1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
|
{
"metadata": {
"name": ""
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Chapter 8: Brakes and Dynamometers"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 1, Page 252"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"\n",
"#Variable declaration\n",
"dia=12#in\n",
"r=dia/2\n",
"CQ=7#in\n",
"OC=6#in\n",
"OH=15#in\n",
"u=0.3\n",
"P=100#lb\n",
"\n",
"#Calculations\n",
"phi=math.atan(u)\n",
"x=r*math.sin(phi)#in inches;radius of friction circle\n",
"a=5.82#from figure\n",
"Tb=P*OH*x/a#braking torque\n",
"\n",
"#Result\n",
"print \"The braking torque of the drum Tb= %.f lb\"%Tb"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The braking torque of the drum Tb= 444 lb\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 2, Page 252"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"\n",
"#Variable declaration\n",
"OH=15#in\n",
"l=OH\n",
"u=0.3\n",
"P=100#lb\n",
"dia=12#in\n",
"r=dia/2\n",
"\n",
"#Calculations\n",
"phi=math.atan(u)\n",
"#according to fig 170(b)\n",
"#for clockwise rotation\n",
"a=6#from figure\n",
"x=r*math.sin(phi)#in inches;radius of friction circle\n",
"Tb=P*l*x/a#braking torque on the drum\n",
"#for counter clockwise rotation\n",
"a1=5.5#in\n",
"Tb1=P*l*x/a1#braking torque on the drum\n",
"#according to figure 172(a)\n",
"#for clockwise rotation\n",
"a2=6.48#from figure\n",
"x=r*math.sin(phi)#in inches;radius of friction circle\n",
"Tb2=P*l*x/a2#braking torque on the drum\n",
"#for counter clockwise rotation\n",
"a3=6.38#in\n",
"Tb3=P*l*x/a3#braking torque on the drum\n",
"T1=math.ceil(Tb1)\n",
"T2=math.ceil(Tb2)\n",
"T3=math.ceil(Tb3)\n",
"\n",
"#Result\n",
"print \"Braking torque on drum:\\nWhen dimensions are measured from fig 170(b)\\nFor clockwise rotation= %.f lb in\"\\\n",
"\"\\nFor counter clockwise rotation= %.f lb in\"%(Tb,T1)\n",
"print \"\\nWhen dimensions are measured from fig 171(a)\\nFor clockwise rotation= %.f lb in\"\\\n",
"\"\\nFor counter clockwise rotation= %.f lb\"%(T2,T3)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Braking torque on drum:\n",
"When dimensions are measured from fig 170(b)\n",
"For clockwise rotation= 431 lb in\n",
"For counter clockwise rotation= 471 lb in\n",
"\n",
"When dimensions are measured from fig 171(a)\n",
"For clockwise rotation= 400 lb in\n",
"For counter clockwise rotation= 406 lb\n"
]
}
],
"prompt_number": 5
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 3, Page 253"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"\n",
"#Variable declaration\n",
"u=.35\n",
"Tb=500#lb.ft\n",
"rd=10#in\n",
"\n",
"#Calculations\n",
"phi=math.atan(u)\n",
"x=rd*math.sin(phi)\n",
"#F*OD=R*a=R1*a\n",
"#R=R1\n",
"#2*R*x=Tb\n",
"OD=24#in\n",
"a=11.5#inches; From figure\n",
"F=Tb*a*12/(OD*2*x)\n",
"#from figure\n",
"HG=4#in\n",
"GK=12#in\n",
"HL=12.22#in\n",
"P=F*HG/GK\n",
"Fhd=HL*P/HG\n",
"\n",
"#Results\n",
"print \"a) Magnitude of P = %.f lb\"%P\n",
"print \"b) Magnitude of Fhd = %.f lb\"%Fhd"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"a) Magnitude of P = 145 lb\n",
"b) Magnitude of Fhd = 443 lb\n"
]
}
],
"prompt_number": 6
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 4, Page 259"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"\n",
"#Variable declaration\n",
"u=.3\n",
"theta=270*math.pi/180\n",
"l=18#in\n",
"a=4#in\n",
"Di=15#in\n",
"Do=21#in\n",
