summaryrefslogtreecommitdiff
path: root/The_Theory_of_Machines_by_T._Bevan/ch2.ipynb
blob: 825609fe4f69f3f8e57ce8f6140688c886f14f9b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
{
 "metadata": {
  "name": ""
 },
 "nbformat": 3,
 "nbformat_minor": 0,
 "worksheets": [
  {
   "cells": [
    {
     "cell_type": "heading",
     "level": 1,
     "metadata": {},
     "source": [
      "Chapter 2: Motion Inertia"
     ]
    },
    {
     "cell_type": "heading",
     "level": 1,
     "metadata": {},
     "source": [
      "Example 1, Page 28"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Variable declaration\n",
      "#a) INELASTIC\n",
      "#for sphere 1 ,mass=m1 and initial velocity=u1 \n",
      "#for sphere 2 ,mass=m2 and initial velocity=u2\n",
      "m1=100.#lb\n",
      "u1=10.#ft/s\n",
      "m2=50.#lb\n",
      "u2=5.#ft/s\n",
      "\n",
      "#Calculations\n",
      "v=(m1*u1+m2*u2)/(m1+m2)\n",
      "#change in kinetic energy\n",
      "#initial kinetic energy = ke1\n",
      "ke1=(m1*(u1**2)+m2*(u2**2))/(2*32.2)\n",
      "#Kinetic Energy after inelastic colision = ke2\n",
      "ke2=((m1+m2)*8.333**2)/(2*32.2)\n",
      "#Change in Kinetic Energy =l\n",
      "l=ke1-ke2\n",
      "#b) Elastic\n",
      "# for a very short time bodies will have a common velocity given by v=8.333 ft/s\n",
      "# for a very short time bodies will have a common velocity given by v=8.333 ft/s\n",
      "#immidiately after impact ends the velocities for both the bodies are given by v1 and v2\n",
      "v1=2*v-u1\n",
      "v2=2*v-u2\n",
      "#c) Coeeficient of Restitution=0.6\n",
      "e=0.6\n",
      "ve1=(1+e)*v-e*u1\n",
      "ve2=(1+e)*v-e*u2\n",
      "ke3=(m1*(ve1**2)+m2*(ve2**2))/(2*32.2)\n",
      "loss=ke1-ke3\n",
      "\n",
      "#Results\n",
      "print \"kinetic energy before collisio0n is %.1f ft lb\"%ke1\n",
      "print \"\\na) INELASTIC\"\n",
      "print \"velocity after collision is %.3f ft/s\"%v\n",
      "print \"the Kinetic Energy after collision is %.1f ft lb\"%ke2\n",
      "print \"the change in Kinetic Energy after collision is %.1f ft lb\"%l\n",
      "print \"\\nb) ELASTIC\"\n",
      "print \"velocity of 1 after collision is %.3f ft/s\"%v1\n",
      "print \"velocity of 2 after collision is %.3f ft/s\"%v2\n",
      "print \"there is no loss of kinetic energy in case of elastic collision\"\n",
      "print \"\\nc) e=0.6\"\n",
      "print \"velocity of 1 after collision is %.3f ft/s\"%ve1\n",
      "print \"velocity of 2 after collision is %.3f ft/s\"%ve2\n",
      "print \"the Kinetic Energy after collision is %.1f ft lb\"%ke3\n",
      "print \"the change in Kinetic Energy after collision is %.2f ft lb\"%loss"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "kinetic energy before collisio0n is 174.7 ft lb\n",
        "\n",
        "a) INELASTIC\n",
        "velocity after collision is 8.333 ft/s\n",
        "the Kinetic Energy after collision is 161.7 ft lb\n",
        "the change in Kinetic Energy after collision is 13.0 ft lb\n",
        "\n",
        "b) ELASTIC\n",
        "velocity of 1 after collision is 6.667 ft/s\n",
        "velocity of 2 after collision is 11.667 ft/s\n",
        "there is no loss of kinetic energy in case of elastic collision\n",
        "\n",
        "c) e=0.6\n",
        "velocity of 1 after collision is 7.333 ft/s\n",
        "velocity of 2 after collision is 10.333 ft/s\n",
        "the Kinetic Energy after collision is 166.4 ft lb\n",
