summaryrefslogtreecommitdiff
path: root/The_Theory_of_Machines_by_T._Bevan/ch6.ipynb
blob: 3639fce9fee2a863c1cbf07490be2327a30da226 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
{
 "metadata": {
  "name": ""
 },
 "nbformat": 3,
 "nbformat_minor": 0,
 "worksheets": [
  {
   "cells": [
    {
     "cell_type": "heading",
     "level": 1,
     "metadata": {},
     "source": [
      "Chapter 6: Friction"
     ]
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 1, Page 185"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Variable declaration\n",
      "theta=60.#degrees\n",
      "u1=0.15#between surfaces A annd B\n",
      "u2=0.10#for the guides\n",
      "\n",
      "#Calculations\n",
      "phi=math.degrees(math.atan(u1))\n",
      "phi1=math.degrees(math.atan(u2))\n",
      "alpha=(theta+phi+phi1)/2#from 6.22, maximum efficiency is obtained at alpha\n",
      "#from 6.23, maximum efficiency is given by nmax=(cos(theta+phi+phi1)+1)/(cos(theta-phi-phi1)+1)\n",
      "nmax=(math.cos((theta+phi+phi1)*math.pi/180)+1)/(math.cos((theta-phi-phi1)*math.pi/180)+1)\n",
      "\n",
      "#Results\n",
      "print \"Maximum efficiency = %.2f %% and it is obtained when alpha = %.2f degrees\"%((nmax*100),alpha)\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Maximum efficiency = 74.90 % and it is obtained when alpha = 37.12 degrees\n"
       ]
      }
     ],
     "prompt_number": 23
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 3, Page 193"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Variable declaration\n",
      "#from equation 6.36 we know, M=(2/3)*u*W*(ri^3-r2^3)/(r1^2-r2^2)\n",
      "u=0.04\n",
      "W=16#tons\n",
      "w=W*2240#lbs\n",
      "r1=8#in\n",
      "r2=6#in\n",
      "N=120\n",
      "P=50#lb/in^2\n",
      "\n",
      "#Calculations\n",
      "M=(2./3)*u*w*(r1**3-r2**3)/(r1**2-r2**2)\n",
      "hp=M*2*math.pi*N/(12*33000)#horse power absorbed\n",
      "#from fig 137,effective bearing surface per pad is calsulate from the dimensions to be 58.5 in^2\n",
      "A=58.5#in^2\n",
      "n=w/(A*P)\n",
      "x=math.floor(n)\n",
      "\n",
      "#Results\n",
      "print \"Horsepower absorbed = %.2f\\nNumber of collars required = %.f\"%(hp,x)"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Horsepower absorbed = 19.24\n",
        "Number of collars required = 12\n"
       ]
      }
     ],
     "prompt_number": 14
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 4, Page 195"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Variable declaration\n",
      "ratio=1.25\n",
      "u=.675\n",
      "P=12#hp\n",
      "\n",
      "#Calculations\n",
      "#W=P*%pi*(r1^2-r2^2); Total axal thrust.\n",
      "#M=u*W*(r1+r2); Total friction moemnt \n",
      "#reducing the two equations and using ratio=1.25(r1=1.25*r2) we get, M=u*21.2*r2^3\n",
      "ReqM=65#lb ft \n",
      "RM=ReqM*12#lb in\n",
      "r2=(RM/(u*P*math.pi*(1.25**2-1)))**(1./3)\n",
      "r1=1.25*r2\n",
      "d1=r1*2\n",
      "d2=r2*2\n",
      "\n",
      "#Results\n",
      "print \"The dimensions of the friction surfaces are:\\nOuter Diameter= %.1f in\\nInner Diameter= %.1f in\"%(d1,d2)"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The dimensions of the friction surfaces are:\n",
        "Outer Diameter= 9.5 in\n",
        "Inner Diameter= 7.6 in\n"
       ]
      }
     ],
     "prompt_number": 15
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 5, Page 196"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Variable declaration\n",
      "P=20#lb/in^2\n",
      "u=0.07#friction coefficient\n",
      "N=3600#rpm\n",
      "H=100#hp\n",
