1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
|
{
"metadata": {
"name": ""
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Chapter 3:Chemical Kinetics & Catalysis"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example no:1,Page no:69"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"from scipy.optimize import fsolve\n",
"#Variable declaration\n",
"A0=0.25 #[M]\n",
"At=0.15 #[M]\n",
"k=6.7*10**-4\n",
"\n",
"#Calculation\n",
"def f(t):\n",
" x=math.log10(A0/At)-(k*t)/2.303\n",
" return(x)\n",
"t=fsolve(f,1)\n",
"\n",
"#Result\n",
"print\"Time taken to decrease concentration is%.3e\"%t[0],\"s (approx)\"\n",
"print\"NOTE: Approximate value taken in book\"\n",
"\n",
" "
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Time taken to decrease concentration is7.626e+02 s (approx)\n",
"NOTE: Approximate value taken in book\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example no:2,Page no:71"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Variable declaration\n",
"#Initially:\n",
"A=0.1 #Concentration of A\n",
"B=0.1 #Concentration of B\n",
"rate=5.5*10**-6 #Rate of reaction initial in M/s\n",
"x=2 #exponent\n",
"y=1 #exponent\n",
"\n",
"#Calculation\n",
"order=x+y #Reaction order\n",
"k=rate/((A**x)*(B**y)) #Rate law constant in [M**2/s]\n",
"\n",
"#Result\n",
"print\"The rate law is k=rate/(A**2)*(B)\"\n",
"print\"\\nRate constant is %.2e\"%k,\"M**2/s\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The rate law is k=rate/(A**2)*(B)\n",
"\n",
"Rate constant is 5.50e-03 M**2/s\n"
]
}
],
"prompt_number": 2
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example no:3,Page no:76"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Variable declaration\n",
"\n",
"T=[700.0,730.0,760.0,790.0] #Temperature in [K]\n",
"k=[0.011,0.035,0.195,0.343] #rate constants in [L/mol s]\n",
"import numpy \n",
"onebyT=numpy.reciprocal(T) #Reciprocal of temperature\n",
"log_k=numpy.log10(k) #log of k\n",
"R=8.30*10**-3 #[kJ/kmol]\n",
"\n",
"#Calculation\n",
"%matplotlib inline\n",
"import matplotlib.pyplot as plt\n",
"plt.plot(onebyT,log_k)\n",
"plt.ylabel('$log k$')\n",
"plt.xlabel('$1/T$')\n",
"plt.title('1/T vs log k\\n')\n",
"slope,intercept=np.polyfit(onebyT,log_k,1)\n",
"print\"Slope is\",slope\n",
"plt.show()\n",
"slope=-9.9*10**3 #Slope given in book [K]\n",
"E_star=slope*(-2.303*R) #Activation energy in [kJ/mol]\n",
"\n",
"#Result\n",