        "the change in Kinetic Energy after collision is 8.28 ft lb\n"
       ]
      }
     ],
     "prompt_number": 25
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 2, Page 29"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Variable declaration\n",
      "m1=15.#tons\n",
      "u1=12.#m/h\n",
      "m2=5.#tons\n",
      "u2=8.#m/h\n",
      "k=2.#ton/in\n",
      "e1=0.5#coefficient of restitution\n",
      "\n",
      "#Calculations&Results\n",
      "#conservation of linear momentum\n",
      "v=(m1*u1+m2*u2)/(m1+m2)\n",
      "print \"velocity at the instant of  collision is %.2f mph\"%v\n",
      "e=(m1*m2*(88./60)**2*(u1-u2)**2)/(2*32.2*(u1+u2))\n",
      "print \"The difference between the kinetic energy before and during the impact is %.2f ft tons\"%e\n",
      "#energy stored in spring equals energy dissipated\n",
      "#s=(1/2)*k*x**2\n",
      "#s=e\n",
      "#since there are 4 buffer springs ,4x**2=24 inches (2 ft=24 inches)\n",
      "x=((e*12)/4)**.5\n",
      "print \"Maximum deflection of the spring is %.2f in\"%x\n",
      "# maximum force acting between pair of buffer = stiffness of spring*deflection\n",
      "f=k*x\n",
      "print \"Maximum force acting between each buffer is %.2f tons\"%f\n",
      "#assuming perfectly elastic collision\n",
      "#for loaded truck \n",
      "v1=2*11-12\n",
      "#for unloaded truck \n",
      "v2=2*11-8\n",
      "print \"Speed of loaded truck after impact %.2f mph\"%v1\n",
      "print \"speed of unloaded truck after impact %.2f mph\"%v2\n",
      "#if coefficient of restitution =o.5\n",
      "#for loaded truck \n",
      "ve1=(1+.5)*11-.5*12\n",
      "#for unloaded truck \n",
      "ve2=(1+.5)*11-.5*8\n",
      "print \"Speed of loaded truck after impact when e=0.5 %.2f mph\"%ve1\n",
      "print \"Speed of unloaded truck after impact when e=0.5 %.2f mph\"%ve2\n",
      "#net loss of kinetic energy=(1-e**2)*energy stored in spring\n",
      "l=(1-(e1**2))*2#ft tons\n",
      "print \"Net loss of kinetic energy is %.2f ft tons\"%l"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "velocity at the instant of  collision is 11.00 mph\n",
        "The difference between the kinetic energy before and during the impact is 2.00 ft tons\n",
        "Maximum deflection of the spring is 2.45 in\n",
        "Maximum force acting between each buffer is 4.90 tons\n",
        "Speed of loaded truck after impact 10.00 mph\n",
        "speed of unloaded truck after impact 14.00 mph\n",
        "Speed of loaded truck after impact when e=0.5 10.50 mph\n",
        "Speed of unloaded truck after impact when e=0.5 12.50 mph\n",
        "Net loss of kinetic energy is 1.50 ft tons\n"
       ]
      }
     ],
     "prompt_number": 3
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 3, Page 31"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Variable declaration\n",
      "m1=500.#lb ft^2\n",
      "m2=1500.#lb ft^2\n",
      "k=150#lb ft^2\n",
      "w1=150#rpm\n",
      "\n",
      "#Calculations&Results\n",
      "N=(w1*m1)/(m1+m2)\n",
      "print \"Angular velocity at the instant when speeds of the flywheels are equalised is given by %.f r.p.m\"%N\n",
      "#kinetic energy at this instance \n",
      "ke1=(1./2)*((m1+m2)/32.2)*((math.pi*N)/30)**2\n",
      "print \"The kinetic energy of the system at this instance is %.2f ft lb\"%ke1\n",
      "\n",
      "#initial kinetic energy\n",