      "r1=5#in\n",
      "\n",
      "#Calculations\n",
      "r2=0.8*r1#given\n",
      "A=math.pi*(r1**2-r2**2)#the area of each friction surface\n",
      "W=A*P#total axial thrust on plates\n",
      "M=(1./2)*u*W*(r1+r2)#friction moment for each pair of contacts\n",
      "T=H*33000*12/(2*math.pi*N)#total torque to be transmitted\n",
      "x=(T/M)#effective friction surfaces required\n",
      "\n",
      "#Results\n",
      "print \"\\nNumber of effective friction surfaces required= %.f\"%x\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        "Number of effective friction surfaces required= 10\n"
       ]
      }
     ],
     "prompt_number": 16
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 7, Page 198"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Variable declaration\n",
      "P=6 #tons\n",
      "u=0.05\n",
      "theta=60#degrees\n",
      "CP=80\n",
      "Stroke=16#in\n",
      "OC=Stroke/2\n",
      "r1=7#in\n",
      "r2=15#in\n",
      "r3=4.4#in\n",
      "\n",
      "#Calculations\n",
      "#Radius of friction circle\n",
      "ro=u*r1\n",
      "rc=u*r2\n",
      "rp=u*r3\n",
      "phi=math.degrees(math.asin(OC*math.sin(theta*math.pi/180)/CP))\n",
      "alpha=math.degrees(math.asin((rc+rp)/CP))\n",
      "#a) without friction\n",
      "Qa=P/math.cos((phi)*math.pi/180)\n",
      "Xa=OC*math.cos((30-phi)*math.pi/180)#tensile force transmitted along the eccentric rod when friction is NOT taken into account\n",
      "Ma=Qa*Xa/12\n",
      "#b) with friction\n",
      "Qb=P/math.cos((phi-alpha)*math.pi/180)#tensile force transmitted along the eccentric rod when friction is taken into account\n",
      "Xb=OC*math.cos((30-(phi-alpha))*math.pi/180)-(rc+ro)\n",
      "Mb=Qb*Xb/12\n",
      "n=Mb/Ma\n",
      "\n",
      "#Results\n",
      "print \"Turning moment applied to OC:\\na)Without friction= %.2f ton.ft\\nb)With friction(u=0.05)= %.2f ton.ft\"%(Ma,Mb)\n",
      "print \"\\nThe efficiency of the mechanism is %.2f %%\"%(n*100)"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Turning moment applied to OC:\n",
        "a)Without friction= 3.64 ton.ft\n",
        "b)With friction(u=0.05)= 3.06 ton.ft\n",
        "\n",
        "The efficiency of the mechanism is 84.17 %\n"
       ]
      }
     ],
     "prompt_number": 21
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 8, Page 201"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "import numpy as np\n",
      "\n",
      "#Variable declaration\n",
      "stroke=4#in\n",
      "d=11.5#in\n",
      "ds=4#in\n",
      "dp=14#in\n",
      "theta=math.pi\n",
      "u1=.25\n",
      "T1=350#lb\n",
      "u2=0.1\n",
      "\n",
      "#Calculations\n",
      "k=math.e**(u1*theta)\n",
      "T2=T1/k\n",
      "Tor=(T1-T2)*(dp/2)#total resisting torque\n",
      "#total resisting torque is also given by P*(r+2*(cos%pi/6))+u2*R*(ds/2)\n",
      "#equating and putting values we get the following quadratic equation\n",
      "p = [1,-1163,334200]\n",
      "a=np.roots(p)\n",
      "\n",
      "#Results\n",
      "print \"P=\",a\n",
      "print \"The larger of two values is inadmissible. \\n It corresponds to a negative sign in front of the second\" \\\n",
      "      \"term on the \\n right hand side of equation (1)\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "P= [ 644.28733949  518.71266051]\n",
        "The larger of two values is inadmissible. \n",
        " It corresponds to a negative sign in front of the secondterm on the \n",
        " right hand side of equation (1)\n"
       ]
      }
     ],
     "prompt_number": 22
    }
   ],
   "metadata": {}
  }
 ]
}