"w=.5#tons\n",
"\n",
"#Calculations\n",
"W=w*2204#lb\n",
"Q=W*Di/Do#required tangential braking force on the drum\n",
"k=math.e**(u*theta)#k=T1/T2\n",
"p=Q*a/(l*(k-1))\n",
"\n",
"#Result\n",
"print \"Least force required, P = %.f lb\"%p"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Least force required, P = 56 lb\n"
]
}
],
"prompt_number": 7
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 5, Page 260"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"\n",
"#Variable declaration\n",
"n=12\n",
"u=.28\n",
"a=4.5#in\n",
"b=1#in\n",
"l=21#in\n",
"r=15#in\n",
"Tb=4000#lb\n",
"\n",
"#Calculations\n",
"theta=10*math.pi/180\n",
"#k=Tn/To\n",
"k=((1+u*math.tan(theta))/(1-u*math.tan(theta)))**n\n",
"Q=Tb*(12./r)\n",
"P=Q*(a-b*k)/(l*(k-1))#from combining 8.6 with k=e^u*theta\n",
"\n",
"#Result\n",
"print \"The least effort required = P = %.1f lb\"%P"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The least effort required = P = 82.2 lb\n"
]
}
],
"prompt_number": 8
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 6, Page 264"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Variable declaration\n",
"w=9.5 #ft\n",
"h= 2. #ft\n",
"x=4. #ft\n",
"v=30.#mph\n",
"\n",
"#Calculations\n",
"V=1.46667*v#ft/s\n",
"u1=.1\n",
"u2=.6\n",
"g=32.2#ft/s**2\n",
"#a) rear wheels braked\n",
"fa1=(u1*(w-x)*g)/(w+u1*h)\n",
"fa2=(u2*(w-x)*g)/(w+u2*h)\n",
"sa1=V**2/(2*fa1)\n",
"sa2=V**2/(2*fa2)\n",
"#b) front wheels braked\n",
"fb1=u1*x*g/(w-u1*h)\n",
"fb2=u2*x*g/(w-u2*h)\n",
"sb1=V**2/(2*fb1)\n",
"sb2=V**2/(2*fb2)\n",
"#c) All wheels braked\n",
"fc1=u1*g\n",
"fc2=u2*g\n",
"sc1=V**2/(2*fc1)\n",
"sc2=V**2/(2*fc2)\n",
"k1=(x+u1*h)/(w-x-u1*h)#Na/Nb\n",
"k2=(x+u2*h)/(w-x-u2*h)#Na/Nb\n",
"\n",
"#Results\n",
"print \"Coefficient of friction = 0.1\\na) Minimum distance in which car may be stopped when the rear brakes are\"\\\n",
"\"applied = %.f ft\\nb) Minimum distance in which car may be stopped when the front brakes are applied = %.f ft\"\\\n",
"\"\\nc) Minimum distance in which car may be stopped when all brakes are applied = %.f ft\"%(sa1,sb1,sc1)\n",
"print \"\\nCoefficient of friction = 0.6\\na) Minimum distance in which car may be stopped when the rear brakes are \"\\\n",
"\"applied = %.1f ft\\nb) Minimum distance in which car may be stopped when the front brakes are applied = %.f ft\"\\\n",
"\"\\nc) Minimum distance in which car may be stopped when all brakes are applied = %.1f ft\"%(sa2,sb2,sc2)\n",
"print \"\\nRequired ration of Na/Nb\\nFor u1 = 0.1 -> %.3f\\nFor u2 = 0.6 -> %.2f\"%(k1,k2)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Coefficient of friction = 0.1\n",
"a) Minimum distance in which car may be stopped when the rear brakes areapplied = 530 ft\n",
"b) Minimum distance in which car may be stopped when the front brakes are applied = 699 ft\n",
"c) Minimum distance in which car may be stopped when all brakes are applied = 301 ft\n",
"\n",
"Coefficient of friction = 0.6\n",
"a) Minimum distance in which car may be stopped when the rear brakes are applied = 97.5 ft\n",
"b) Minimum distance in which car may be stopped when the front brakes are applied = 104 ft\n",
"c) Minimum distance in which car may be stopped when all brakes are applied = 50.1 ft\n",
"\n",
"Required ration of Na/Nb\n",
"For u1 = 0.1 -> 0.792\n",
"For u2 = 0.6 -> 1.21\n"
]
}
],
"prompt_number": 9
}
],
"metadata": {}
}
]
}
|