      "ke0=(1./2)*((m1)/32.2)*((math.pi*w1)/30)**2\n",
      "print \"The initial kinetic energy of the system is %.2f ft lb\"%ke0\n",
      "\n",
      "#strain energy = s\n",
      "s=ke0-ke1\n",
      "print \"strain energy stored in the spring is %.2f ft lb which is approximately 1435 ft lb\"%s\n",
      "\n",
      "x=((1435*2)/150)**.5\n",
      "print \"Maximum angular displacement is %.2f in radians which is equal to 250 degrees\"%x\n",
      "#na1 and na are initial and final speeds of the flywheel 1 and same nb1 and nb for flywheel 2 \n",
      "na=2*N-w1#w1=na1\n",
      "nb=2*N-0#nb1=0\n",
      "print \"Speed of flywheel a and b when spring regains its unstrained position are %.2f rpm and %.2f rpm respectively\"%(na,nb)"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Angular velocity at the instant when speeds of the flywheels are equalised is given by 38 r.p.m\n",
        "The kinetic energy of the system at this instance is 478.92 ft lb\n",
        "The initial kinetic energy of the system is 1915.68 ft lb\n",
        "strain energy stored in the spring is 1436.76 ft lb which is approximately 1435 ft lb\n",
        "Maximum angular displacement is 4.36 in radians which is equal to 250 degrees\n",
        "Speed of flywheel a and b when spring regains its unstrained position are -75.00 rpm and 75.00 rpm respectively\n"
       ]
      }
     ],
     "prompt_number": 4
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 4, Page 36"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Variable declaration\n",
      "m1=150 #lb\n",
      "l=3#ft\n",
      "#number of oscillation per second is given by n\n",
      "\n",
      "#Calculations&Results\n",
      "n=(50/92.5)\n",
      "print \"number of oscillation per second = %.3f\"%n\n",
      "#length of simple pendulum is given by L=g/(2*math.pi*n)**2\n",
      "L=32.2/(2*math.pi*n)**2\n",
      "print \"length of simple pendulum = %.2f ft\"%L\n",
      "# distance of cg from point of suspension is given by a\n",
      "a=25./12\n",
      "k=(a*(L-a))**.5#radius of gyration\n",
      "moi=m1*k**2\n",
      "print \"The moment of inertia of rod is %.f lb ft**2\"%moi"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "number of oscillation per second = 0.541\n",
        "length of simple pendulum = 2.79 ft\n",
        "The moment of inertia of rod is 221 lb ft**2\n"
       ]
      }
     ],
     "prompt_number": 6
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 5, Page 37"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Variable declaration\n",
      "n1=50/84.4\n",
      "n2=50/80.3\n",
      "\n",
      "#Calculations\n",
      "L1=(32.2*12)*(84.4/(100*math.pi))**2\n",
      "L2=(32.2*12)*(80.3/(100*math.pi))**2\n",
      "#a1(L1-a1)=k**2=a2(L2-a2) and a1+a2=30 inches\n",
      "#substituting and solving for a we get \n",
      "a1=141/6.8\n",
      "a2=30-a1\n",
      "k=(a1*(L1-a1))**.5\n",
      "moi=90*(149./144)#moi=m*k**2\n",
      "\n",
      "#Results\n",
      "print \"length of equivalent simple pendulum when axis coincides with small end and big end respectively-\"\n",
      "print \"L1=%.1f in\"%L1\n",
      "print \"L2=%.1f in\"%L2\n",
      "print \"distances of cg from small end and big end centers respectively are-\"\n",
      "print \"a1=%.1f in\"%a1\n",
      "print \"a2=%.1f in\"%a2\n",
      "print \"Moment of inertia of rod =%.2f lb ft^2\"%moi"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "length of equivalent simple pendulum when axis coincides with small end and big end respectively-\n",
