1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
|
{
"metadata": {
"name": ""
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Chapter 3: Velocity and Acceleration"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 3, Page 90"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"\n",
"#Variable declaration\n",
"OC=6.#in\n",
"CP=24#in\n",
"N=240#rpm\n",
"X=45#degrees\n",
"XP=19#in\n",
"XC=6#in\n",
"YP=32#in\n",
"YC=9#in\n",
"#Scalling off lenghts from fig , we have\n",
"CI=2.77#in\n",
"PI=2.33#in\n",
"XI=2.33#in\n",
"YI=3.48#in\n",
"\n",
"#Calculations\n",
"Vc=((math.pi*N)/30)*(OC/12)#changing OP into feets\n",
"print \"\\nw=%.2f ft/s\"%Vc\n",
"#w=Vc/CI=Vp/PI=Vx/XI=Vy/YI\n",
"w=Vc/CI\n",
"Vp=w*PI\n",
"Vx=w*XI\n",
"Vy=w*YI\n",
"\n",
"#Results\n",
"print \"velocity of points P, X and Y are %.2f ft/s, %.2f ft/s and %.1f ft/s respectively\"%(Vp,Vx,Vy)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"w=12.57 ft/s\n",
"velocity of points P, X and Y are 10.57 ft/s, 10.57 ft/s and 15.8 ft/s respectively\n"
]
}
],
"prompt_number": 4
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 4, Page 93"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"\n",
"#Variable declaration\n",
"OC=9.#inches\n",
"CP=36.#inches\n",
"XC=12#inches\n",
"X=40#degrees\n",
"CM=6.98#from the scaled figure\n",
"N1=240#rpm\n",
"N2=240#rpm (instantaneous) with angular aceleration (ao) 100 rad/s^2\n",
"ao=100 #rad/s^2\n",
"\n",
"#Calculations&Results\n",
"w=(math.pi*N1/30)\n",
"a=w**2*(OC/12)\n",
"print \"Centripetal acceleration = %.f ft/s^2\"%a\n",
"Wr=w*CM/CP#rad/s^2\n",
"f1=Wr**2*(CP/12)#centripetal component of acceleration of p realtive to C\n",
"#Solution a)\n",
"#given from fig 58(a)\n",
"tp=296 \n",
"cp=306\n",
"ox=422\n",
"f2=tp #Tangential component of acceleration of p realtive to C\n",
"f3=cp#acceleration of p realtive to C\n",
"fx=ox#acce;eration of x\n",
"ar=f2/(CP/12)#angular acceleration of rod\n",
"print \"\\nCase a) \\nap= %.f ft/s^2,\\nax= %.f ft/s^2 and\\nar= %.1f rad/s^2\"%(f3,fx,ar)\n",
"\n",
"#Solution b)\n",
"#given from fig 58(b)\n",
"oc1=474\n",
"oc=480\n",
"pt=238.\n",
"pc=246\n",
"xo=452\n",
"f4=pt#Tangential component of acceleration of p realtive to C\n",
"f5=pc#acceleration of p realtive to C\n",
"Ar=f4/(CP/12)#angular acceleration of rod\n",
"f6=ao*(OC/12)#tangential component of acceleration realtive to C\n",
"Fx=xo#acce;eration of x\n",
"print \"\\nCase b) \\nap= %.f ft/s^2,\\nax= %.f ft/s^2 and\\nar= %.1f rad/s^2\"%(f4,Fx,Ar)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Centripetal acceleration = 474 ft/s^2\n",
"\n",
"Case a) \n",
"ap= 306 ft/s^2,\n",
"ax= 422 ft/s^2 and\n",
"ar= 98.7 rad/s^2\n",
"\n",
"Case b) \n",
"ap= 238 ft/s^2,\n",
"ax= 452 ft/s^2 and\n",
"ar= 79.3 rad/s^2\n"
]
}
],
"prompt_number": 5
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 5, Page 98"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"\n",
"#Variable declaration\n",
"AB=2.5#inches\n",
"BC=7.#inches\n",
"CD=4.5#inches\n",
"DA=8#inches\n",
"N=100#rpm\n",
"X=60#degrees\n",
"\n",
"#Calculations\n",
"w=(math.pi*N)/30\n",
"#From triangle ABM we have \n",
"AM=0.14#feet\n",
"BM=0.12#feet\n",
"Vb=w*AB/12#ft/s\n",
"Vc=w*AM#ft/s\n",
"Vcb=w*BM#ft/s\n",
"fb=w**2*(AB/12)#ft/s^2\n",
"bt=Vcb**2/(BC/12)#ft/s^2\n",
"os=Vc**2/(CD/12)#ft/s^2\n",
"#By measurement from acceleration diagram\n",
"sc=19.1#ft/s^2\n",
"tq=14.4#ft/s^2\n",
"Acd=sc/(CD/12)\n",
"Abc=tq/(BC/12)\n",
"\n",
"#Results\n",
"print \"Vb=%.2f ft/s \\nVc=%.2f ft/s\\nVcb=%.2f ft/s\\nfb=%.2f ft/s^2\\nbt=%.2f ft/s^2\\nos=%.2f ft/s^2\"%(Vb,Vc,Vcb,fb,bt,os)\n",
"print \"Angular acceleration of CD(counter-clockwise)= %.1f rad/s^2\"%Acd\n",
"print \"Angular acceleration of BC(counter-clockwise)= %.1f rad/s^2\"%Abc"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Vb=2.18 ft/s \n",
"Vc=1.47 ft/s\n",
"Vcb=1.26 ft/s\n",
"fb=22.85 ft/s^2\n",
"bt=2.71 ft/s^2\n",
"os=5.73 ft/s^2\n",