"print\"Activation energy of reaction is\",round(E_star,1),\"kJ/mol\"\n",
"print\"NOTE that in book slope is approximated as 9.9*10**3 K\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Populating the interactive namespace from numpy and matplotlib\n",
"Slope is"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
" -9663.82327366\n"
]
},
{
"metadata": {},
"output_type": "display_data",
"png": "iVBORw0KGgoAAAANSUhEUgAAAYoAAAEuCAYAAACQ81XoAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XlYlOX+P/D3gLjvqBiLmsgiiAgoLpUOwiAIprmLCblV\nZm51NPPk73AsATPLzrHFrDxq5oIKmqC50Hi0IFT8ornRgiugxxQ3EFme3x93kgQM2zDPMzPv13Vx\nxQw3M5+Zi+btfT/3opIkSQIREVElLOQugIiIlI1BQUREOjEoiIhIJwYFERHpxKAgIiKdGBRERKQT\ng4JIIV544QUsXrxY748bGRmJSZMm6f1xyXwwKMhsrFq1Cr1790bjxo0xefLkCttER0eja9euaNGi\nBVq0aIGmTZvCwsKi9HbLli3rrT6VSgWVSlUvj0tUFwwKMht2dnZYvHgxpkyZUmmbxMREfPXVV7h7\n9y7u3r2LPXv2wM7OrvT2nTt36rXG+lj/yjW1VFcMCjIbzz33HIYPHw5ra+sKf37r1i1kZGSgf//+\npfdV50N2xowZmD9/fpn7hg8fjpUrVwIAli1bBnt7e7Rs2RKurq5ISkqqVr1r1qyBk5MTrK2tMXz4\ncGRnZ5f+bN++fXBxcUHr1q0xc+ZMDBo0CF988UWVj1lYWIgJEyZg9OjRKCwsrFYdRAwKMjuVffh/\n++23CAgIqPFQTVhYGLZs2VJ6+9atW9i/fz/Gjx+P8+fP46OPPsKxY8dw584d7Nu3D126dKnyMZOS\nkrBo0SLExsYiOzsbnTt3xvjx4wEAN27cwJgxY7Bs2TLcvHkTLi4uSE5OrrLuBw8eYMSIEWjSpAli\nY2NhZWVVo9dJ5otBQWansg/UhIQEDB06tMaP9/TTT0OlUuHw4cMAgG3btmHAgAHo2LEjLC0tUVBQ\ngNOnT6OwsBCdOnVC165dq6xt48aNmDp1Knr16oWGDRsiOjoaycnJuHjxIhITE9GjRw+MGDECFhYW\nmD17Njp27KjzMe/cuYMhQ4bAyckJX375Ja9bUI0wKMjsVNSjKCkpwYEDBxAUFFTjx1OpVBg/fjw2\nbdoEAPj6668xceJEAEC3bt2wcuVKREZGwsbGBhMmTCgzhFSZR72IR5o1awZra2tcvXoV2dnZsLe3\nL9P+r7cfJ0kSUlJS8NNPP+GNN96o8esjYlCQ2anoX9NHjx5F586dK71+UZUJEyZg27ZtuHjxIlJT\nUzFq1KgyPzt8+DAuXrwIlUpVrQ9rW1tbXLhwofT2/fv38fvvv8Pe3h5PPPEErly5UvozSZLK3P4r\nlUqFwMBALFy4EP7+/rh+/XqtXiOZLwYFmY3i4mI8ePAARUVFKC4uRkFBAYqLiwGI2U6hoaG1fuxe\nvXqhXbt2mDZtGoKCgkqn0WZkZCApKQkFBQVo1KgRGjduDEtLywofQ5Kk0t7OhAkTsHbtWqSnp6Og\noACLFi1Cv3790KlTJwwdOhSnTp3Czp07UVRUhI8++gg5OTmV1vboMefPn4+wsDD4+/vj999/r/Vr\nJfPDoCCz8fbbb6Np06ZYtmwZvvrqKzRp0gRLly4FIIKisusT1R3PDwsLQ1JSEsLCwkrvKygowJtv\nvon27dvjiSeewI0bNxAdHV3p8zx6Ln9/f7z99tsYNWoUbG1tkZmZic2bNwMA2rVrh9jYWCxYsADt\n2rXD2bNn0bt3bzRq1KjKx33rrbcwYsQIBAQEIDc3t1qvi0jFg4vI3F27dg3e3t64evWq3KXUSklJ\nCRwcHPD1119j0KBBcpdDJog9CjJ7d+7cwfvvvy93GTWyb98+5ObmoqCgAFFRUQCAfv36yVwVmaoG\nchdAJDcnJyc4OTnJXUaNJCcnIywsDA8fPoS7uzvi4+MrHXoiqisOPRERkU4ceiIiIp0YFEREpBOD\ngoiIdGJQEBGRTgwKIiLSiUFBREQ6MSiIiEgnBgUREenEoCAiIp0YFEREpBODgoiIdFJEUNy8eRMa\njQbOzs4IDAzUuU