C = cW + cE\n",
"Pby2 = C/(2*x)\n",
"Fc = m*v**2/R\n",
"Co = Fc * h\n",
"Qby2 = Co/(2*x)\n",
"v_2 = road_reaction/(Pby2 + Qby2)\n",
"v = math.sqrt(v_2)\n",
"ans = v*3600./1000\n",
"\n",
"# result\n",
"print \"V <= %.1f m/s = %.1f * 3600 /1000 = %.2f km/h\"%(v,v,ans)\n",
"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"V <= 37.3 m/s = 37.3 * 3600 /1000 = 134.34 km/h\n"
]
}
],
"prompt_number": 12
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 14.12 Page No : 500"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math \n",
"\n",
"# Variables:\n",
"m = 2000. #kg\n",
"mE = 75. \t\t\t#kg\n",
"b = 2.5 #m\n",
"x = 1.5 #m\n",
"h = 500./1000 #m\n",
"L = 1. #m\n",
"dW = 0.8 #m\n",
"rW = round(dW/2,1) #m\n",
"kE = 100./1000 #m\n",
"R = 60. \t\t\t#m\n",
"IW = 0.8 \t\t\t#kg-m**2\n",
"G = 4.\n",
"v = round(60.*1000/3600,2) \t#m/s\n",
"\n",
"#Solution:\n",
"#Refer Fig. 14.12\n",
"#Calculating the weight on the rear wheels\n",
"W2 = (m*9.81*1)/b \t\t\t#N\n",
"#Calculating the weight on the front wheels\n",
"W1 = m*9.81-W2 \t\t\t#N\n",
"#Calculating the weight on each of the front wheels\n",
"Wf = W1/2 \t\t\t#Weight on each of the front wheels N\n",
"#Calculating the weight on each of the rear wheels\n",
"Wr = W2/2 \t\t\t#Weight on each of the rear wheels N\n",
"#Calculating the angular velocity of wheels\n",
"omegaW = v/rW \t\t\t#rad/s\n",
"#Calculating the angular velocity of precession\n",
"omegaP = round(v/R,3) \t\t\t#rad/s\n",
"#Calculating the gyroscopic couple due to four wheels\n",
"CW = round(4*IW*omegaW*omegaP,1) \t\t\t#N-m\n",
"#Calculating the magnitude of reaction due to gyroscopic couple due to four wheels at each of the inner or outer wheel\n",
"P = round((CW/(2*x)),2) \t\t\t#N\n",
"#Calculating the mass moment of inertia of rotating parts of the engine\n",
"IE = mE*(kE)**2 \t\t\t#kg-m**2\n",
"#Calculating the gyroscopic couple due to rotating parts of the engine\n",
"CE = round(IE*(kE)**2*G*omegaW*omegaP*100,1)\t\t\t#N-m\n",
"#Calculating the magnitude of reaction due to gyroscopic couple due to rotating parts of the engine at each of the inner or outer wheel\n",
"F = (CE/(2*b)) \t\t\t#N\n",
"#Calculating the centrifugal force\n",
"FC = round(m*v**2/R) \t\t\t#N\n",
"#Calculating the centrifugal couple tending to overturn the car\n",
"CO = FC*h \t\t\t#N-m\n",
"#Calculating the magnitude of reaction due to overturning couple at each of the inner or outer wheel\n",
"Q = round((CO/(2*x)),2) \t\t\t#N\n",
"#Calculating the load on front wheel 1\n",
"Fw1 = (W1/2)-(P/2)-(F/2)-(Q/2) \t\t\t#Load on front wheel 1 N\n",
"#Calculating the load on front wheel 2\n",
"Fw2 = W1/2+P/2-F/2+Q/2 \t\t\t#Load on front wheel 2 N\n",
"#Calculating the load on rear wheel 3\n",
"Rw3 = W2/2-P/2+F/2-Q/2 \t\t\t#Load on rear wheel 3 N\n",
"#Calculating the load on rear wheel 4\n",
"Rw4 = W2/2+P/2+F/2+Q/2 \t\t\t#Load on rear wheel 4 N\n",
"\n",
"#Results:\n",
"print \" Load on front wheel 1 = %.2f N.\"%(Fw1)\n",
"print \" Load on front wheel 2 = %.2f N.\"%(Fw2)\n",
"print \" Load on rear wheel 3 = %.2f N.\"%(Rw3)\n",
"print \" Load on rear wheel 4 = %.2f N.\"%(Rw4)\n",
"\n",
"# note : incorrect answers in the textbook"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
" Load on front wheel 1 = 5104.42 N.\n",
" Load on front wheel 2 = 6660.62 N.\n",
" Load on rear wheel 3 = 3149.38 N.\n",
" Load on rear wheel 4 = 4705.58 N.\n"
]
}
],
"prompt_number": 25
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 14.13 Page No : 502"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math \n",