"Angular acceleration of CD(counter-clockwise)= 50.9 rad/s^2\n",
"Angular acceleration of BC(counter-clockwise)= 24.7 rad/s^2\n"
]
}
],
"prompt_number": 6
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 6, Page 106"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Variable declaration\n",
"OP=2#ft\n",
"f=4#ft/s^2\n",
"w=2 #rad/s (anticlockwise)\n",
"a=5 #rad/s^2 (anticlockwise)\n",
"Vpq=3 #ft/s\n",
"\n",
"#Calculations\n",
"r=OP\n",
"os=w**2*r#component 1\n",
"sq=a*r#component 2\n",
"qt=f#component 3\n",
"tp=2*w*Vpq#component 4\n",
"Aqo=(os**2+sq**2)**1./2#vector addition of component(a,b)\n",
"Apq=(qt**2+tp**2)**1./2#vector addition of component(c,d)\n",
"#Apo=Apq+Aqo (vector addition)\n",
"Apo=((os-qt)**2+(sq+tp)**2)**(1./2)\n",
"\n",
"#Result\n",
"print \"Acceleration of P realative to fixed point O is %.1f ft/s^2\"%Apo"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Acceleration of P realative to fixed point O is 22.4 ft/s^2\n"
]
}
],
"prompt_number": 7
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 7, Page 110"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"\n",
"#Variable declaration\n",
"OC=8#inches\n",
"CP=4#inches\n",
"N=60#inches\n",
"ON=15#inches\n",
"RN=6.#inches\n",
"X=120#degrees\n",
"OP=10.6\n",
"OQ=OP\n",
"\n",
"#Calculations\n",
"#from fig 65(a)\n",
"Vq=1.56#ft/s\n",
"Vrn=0.74#ft/s\n",
"#from fig 65(b)\n",
"ftq=3.74#ft/s^2\n",
"ftrn=2.03#ft/s^2\n",
"w1=(math.pi*N)/30\n",
"w=Vq/(OQ/12)\n",
"wrn=Vrn/(RN/12)\n",
"a=ftq/(OP/12)#Angular acceleration of ON\n",
"a1=ftrn/(RN/12)#angular acceleration of RN\n",
"\n",
"#Results\n",
"print \"W=%.2f rad/s\\nWrn=%.2f rad/s\"%(w,wrn)\n",
"print \"Angular acceleration of ON= %.2f rad/s^2\\nAngular acceleration of RN=%.2f rad/s^2\"%(a,a1)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"W=1.77 rad/s\n",
"Wrn=1.48 rad/s\n",
"Angular acceleration of ON= 4.23 rad/s^2\n",
"Angular acceleration of RN=4.06 rad/s^2\n"
]
}
],
"prompt_number": 8
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 8, Page 112"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"\n",
"#Variable declaration\n",
"OC=3#inches\n",
"CP=9.#inches\n",
"N=1200 #rpm (clockwise)\n",
"X=55 #degrees\n",
"#from the figure 66\n",
"OP=10.35#inches\n",
"PM=10.74#inches\n",
"OM=2.95#inches\n",
"PC=12.84#inches\n",
"PR=PC\n",
"RV=2.49#inches\n",
"UV=1.29#inches\n",
"OU=5.90#inches\n",
"PV=13.05#inches\n",
"OV=6.06#inches\n",
"OQ=OP\n",
"\n",
"#Calculations\n",
"w=(math.pi*N)/30#the angular velocity of the cylinder line OP\n",
"Vq=w*(OP/12)#the velocity of Q\n",
"Vp=w*(PM/12)#The velocity of P\n",
"w1=Vp/(CP/12)#The angular velocity of CP\n",
"Vpq=w*(OM/12)#the velocity of sliding of the piston along the cylinder\n",
"fq=w**2*(OQ/12)#the centripetal acceleration of Q\n",
"Acp=w1**2*(PC/12)#The centripetal component of acceleration of P\n",
"Atp=w**2*(RV/12)#The tangential component of acceleration of P\n",
"acp=Atp/(CP/12)# The angular acceleration of the connecting rod CP\n",
"f=w**2*(UV/12)#component c\n",
"d=2*w*Vpq#component d\n",
"Ap=w**2*PV#the resultant acceleration of P\n",
"Apq=w**2*OV#the acceleration of P realative to Q\n",
"\n",
"#Results\n",
"print \"The velocity and acceleration of the piston along the cylinder are %.1f ft/s and %.f ft/s^2 respectively\"\\\n",
" \"\\nThe angular velocity and angular acceleration of the connecting rod cp are %.1f rad/s and %.f rad/s^2 respectively\"\\\n",
" \"\\nAnd the coriolis component of the acceleration of P is %.f ft/s^2\"%(Vpq,f,w1,acp,d)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The velocity and acceleration of the piston along the cylinder are 30.9 ft/s and 1698 ft/s^2 respectively\n",
"The angular velocity and angular acceleration of the connecting rod cp are 150.0 rad/s and 4369 rad/s^2 respectively\n",
"And the coriolis component of the acceleration of P is 7764 ft/s^2\n"
]
}
],
"prompt_number": 9
}
],
"metadata": {}
}
]
}
|