9+cXExvLy8MGzYMANWSERkvhQRFDExMdBoNMjIyIC/vz9iYmIqbfvhhx/Czc2N\nh8MTERmIIoJi165diIiIAABEREQgPj6+wnZXrlxBYmIipk2bBm56S0RkGIoIimvXrsHGxgYAYGNj\ng2vXrlXYbt68eVi+fDksLBRRNhGRWTDYwUUajabCA+AfnVn8yOPn+z5u9+7d6NChA7y8vKDVauur\nTCIi+itJAVxcXKTs7GxJkiQpKytLcnFxKdfmzTfflOzt7aUuXbpIHTt2lJo2bSpNmjSpwsfz9PSU\nAPCLX/ziF79q8OXp6VnhZ6oigmL+/PlSTEyMJEmSFB0dLb3xxhs622u1Wik0NLTSnwOKeFmK949/\n/EPuEswO33PD43tefZV9dipisH/hwoXYv38/nJ2dkZSUhIULFwIAsrKyEBISUuHvcNYTEZFhGOwa\nhS5t27bFgQMHyt1va2uLhISEcvcPGjQIgwYNMkRpRERmTxE9CpKHWq2WuwSzw/fc8Pie153qj3Ep\nk6JSqbjOgoiohir77GSPgoiIdDLroGCng4ioamYdFIMHAy++CBw5wtAgIqqMWQfFhg2Ao6MIi27d\ngMhI4Lff5K6KiEhZeDEbojeRlgasXw9s2gS4uADh4cCYMUDr1vVYKBGRglT22cmg+IvCQmDPHhEa\n+/cDQUFARAQQGAg0UMSqEyKi+sGgqIWbN4EtW0RoZGYCYWEiNDw99VAkEZHCMCjqKCNDXNNYv14M\nR4WHi+B44gm9Pg0RkWwYFHpSUgL8978iMOLigH79RC9j+HCgSZN6eUoiIoNgUNSDvDwgPh5Ytw44\nehQYOVKExlNPATxbiYiMDYOinl29Cnz9tQiNvDxg0iTx1a2bQcsgIqo1BoWBSBJw4sSfU227dRO9\njLFjOdWWiJSNQSGDwkLg229FL2PfPmDIEHERfMgQwMpK7uqIiMpiUMjs1i1g61bR0/jlFzFjKjwc\n6NUL4BlMRKQEDAoF+flnMdV2wwageXMxNBUWBtjayl0ZEZkzBoUClZSIDQnXrQN27AD69hW9jBEj\ngKZN5a6OiMwNg0Lh8vKAnTvF0FRKiphqGx4OPPMMp9oSkWEo+uCimzdvQqPRwNnZGYGBgcjNza2w\nXW5uLkaPHo3u3bvDzc0NKSkpBq60/jRtCkyYIPaZOn0a6N4dePVVsbvt//t/YriKiEgOigiKmJgY\naDQaZGRkwN/fHzExMRW2mzNnDoYOHYqzZ8/i5MmT6N69u4ErNQxbW+BvfwNOnhSrv+/eBZ5+Ghgw\nAPj0U3FhnIjIUBQx9OTq6opDhw7BxsYGOTk5UKvVOHfuXJk2t2/fhpeXF36rxoERxjj0VJXCQjHF\ndv16MeVWoxFDU0FBnGpLRPqh6KGna9euwcbGBgBgY2ODa9eulWuTmZmJ9u3bY/LkyfD29sb06dOR\nl5dn6FJlY2UFhISI3WwzM0VQLFsG2NsDc+eK8zRMLBuJSCEMdsKCRqNBTk5OufuXLl1a5rZKpYKq\ngoUFRUVFSEtLw6pVq9CnTx/MnTsXMTExWLJkSYXPFxkZWfq9Wq2GWq2uU/1K0qaNOJXvxRfFmowN\nG4BRo4BmzUQv4/nnOdWWiKqm1Wqh1WqrbKeYoSetVouOHTsiOzsbfn5+5YaecnJy0L9/f2RmZgIA\njhw5gpiYGOzevbvc45ni0FNVSkqA778XQ1PbtwN9+vw51bZZM7mrIyJjoOihp2effRbr1q0DAKxb\ntw4jRowo16Zjx45wcHBARkYGAODAgQNwd3c3aJ1KZmEhptKuWSM2KJw8Gdi4UQxNTZkCaLUiTIiI\nakoRPYqbN29i7NixuHTpErp06YKtW7eidevWyMrKwvTp05GQkAAASE9Px7Rp0/Dw4UM4Ojpi7dq1\naNWqVbnHM8ceRWWys//c1fb2bbGjbXg44Owsd2VEpDRccEdITxdDUxs3Ak8+KQJj3DigbVu5KyMi\nJWBQUKmioj+n2u7ZAwQEiP2mgoKAhg3lro6I5MKgoArl5gLbtomhqfPngfHjRWh4e3NXWyJzw6Cg\nKv36K/DVV6Kn0bixGJqaOFFcECci08egoGqTpD+n2m7bBvj4iF7Gc89xqi2RKWNQUK3k5wPffCOG\npn74ARg+XPQ01GruaktkahgUVGc5OeIc8PXrgd9//3OqrYuL3JURkT4wKEivTp78c6ptp05iaGrc\nOMDaWu7KiKi2GBRUL4qKgAMHxNBUYiLg7y96GUOHcqotkbFhUFC9u31bXPxevx44c0ZMtQ0PB3r3\n5lRbImPAoCCD+u23P6faNmz451RbBwe5KyOiyjAoSBaSBCQni6GpR1Ntv/ySazOIlIhBQbJ78AB4\n7z3Ryzh0CHjiCbkrIqLHVfbZabCDi4gaNwbeekt8HxAgtj5v317WkoioGhgUZHBvvSUW8gUGAklJ\n4sQ+IlIuDj2RLCQJ+NvfgMOHxfTali3lroiIeI2CFEeSgFdfFedk7N0LNG8ud0VE5o1BQYpUUgJM\nnw5kZgIJCUCTJnJXRGS+GBSkWMXFYp3F778DO3cCjRrJXRGReWJQkKIVFYmV3IWFYr2FlZXcFRGZ\nn8o+OxWxUfTNmzeh0Wjg7OyMwMBA5ObmVtguOjoa7u7u8PDwQFhYGAoKCgxcKdWXBg2Ar78WQ1ET\nJ4rgICJlUERQxMTEQKPRICMjA/7+/oiJiSnX5sKFC1izZg3S0tJw6tQpFBcXY/PmzTJUS/WlYUMg\nNlYczzpliggNIpKfIoJi165diIiIAABEREQgPj6+XJuWLVvCysoKeXl5KCoqQl5eHuzs7AxdKtWz\nxo2B+Hjg0iXgpZcYFkRKoIiguHbtGmxsbAAANjY2uHbtWrk2bdu2xeuvv45OnTrB1tYWrVu3RkBA\ngKFLJQNo2hTYvRs4fRqYM0dMoyUi+RhsZbZGo0FOTk65+5cuXVrmtkqlgqqCPal//fVXrFy5Ehcu\nXECrVq0wZswYbNy4ERMnTqzw+SIjI0u/V6vVUKvVdaqfDKt5c2DPHnG+xYIFwLvvcqtyIn3TarXQ\narVVtlPErCdXV1dotVp07NgR2dnZ8PPzw7lz58q02bJlC/bv34/PP/8cALBhwwakpKTgo48+Kvd4\nnPVkOn7/HRg8WJzVvWSJ3NUQmTZFz3p69tlnsW7dOgDAunXrMGLEiHJtXF1dkZKSgvz8fEiShAMH\nDsDNzc3QpZKBWVsD+/eLKbNRUXJXQ2SeFNGjuHnzJsaOHYtLly6hS5cu2Lp1K1q3bo2srCxMnz4d\nCQkJAIB3330X69atg4WFBby9vfH555/DqoIJ9+xRmJ6sLGDQIOCVV4B58+Suhsg0ccEdGb1Ll0RY\nLFgAzJghdzVEpofnUZDR69QJOHgQUKvFNh9TpshdEZF5YFCQUenaVWxL7ucn1lyEhcldEZHpY1CQ\n0XF2Br79VpyS16gRMGqU3BURmTYGBRmlHj3EOougIBEWoaFyV0RkuhQxPZaoNry8gG++Edcq9u+X\nuxoi08WgIKPm6wvs2CF2nD10SO5qiEwTg4KM3tNPA5s3A6NHA8nJcldDZHoYFGQSBg8GNmwQW30c\nOyZ3NUSmhUFBJiMoCFizRlzYPnlS7mqITAdnPZFJGT4cKCgQoXHwINC9u9wVERk/BgWZnLFjRVho\nNIBWC3TrJndFRMaNQUEmadIk4MEDcZ7FoUNAly5yV0RkvBgUZLKmTy8bFvb2cldEZJwYFGTSZs0q\nGxYdO8pdEZHxYVCQyZs/X4RFQIC4ZtGundwVERkXBgWZhbfeAvLzxQXupCSgTRu5KyIyHjy4iMyG\nJAGvvQb88IPYG6plS7krIlIWnnBHBBEWM2cCp04Be/cCzZrJXRGRcjAoiP5QUgJMmwZcvAjs3g00\naSJ3RUTKUNlnpyK28IiNjYW7uzssLS2RlpZWabu9e/fC1dUVTk5OWLZsmQErJFNiYSG2+rCxEYce\nFRTIXRGRsikiKDw8PBAXF4eBAwdW2qa4uBivvvoq9u7dizNnzmDTpk04e/asAaskU2JpCaxfL3oT\n48YBhYVyV0SkXIoICldXVzg7O+tsk5qaim7duqFLly6wsrLC+PHjsXPnTgNVSKaoQQNg0yagqAh4\n/nnxXyIqTxFBUR1Xr16Fg4ND6W17e3tcvXpVxorIFDRsCGzbBty6JU7KKymRuyIi5THYOgqNRoOc\nnJxy90dFRWHYsGFV/r5KparR80VGRpZ+r1aroVara/T7ZD4aNwbi44HgYODll4HVq4Ea/rkRGSWt\nVgutVltlO4MFxf46HmpsZ2eHy5cvl96+fPky7HVs3vN4UBBVpWlTMQMqMBCYMwf48EOGBZm+v/4j\n+p///GeF7RQ39FTZtNbevXvj559/xoULF/Dw4UNs2bIFzz77rIGrI1PWogWwZw/w/ffAwoVizQUR\nKSQo4uLi4ODggJSUFISEhCA4OBgAkJWVhZCQEABAgwYNsGrVKgwZMgRubm4YN24cuvNUGtKz1q2B\nfftEYFTyjysis8MFd0QVuH4dGDQIiIgQvQsic1DZZyc3BSSqQIcO4ijVQYPExe65c+WuiEg+DAqi\nStjalg2Ll1+WuyIieTAoiHTo1Ak4cABQq4FGjYDJk+WuiMjwGBREVXB0FGHh5yd6FhMmyF0RkWEx\nKIiqwcVFzIYKCBA9i5Ej5a6IyHAYFETV1KMHkJgoVnA3agT8MXObyOQpYh0FkbHw9gZ27RLXKg4c\nkLsaIsNgUBDVUN++