        "L1=27.9 in\n",
        "L2=25.2 in\n",
        "distances of cg from small end and big end centers respectively are-\n",
        "a1=20.7 in\n",
        "a2=9.3 in\n",
        "Moment of inertia of rod =93.13 lb ft^2\n"
       ]
      }
     ],
     "prompt_number": 7
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 6, Page 39"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Variable declaration\n",
      "m1=150\n",
      "l=8.5\n",
      "g=32.2\n",
      "a=83.2\n",
      "n=25\n",
      "\n",
      "#Calculations&Results\n",
      "#k=(a/2*%pi*n)*(g/l)**0.5\n",
      "k=(14*a*((g)**0.5))/(2*math.pi*n*(l**0.5))\n",
      "k1=14.5/12\n",
      "print \"radius of gyration is %.2f inches which is equal to %.2f ft\"%(k,k1)\n",
      "moi=m1*(k1**2)\n",
      "print \"moment of inertia=%.f lb ft^2\"%moi"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "radius of gyration is 14.43 inches which is equal to 1.21 ft\n",
        "moment of inertia=219 lb ft^2\n"
       ]
      }
     ],
     "prompt_number": 8
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 7, Page 41"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Variable declaration\n",
      "m=2.5#lb\n",
      "a=6#in\n",
      "k=3.8#in\n",
      "l=9#in\n",
      "c=3#in\n",
      "w=22500\n",
      "\n",
      "#Calculations&Results\n",
      "#k^2=ab\n",
      "#case a) to find equivalent dynamic system\n",
      "b=(k**2)/a\n",
      "ma=(2.5*6)/8.42#m*a/a+b\n",
      "mb=m-ma\n",
      "print \"Mass ma =%.2f lb will be situated at 6 inches from cg \\nand mb =%.2f lb will be situated at %.2f inches \" \\\n",
      "      \"\\nfrom cg in the equivalent dynamical system\"%(ma,mb,b)\n",
      "\n",
      "#if two masses are situated at the bearing centres \n",
      "ma1=(2.5*6)/9\n",
      "mb1=m-ma1\n",
      "k1=(a*c)**.5\n",
      "#t=m*((k1^2)-(k^2))*w\n",
      "t=((2.5*(18-3.8**2))*22500)/(32.2*12*12)\n",
      "print \"\\ncorrection couple which must be applied in order that the two mass system is dynamically equivalent to\"\\\n",
      "      \"the rod is given by %.1f lb ft\"%t\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Mass ma =1.78 lb will be situated at 6 inches from cg \n",
        "and mb =0.72 lb will be situated at 2.41 inches \n",
        "from cg in the equivalent dynamical system\n",
        "\n",
        "correction couple which must be applied in order that the two mass system is dynamically equivalent tothe rod is given by 43.2 lb ft\n"
       ]
      }
     ],
     "prompt_number": 16
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 8, Page 44"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Variable declaration\n",
      "m=20.#lb\n",
      "g=32.2\n",
      "a=200#ft/s^2\n",
      "w=120#rad/s^2\n",
      "k=7.#in\n",
      "\n",
      "#Calculations\n",
      "f=(m/g)*a#effective force appllied to the link\n",
      "#this force acts parallel to the acceleration fg\n",
      "t=(m/g)*(k/12)**2*w#couple required in order to provide the angular acceleration\n",
      "#the line of action of F is therefore at a distance from G given by\n",
      "x=t/f\n",
      "\n",
      "#Results\n",
      "print \"Effective force applied to the link is %.3f lb and the line of action of F is therefore at a distance\"\\\n",
      "      \"from G given by %.3f ft\"%(f,x)\n",