"\n",
"# Variables:\n",
"m = 2000. #kg\n",
"mI = 200. \t\t#kg\n",
"x = 1.6 #m\n",
"R = 30. #m\n",
"dW = 0.7 #m\n",
"rW = dW/2 #m\n",
"k = 0.3 #m\n",
"h = 1. \t\t\t#m\n",
"v = 54.*1000/3600 \t\t\t#m/s\n",
"theta = 8. \t\t\t#degrees\n",
"\n",
"#Solution:\n",
"#Refer Fig. 14.13\n",
"#Calculating the reactions at the wheels:\n",
"#Taking moments about B\n",
"RA = (m*9.81*math.cos(math.radians(theta))+m*v**2/R*math.sin(math.radians(theta)))*1/2+(m*9.81*math.sin(math.radians(theta)) \\\n",
" -m*v**2/R*math.cos(math.radians(theta)))*h/x \t\t\t#N\n",
"#Resolving the forces perpendicular to the track\n",
"RB = (m*9.81*math.cos(math.radians(theta))+m*v**2/R*math.sin(math.radians(theta)))-RA \t\t\t#N\n",
"#Calculating the angular velocity of wheels\n",
"omegaW = v/rW \t\t\t#rad/s\n",
"#Calculating the angular velocity of precession\n",
"omegaP = v/R \t\t\t#rad/s\n",
"#Calculating the gyroscopic couple\n",
"C = mI*k**2*omegaW*math.cos(math.radians(theta))*omegaP \t\t\t#N-m\n",
"#Calculating the force at each pair of wheels due to the gyroscopic couple\n",
"P = C/x \t\t\t#N\n",
"#Calculating the pressure on the inner rail\n",
"PI = RA-P \t\t\t#N\n",
"#Calculating the pressure o the outer rail\n",
"PO = RB+P \t\t\t#N\n",
"\n",
"#Results:\n",
"print \" Pressure on the inner rail, PI = %.2f N.\"%(PI)\n",
"print \" Pressure on the outer rail, PO = %.2f N.\"%(PO)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
" Pressure on the inner rail, PI = 2942.45 N.\n",
" Pressure on the outer rail, PO = 18574.21 N.\n"
]
}
],
"prompt_number": 3
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 14.14 Page No : 503"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math \n",
"\n",
"# Variables:\n",
"I = 180. \t\t\t#kg-m**2\n",
"D = 1.8 #m\n",
"R = D/2 #m\n",
"x = 1.5 \t\t\t#m\n",
"v = 95.*1000/3600 \t#m/s\n",
"t = 0.1 \t\t\t#s\n",
"\n",
"#Solution:\n",
"#Gyroscopic couple set up:\n",
"#Calculating the angular velocity of the locomotive\n",
"omega = v/R \t\t\t#rad/s\n",
"#Calculating the amplitude\n",
"A = 1./2*6 \t\t\t#mm\n",
"#Calculating the maximum velocity while falling\n",
"vmax = 2*math.pi/t*A/1000 \t\t\t#m/s\n",
"#Calculating the maximum angular velocity of tilt of the axle or angular velocity of precession\n",
"omegaPmax = vmax/x \t\t\t#rad/s\n",
"#Calculating the gyroscopic couple set up\n",
"C = I*omega*omegaPmax \t\t\t#N-m\n",
"#Calculating the reaction between the wheel and rail due to the gyroscopic couple\n",
"P = C/x \t\t\t#N\n",
"\n",
"#Results:\n",
"print \" Gyroscopic couple set up, C = %.1f N-m.\"%(C)\n",
"print \" Reaction between the wheel and rail due to the gyroscopic couple, P = %d N.\"%(P)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
" Gyroscopic couple set up, C = 663.2 N-m.\n",
" Reaction between the wheel and rail due to the gyroscopic couple, P = 442 N.\n"
]
}
],
"prompt_number": 17
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 14.15 Page No : 506"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math \n",
"\n",
"# Variables:\n",
"m = 250. \t\t\t#kg\n",
"IE = 0.3 #kg-m**2\n",
"IW = 1. \t\t\t#kg-m**2\n",
"G = 5.\n",
"h = 0.6 #m\n",
"rW = 300./1000 #m\n",
"R = 50. \t\t\t#m\n",
"v = 90.*1000/3600 \t#m/s\n",
"\n",
"#Solution:\n",
"#Calculating the angle of inclination with respect to the vertical of a two wheeler\n",
"#Equating total overturning couple to balancing couple\n",
"tantheta = math.atan(1/(m*9.81*h))*((v**2/(R*rW)*(2*IW+G*IE))+(m*v**2/R*h)) \t\t\t#degrees\n",