wPbtQFgY8N//yl0NUf1jUBDVwjPPiC3KR48GkpPlroaofjEoiGrJ3x9Ytw4Y\nPhw4flzuaojqD4OCqA6Cg4HPPhMXtk+elLsaovrBWU9EdTRihDh3OygISEoCXF3lrohIvxgURHow\nbpwIC40G+O47oFs3uSsi0h8GBZGehIcDDx6IRXmHDgGdO8tdEZF+MCiI9OjFF0VY+PuLsLCzk7si\norpjUBDp2ezZZcPCxkbuiojqhkFBVA8WLPhzGOq774B27eSuiKj2ajQ91sfHB/n5+QCAxMREfP/9\n9/VSFJEpWLwYCA0FAgOB3Fy5qyGqvRr1KP7+97+jSZMmiIuLQ1paGvLz8/HUU0/VV21ERk2lAqKi\ngPx8MXV2/36gRQu5qyKquSp7FAMHDsQbb7yBnTt3onfv3ti+fTu2b9+OMWPGYNGiRXorJDY2Fu7u\n7rC0tERaWlqFbS5fvgw/Pz+4u7ujR48e+Ne//qW35yeqDyoV8MEHgJeXWJR3/77cFRHVnEqq6CTt\nx+zatQtOTk5ITk5Gamoqzpw5AwAIDQ2Fn58f+vTpo5dCzp07BwsLC7z00ktYsWIFvL29y7XJyclB\nTk4OevXqhXv37sHHxwfx8fHo3r172RdVyQHhRHIpKQGmTgUuXwa++QZo0kTuiojKq+yzs8qgqMj9\n+/eRmpqKc+fOYcaMGXop8BE/P79Kg+KvRowYgVmzZsHf37/M/QwKUqLiYuD554E7d4AdO8SZFkRK\nUtlnZ42uUbz00kto1qwZBgwYgP79+8PPz09vBdbUhQsXcOLECfTt21e2GohqwtISWL9erOIePx7Y\nuhWwspK7KqKq1SgoBgwYAI1Ggx9//BHLly/Hjz/+CA8PD0RGRsLW1rbK39doNMjJySl3f1RUFIYN\nG1btOu7du4fRo0fjww8/RPPmzStsExkZWfq9Wq2GWq2u9uMT1RcrK2DzZnGUang48NVXIkCI5KDV\naqHVaqtsV6Ohp3feeQdz584t/XDevn07AgIC8Nlnn2H+/Pm1LvZxVQ09FRYWIjQ0FMHBwZg7d26F\nbTj0REr34AEwbJhYuf3ll4AF93EmBdDL0NOUKVMwceJESJIEFxcXWFpaYtSoUXByctJboQAq/ZCX\nJAlTp06Fm5tbpSFBZAwaNwbi48U25a+8AnzyiZghRaREtbqYffHiRdy6dQseHh64ceMGFi5ciLVr\n19apkLi4OMyePRs3btxAq1at4OXlhT179iArKwvTp09HQkICjhw5goEDB6Jnz55Q/fF/VXR0NIKC\ngsq+KPYoyEjcvSsW5PXtK6bRMixITnqZ9XT27Fl8/PHHaNOmDSZNmqT3noS+MCjImOTmin2hNBog\nOpphQfKp7LOzRiOjCQkJmDFjBvr374+YmBjs2bNHbwUSmavWrYF9+4DERGDJErmrISqvRkHRvn17\nuLm5ITg4GF988QWuX79eX3URmRVra7HFx+bNwLJlcldDVFaNLmZbW1tj/PjxmDhxIjp16sSgINIj\nGxvgwAFg0CBxsXvOHLkrIhKq7FEsXrwYCQkJuHHjBkJDQ7FkyRKkpKRg8uTJ3BCQSM/s7ICDB8WF\n7dWr5a6GSKiyR5Gfn49Lly5h27ZtuH79Otq0aQNfX1+sWrUKR44cwYABAwxRJ5HZ6NxZhIVaLXoW\nERFyV0TmrsbTY2/fvo2jR4/i+PHjcHR0xOjRo+urtlrjrCcyBefOAYMHA++/L7b8IKpvet0UUOkY\nFGQqTp0S02Y/+QR47jm5qyFTp5eV2URkWB4eYtpscLDYbXboULkrInPEHWaIFM7bG9i5E3jhBTEr\nisjQGBRERqBfP2D7diAsDDh8WO5qyNwwKIiMxDPPAJs2AaNGASkpcldD5oRBQWRE/P2B//wHGD4c\nqORoeSK9Y1AQGZmhQ4FPPxX/PXVK7mrIHHDWE5EReu45oKAAGDIESEoCXF3lrohMGYOCyEiNHy/C\nQqMBtFrA0VHuishUMSiIjFhEhDhW1d8fOHRIbP9BpG8MCiIj99JLZcPCzk7uisjUMCiITMCcOSIs\nAgLEMJSNjdwVkSlhUBCZiDfeAPLzxTWL774ThyER6YMipsfGxsbC3d0dlpaWSKticnhxcTG8vLww\nbNgwA1VHZDz+8Q8xbTYwUJzFTaQPiggKDw8PxMXFYeDAgVW2/fDDD+Hm5gYVT6AnKkelAqKjgaef\nFhsJ3r0rd0VkChQRFK6urnB2dq6y3ZUrV5CYmIhp06ZxG3GiSqhUwMqVgKcnEBoK5OXJXREZO0UE\nRXXNmzcPy5cvh4WFUZVNZHAqFfDxx8CTT4rtPh48kLsiMmYGu5it0WiQk5NT7v6oqKhqXW/YvXs3\nOnToAC8vL2i12irbR0ZGln6vVquhVqtrUC2R8bOwAL74Anj+eWD0aGDHDqBhQ7mrIiXRarXV+jxV\n1Al3fn5+WLFiBby9vcv9bNGiRdiwYQMaNGiABw8e4M6dOxg1ahTWr19fri1PuCP6U2EhMG6c+H7L\nFsDKSt56SLkq++xU3BhOZR/wUVFRuHz5MjIzM7F582YMHjy4wpAgorKsrMT25A8eAOHhQHGx3BWR\nsVFEUMTFxcHBwQEpKSkICQlBcHAwACArKwshISEV/g5nPRFVX6NG4uCj//0PmDYNKCmRuyIyJooa\netIXDj0RVez+fTFt1t1dXOzmv7focUYz9ERE9adZM2D3buDECeC11wD+e4qqg0FBZGZatgT27hUb\nCC5axLCgqnGvJyIz1Lo1sG8f4OcHFBUBS5dy6ixVjj0KIjPVrh1w8CBw9izg7Q2kpMhdESkVg4LI\njHXoAHzzDfDWW+J41TlzgHv35K6KlIZBQWTmVCpxrOpPP4kdZ3v0ENcwiB7h9FgiKmPfPnFq3lNP\nic0F27WTuyIyFE6PJaJqCQwUvQsbG9G72LiRM6PMHXsURFSp1FSxktveHvjkE6BzZ7krovrEHgUR\n1ZivL3DsmBiG8vEB/vUv7hVljtijIKJqOXcOePFFsRvt55+LbUDItLBHQUR14uoKaLVARASgVgOR\nkUBBgcxFkUEwKIio2iwsgJdfFntFnTgBeHkBP/wgd1VU3zj0RES1IknAtm1ikd6oUUBUFNCihdxV\nUV1w6ImI9EqlAsaMEVNp798XU2kTEuSuiuoDexREpBcHDoiFen37ioV6HTrIXRHVFHsURFSvAgKA\nU6cAOzvAwwPYsIEL9UwFexREpHfHjwNTp4rV3atXA126yF0RVQd7FERkMD4+wNGj4ryL3r3FUBQX\n6hkvRQRFbGws3N3dYWlpibS0tErb5ebmYvTo0ejevTvc3NyQwg30iRTLygpYuFBMn42PBwYMEENT\nZHwUERQeHh6Ii4vDwIEDdbabM2cOhg4dirNnz+LkyZPo3r27gSokotpydgaSksSeUYMHA4sXAw8e\nyF0V1YQigsLV1RXOzs4629y+fRuHDx/GlClTAAANGjRAq1atDFEeEdWRhQUwfTqQni6m03p5AUeO\nyF0VVZcigqI6MjMz0b59e0yePBne3t6YPn068vLy5C6LiGrA1haIixNndI8bB8ycCdy5I3dVVJUG\nhnoijUaDnJyccvdHRUVh2LBhVf5+UVER0tLSsGrVKvTp0wdz585FTEwMlixZUmH7yMjI0u/VajXU\nanVtSyciPRs5UlzoXrBAbC748cdANT4GSM+0Wi20Wm2V7RQ1PdbPzw8rVqyAt7d3uZ/l5OSgf//+\nyMzMBAAcOXIEMTEx2L17d7m2nB5LZDySksSutI+2Mbexkbsi82U002Mr+4Dv2LEjHBwckJGRAQA4\ncOAA3LnPMZHRGzxYzIZ68kmgZ0/gP//hQj2lUUSPIi4uDrNnz8aNGzfQqlUreHl5Yc+ePcjKysL0\n6dOR8McGMunp6Zg2bRoePnwIR0dHrF27tsIL2uxREBmntDQxO8raWizU69pV7orMS2WfnYoICn1j\nUBAZr6Ii4P33gXffBd58U+xO28BgV1PNG4OCiIzKL7+Iaxd374oT9Tw95a7I9BnNNQoiIgDo1g04\neFAclKTRAH//OxfqyYVBQUSKpVKJzQXT04Hz50Wv4r//lbsq88OhJyIyGnFxwKxZQGgosGwZwM0Z\n9ItDT0Rk9J57TmwBIklioV58vNwVmQf2KIjIKB06JPaP8vQE/v1voGNHuSsyfuxREJFJGTRIXLtw\nchIL9b78kgv16gt7FERk9NLTxUXvVq2Azz4DHB3lrsg4sUdBRCbL0xNISQGGDgX69gWWLxcL90g/\n2KMgIpPy22/ASy8BN2+KhXpeXnJXZDzYoyAis9C1K7Bvn5hGO2SIOI41P1/uqowbg4KITI5KBbzw\ngtiVNjNEWT86AAALn0lEQVRTXOyuxrELVAkOPRGRydu1S5ymFxQkrl+0bi13RcrEoSciMlvPPisW\n6llZiYV6O3bIXZFxYY+CiMzKkSPizAt3d7FQz9ZW7oqUgz0KIiIATz8N/N//AW5uYlrtmjVcqFcV\n9iiIyGydOiV6F02bioV6Tk5yVyQv9iiIiP7CwwP44Qdg+HCgf3+xI21hodxVKY8igiI2Nhbu7u6w\ntLREWlpape2io6Ph7u4ODw8PhIWFoaCgwIBVEpEpsrQE5s4Fjh4FkpIAX1/g+HG5q1IWRQSFh4cH\n4uLiMHDgwErbXLhwAWvWrEFaWhpOnTqF4uJibN682YBVEpEpe/JJYO9e4LXXxFYgCxYAeXlyV6UM\niggKV1dXODs762zTsmVLWFlZIS8vD0VFRcjLy4OdnZ2BKiQic6BSAZMmiWsXV66IhXpJSXJXJT9F\nBEV1tG3bFq+//jo6deoEW1tbtG7dGgEBAXKXRUQmqEMH4OuvgZUrxQrvqVOBW7fkrko+BgsKjUYD\nDw+Pcl/ffPNNtX7/119/xcqVK3HhwgVkZWXh3r172LhxYz1XTUTmLDQUOH1azIpydwe2bTPPqbQN\nDPVE+/fvr9PvHzt2DAMGDIC1tTUAYOTIkfjhhx8wceLECttHRkaWfq9Wq6FWq+v0/ERknlq0EAvz\nJkwQU2m/+gr46CPAFEa+tVottNXYBEtR6yj8/Pzw3nvvwcfHp9zP0tPTMXHiRBw9ehSNGzfGCy+8\nAF9fX8ycObNcW66jIKL6UFAAREUBH38MvPOOOIrVwmgG8Kum6HUUcXFxcHBwQEpKCkJCQhAcHAwA\nyMrKQkhICADA09MT4eHh6N27N3r27AkAePHFF2WrmYjMT6NGwD//CXz3HbB2LeDnB5w/L3dV9U9R\nPQp9YY+CiOpbcbEYglqyREypnT9fbDpozCr77GRQEBHVwcWLwMsvA1lZwBdfAL17y11R7Sl66ImI\nyFh17gwkJooFeqGhwN/+Bty/L3dV+sWgICKqI5UKmDhRLNTLyRF7SNVxoqeicOiJiEjP9uwBZswA\n1Grg/feBtm3lrqh6OPRERGQgwcHiRL1WrcRCvS1bjHuhHnsURET1KCVFLNTr2lWsv7C3l7uiyrFH\nQUQkg379gLQ0MRvKy0uERUmJ3FXVDHsUREQGcuaMWM2tUgGffw64uspdUVnsURARyczNDTh8WOwb\n9cwzYhuQhw/lrqpqDAoiIgOysABmzhSn6CUnAz4+wI8/yl2Vbhx6IiKSiSSJGVHz5gHjxwNvvw00\nby5fPRx6IiJSGJVKBMRPPwE3b4qFet9+K3dV5bFHQUSkEN9+K/aNeuYZ4IMPgD+O3zEY9iiIiBRu\nyBCxDUi7dkCPHsCmTcpYqMceBRGRAqWmirO6O3UCPvlE/Le+sUdBRGREfH3FzKgBA8TMqFWr5Fuo\nxx4FEZHCnTsnFuoVF4uFem5u9fM87FEQERkpV1fg0CEgPBwYNEgcx2rI3gWDgojICFhYiBlRJ04A\nTZuK2wZ7bsM9VeXmz5+P7t27w9PTEyNHjsTt27crbLd37164urrCyckJy5YtM3CVRETys7cX53Mb\nkiKCIjAwEKdPn0Z6ejqcnZ0RHR1drk1xcTFeffVV7N27F2fOnMGmTZtw9uxZGao1HVqtVu4SzA7f\nc8Pje153iggKjUYDiz/6UX379sWVK1fKtUlNTUW3bt3QpUsXWFlZYfz48di5c6ehSzUp/B/I8Pie\nGx7f87pTRFA87ssvv8TQoUPL3X/16lU4ODiU3ra3t8fVq1cNWRoRkVlqYKgn0mg0yMnJKXd/VFQU\nhg0bBgBYunQpGjZsiLCwsHLtVCpVvddIREQVkBRi7dq10oABA6T8/PwKf56cnCwNGTKk9HZUVJQU\nExNTYVtPT08JAL/4xS9+8asGX56enhV+pipiwd3evXvx+uuv49ChQ2jXrl2FbYqKiuDi4oKDBw/C\n1tYWvr6+2LRpE7p3727gaomIzIsirlHMmjUL9+7dg0ajgZeXF1555RUAQFZWFkJCQgAADRo0wKpV\nqzBkyBC4ublh3LhxDAkiIgNQRI+CiIiUSxE9Cqq+6iw6nD17NpycnODp6YkTJ05U+buxsbFwd3eH\npaUl0tLSSu9PTU2Fl5cXvLy80LNnT2zZsqX0Z8ePH4eHhwecnJwwZ86cenilyqGU91ytVsPV1bX0\n5zdu3KiHV6sMhnzPH7l06RKaN2+OFStWlN5nTn/nOtXtEjQZUlFRkeTo6ChlZmZKDx8+lDw9PaUz\nZ86UaZOQkCAFBwdLkiRJKSkpUt++fav83bNnz0rnz5+X1Gq1dPz48dLHysvLk4qLiyVJkqTs7GzJ\n2tpaKioqkiRJkvr06SP9+OOPkiRJUnBwsLRnz576ffEyUdJ7/te2psrQ7/kjo0aNksaOHSu99957\npfeZy995VdijMCLVWXS4a9cuREREABCLF3Nzc5GTk6Pzd11dXeHs7Fzu+Zo0aVK6EDI/Px+tWrWC\npaUlsrOzcffuXfj6+gIAwsPDER8fX58vXTZKec8fkcxgpNjQ7zkAxMfHo2vXrnB7bFtWc/o7rwqD\nwohUZ9FhZW2ysrJqtWAxNTUV7u7ucHd3x/vvv1/6HPb29qVt7OzsTHbxo1Le80ciIiLg5eWFd955\np7YvSfEM/Z7fu3cP7777LiIjI8s9h7n8nVeFQWFEqrvoUJ//6vT19cXp06eRlpaGOXPmVLpho6lS\n0nu+ceNG/PTTTzh8