      "print \"F is the resultant of Fa and Fb, using x as shown in figure.25 , the force F may then be resolved along\" \\\n",
      "      \"the appropriate lines of action to give the magnitudes of Fa and Fb\"\n",
      "print \"From the scaled diagram shown in figure we get,Fa=65 lb and Fb=91 lb\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Effective force applied to the link is 124.224 lb and the line of action of F is therefore at a distancefrom G given by 0.204 ft\n",
        "F is the resultant of Fa and Fb, using x as shown in figure.25 , the force F may then be resolved alongthe appropriate lines of action to give the magnitudes of Fa and Fb\n",
        "From the scaled diagram shown in figure we get,Fa=65 lb and Fb=91 lb\n"
       ]
      }
     ],
     "prompt_number": 19
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 9, Page 46"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Variable declaration\n",
      "m=10#ton\n",
      "m2=1000#lb\n",
      "a=3#ft/s^2\n",
      "\n",
      "#Calculations\n",
      "#the addition to actual mass in order to allow for the rotational inertia of the wheels and axles\n",
      "m1=2*(1000./2240)*(15./21)**2#m1=m2*k**2/r**2 and 1 ton=2240 lbs\n",
      "M=m+m1\n",
      "F=3*(10.46/32.2)#F=M.a\n",
      "f=F*2240#lb\n",
      "Fa=(2*1000./2240)*(3/32.2)*(15./21)**2#total tangential force required in order to provide the angular acceleration of the wheels and axles\n",
      "#Limiting friction force =uW \n",
      "#u*10>0.042\n",
      "u=0.042/10\n",
      "\n",
      "#Results\n",
      "print \"The total tangential force required in order to provide the angular acceleration of the wheels and axles is %.3f ton\"%Fa\n",
      "print \"If there is to be pure rolling ,u>%.4f\"%u\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The total tangential force required in order to provide the angular acceleration of the wheels and axles is 0.042 ton\n",
        "If there is to be pure rolling ,u>0.0042\n"
       ]
      }
     ],
     "prompt_number": 20
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 10, Page 48"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Variable declaration\n",
      "Ia=200#lb ft2\n",
      "Ib=15#lb ft2\n",
      "G=5#wb==5*wa\n",
      "m=150.#lb\n",
      "r=8#in\n",
      "\n",
      "#Calculations\n",
      "#the equivalent mass of the geared system referred to the circumference of the drum is given by\n",
      "#Me=(1./r)**2*(Ia+(G**2*Ib))\n",
      "Me=(12./r)**2*(Ia+(G**2*Ib))\n",
      "M=m+Me\n",
      "a=(m/M)*32.2#acceleration\n",
      "#if efficiency of gearing is 90% then Me=(1/r**2)*(Ia+(G**2*Ib)/n)\n",
      "n=.9\n",
      "Me1=(12./r)**2*(Ia+(G**2*Ib)/n)\n",
      "M1=Me1+m\n",
      "a1=(m/M1)*32.2\n",
      "\n",
      "#Results\n",
      "print \"acceleration = %.2f ft/s2\"%a\n",
      "print \"acceleration when gear efficiency is 0.9= %.2f ft/s2\"%a1"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "acceleration = 3.35 ft/s2\n",
        "acceleration when gear efficiency is 0.9= 3.14 ft/s2\n"
       ]
      }
     ],
     "prompt_number": 21
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 11, Page 49"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Variable declaration\n",
      "#let\n",
      "#S=displacement of car from rest with uniform acceleration a, the engine torque T assumed to remain ocnstant\n",
      "#v=final speed ofcar\n",
      "#G=gear ratio\n",
      "#r=effective radius\n",