"theta = math.degrees(math.atan(tantheta))\n",
"\n",
"#Results:\n",
"print \" Angle of inclination with respect to the vertical of a two wheeler, tan theta = %.2f .\"%(theta)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
" Angle of inclination with respect to the vertical of a two wheeler, tan theta = 53.94 .\n"
]
}
],
"prompt_number": 62
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 14.16 Page No : 507"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math \n",
"\n",
"# Variables:\n",
"m1 = 0.5 #kg\n",
"m2 = 0.3 \t\t\t#kg\n",
"k = 20./1000 #m\n",
"OG = 10./1000 #m\n",
"h = OG #m\n",
"R = 50. \t\t\t#m\n",
"N = 3000. \t\t\t#rpm\n",
"v = 15. \t\t\t#m/s\n",
"\n",
"#Solution:\n",
"#Refer Fig. 14.15 and Fig. 14.16\n",
"#Calculating the angular speed of the wheel\n",
"omega = 2*math.pi*N/60 \t\t\t#rad/s\n",
"#Calculating the mass moment of inertia of the gyrowheel\n",
"I = m1*k**2 \t\t\t#kg-m**2\n",
"#Calculating the angular velocity of precession\n",
"omegaP = v/R \t\t\t#rad/s\n",
"#When the vehicle moves in the direction of arrow X taking a left turn along the curve:\n",
"#Calculating the angle of inclination of the gyrowheel from the vertical\n",
"#Equating the overturning couple to the balancing couple for equilibrium condition\n",
"tantheta1 = (1/(m2*9.81*h))*(I*omega*omegaP-m2*v**2/R*h) \t\t\t#degrees\n",
"theta1 = math.degrees(math.atan(tantheta1))\n",
"#When the vehicle reverses at the same speed in the direction of arrow Y along the same path:\n",
"#Calculating the angle of inclination of the gyrowheel from the vertical\n",
"#Equating the overturning couple to the balancing couple for equilibrium condition\n",
"tantheta2 = round((1/(m2*9.81*h))*(I*omega*omegaP+m2*v**2/R*h),1) \t\t\t#degrees\n",
"theta2 = math.degrees(math.atan(tantheta2))\n",
"\n",
"#Results:\n",
"print \" Angle of inclination of the gyrowheel from the vertical when the vehicle moves\\\n",
" in the direction of arrow X taking a left turn along the curve, theta = %.2f degrees.\"%(theta1)\n",
"print \" Angle of inclination of the gyrowheel from the vertical when the vehicle reverses \\\n",
"at the same speed in the direction of arrow Y along the same path, theta = %.f degrees.\"%(theta2)\n",
"\n",
"# rounding error"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
" Angle of inclination of the gyrowheel from the vertical when the vehicle moves in the direction of arrow X taking a left turn along the curve, theta = 10.30 degrees.\n",
" Angle of inclination of the gyrowheel from the vertical when the vehicle reverses at the same speed in the direction of arrow Y along the same path, theta = 48 degrees.\n"
]
}
],
"prompt_number": 6
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 14.17 Page No : 510"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math \n",
"\n",
"# Variables: \n",
"d = 0.6 #m\n",
"r = d/2 \t\t\t#m\n",
"m = 30. \t\t\t#kg\n",
"theta = 1. \t\t\t#degree\n",
"N = 1200. \t\t\t#rpm\n",
"\n",
"#Solution:\n",
"#Calculating the angular speed of the shaft\n",
"omega = 2*math.pi*N/60 \t\t\t#rad/s\n",
"#Calculating the gyroscopic couple acting on the bearings\n",
"C = round(m/8*omega**2*r**2*math.sin(math.radians(2*theta))) \t\t\t#N-m\n",
"\n",
"#Results:\n",
"print \" Gyroscopic couple acting on the bearings, C = %d N-m.\"%(C)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
" Gyroscopic couple acting on the bearings, C = 186 N-m.\n"
]
}
],
"prompt_number": 25
}
],
"metadata": {}
}
]
}
|