      "#n=efficiency of transmission\n",
      "#M=mass of the car\n",
      "#Ia and Ib=moments of inertia of road whels and engine \n",
      "#formulas => F=29.5nG ; Me= 1648+$.54nG^2 ; a=32.2 F/Me\n",
      "#given\n",
      "G1=22.5\n",
      "G2=12.5\n",
      "G3=7.3\n",
      "G4=5.4\n",
      "n=.82#for 1st ,2nd and 3rd gear\n",
      "n4=.9#for 4th gear\n",
      "\n",
      "#Calculations\n",
      "F1=29.5*n*G1\n",
      "F2=29.5*n*G2\n",
      "F3=29.5*n*G3\n",
      "F4=29.5*n4*G4\n",
      "#on reduction and putting values we get\n",
      "Me1=1648+4.54*n*G1**2\n",
      "Me2=1648+4.54*n*G2**2\n",
      "Me3=1648+4.54*n*G3**2\n",
      "Me4=1648+4.54*n4*G4**2\n",
      "a1=32.2*F1/Me1\n",
      "a2=32.2*F2/Me2\n",
      "a3=32.2*F3/Me3\n",
      "a4=32.2*F4/Me4\n",
      "\n",
      "#Results\n",
      "print \"Maximum acceleration of car on top gear is %.2f ft/s^2\"%a4\n",
      "print \"Maximum acceleration of car on third gear is %.2f ft/s^2\"%a3\n",
      "print \"Maximum acceleration of car on second gear is %.2f ft/s^2\"%a2\n",
      "print \"Maximum acceleration of car on first gear is %.2f ft/s^2\"%a1"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Maximum acceleration of car on top gear is 2.61 ft/s^2\n",
        "Maximum acceleration of car on third gear is 3.08 ft/s^2\n",
        "Maximum acceleration of car on second gear is 4.37 ft/s^2\n",
        "Maximum acceleration of car on first gear is 4.96 ft/s^2\n"
       ]
      }
     ],
     "prompt_number": 22
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 12, Page 57"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Variable declaration\n",
      "I=40#lb ft2\n",
      "n=500#rpm\n",
      "\n",
      "#Calculations\n",
      "w=math.pi*n/30#angular velocity\n",
      "wp=2*math.pi/5#angular velocity of precession\n",
      "I1=I/32.2\n",
      "T=I1*w*wp#gyroscopic couple\n",
      "\n",
      "#Result\n",
      "print \"The couple supplied to the shaft= %.2f lb ft\"%T"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The couple supplied to the shaft= 81.74 lb ft\n"
       ]
      }
     ],
     "prompt_number": 1
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 13, Page 57"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Variable declaration\n",
      "I=250#lb ft2\n",
      "n=1600#rpm\n",
      "v=150#mph\n",
      "r=500#ft\n",
      "\n",
      "#Calculations&Results\n",
      "w=math.pi*160/3#angular velocity of rotation\n",
      "wp=(150.*88)/(60*500)#angular velocity of precession\n",
      "#a) with three bladed screw\n",
      "#T=I*w*wp\n",
      "T=(250/32.2)*math.pi*(160./3)*wp\n",
      "#b)with two bladed air screw\n",
      "#T1=2*I*w*wp*sin(o)\n",
      "print \"The magnitude of gyroscopic couple is given by %.0f lb ft\"%T\n",
      "#Tix=T(1-cos(2o)) lb ft\n",
      "#T1y=Tsin(2o)) lb ft\n",
      "print \"The component gyroscopic couple in the vertical plane =%.0f(1-cos(2x)) lb ft\"%T\n",
      "print \"The component gyroscopic couple in the horizontal plane =%.0f(sin(2x)) lb ft\"%T"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The magnitude of gyroscopic couple is given by 572 lb ft\n",
        "The component gyroscopic couple in the vertical plane =572(1-cos(2x)) lb ft\n",
        "The component gyroscopic couple in the horizontal plane =572(sin(2x)) lb ft\n"
       ]
      }
     ],
     "prompt_number": 24
    }
   ],
   "metadata": {}
  }
 ]
}