+DAOHz6MDRs26O05lcTQ73lkZCTmzZuHpk2bmkWPrTYMtjKb6s7Ozg6XL18u\nvX358uUy/+KpqM2VK1dgb2+PwsLCKn9XF1dXVzg6OuKXX36Bvb19mf24rly5Ajs7u9q8JMVTynvu\n4+MDW1tbAEDz5s0RFhaG1NRUTJo0qbYvTbEM/Z6npqZi+/btWLBgAXJzc2FhYYEmTZpg5MiRZvN3\nXiVZr5BQjRQWFkpdu3aVMjMzpYKCgiov8iUnJ5de5KvO76rVaunYsWOltzMzM6XCwkJJkiTpwoUL\nkoODg3T79m1JkiTJ19dXSklJkUpKSkz6Ip9S3vOioiLpf//7nyRJkvTw4UNp1KhR0urVq+vtdcvJ\n0O/54yIjI6UVK1aU3jaXv/OqMCiMTGJiouTs7Cw5OjpKUVFRkiRJ0qeffip9+umnpW1mzpwpOTo6\nSj179iwzu6Oi35UkSdqxY4dkb28vNW7cWLKxsZGCgoIkSZKk9evXS+7u7lKvXr2kPn36lPmf5Nix\nY1KPHj0kR0dHadasWfX9smWlhPf83r17ko+Pj9SzZ0/J3d1dmjt3rlRSUmKIly8LQ77nj/trUJjT\n37kuXHBHREQ68WI2ERHpxKAgIiKdGBRERKQTg4KIiHRiUBARkU4MCiIi0olBQUREOjEoiIhIJwYF\nkQEVFRXh/PnzcpdBVCMMCiI9KykpwWuvvVbhz7RaLSwsLJCRkYHg4GCsXr0aAQEBmDp1KlavXg0f\nHx+UlJQYuGIi3bh7LJEe3bp1C2vXrsWhQ4cq/Pn58+cREBCArVu3YteuXbCyskJcXBwWLFgAFxcX\ntGrVqvTgIiKl4F8kkR61adMGr732Glq2bFnhzx+FgJOTE6ysrAAAGRkZcHFxASC2FidSGgYFkYGk\npqaiT58+AAAvLy8AwM8//wxHR8fSNr169ZKlNiJdGBREBnL8+HH07t27zH2pqamlZzITKRWDgshA\nKrpIffToUfTr10+Gaoiqj0FBZADnz58vvQ7xuKNHj5YORxEpFYOCSI/u37+PDz74AGfPnsXKlStx\n//59AGJarFqtLm2Xnp6O5cuX4+TJk4iLi8P169dlqpioajzhjsgA/v3vf2PWrFlyl0FUK+xRENWz\nrKws2NnZyV0GUa0xKIjq2eHDhzFkyBC5yyCqNQ49ERGRTuxREBGRTgwKIiLSiUFBREQ6MSiIiEgn\nBgUREenEoCAiIp0YFEREpBODgoiIdPr//OMNiNnaocoAAAAASUVORK5CYII=\n",
"text": [
"<matplotlib.figure.Figure at 0x7a19438>"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Activation energy of reaction is 189.2 kJ/mol\n",
"NOTE that in book slope is approximated as 9.9*10**3 K\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example no:3.2,Page no:86"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Variable declaration\n",
"T1=10.0 #in min\n",
"T2=20.0 #in min\n",
"a=25.0 #amount of KMnO4 in ml at t=0min#\n",
"a1=20.0 #amount of KMnO4 in ml at t=10min or a-x value at t=10#\n",
"a2=15.7 #a-x value at t=20min#\n",
"import math\n",
"\n",
"#Calculation\n",
"k1=(2.303/T1)*math.log10(a/a1) #formula of rate constant for first order reaction#\n",
"print\"At t=10min rate constant k=\",round(k1,5),\"/min\"\n",
"k2=(2.303/T2)*math.log10(a/a2) #rate constant formula#\n",
"\n",
"#Result\n",
"print\"\\nAt t=20min rate constant k=\",round(k2,5),\"/min\" \n",
"print\"\\nNOTE:Calculation mistake in book\"\n",
"print\"\\nIf we calculate the rate constant at other t values we will see that k values are almost constnat\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"At t=10min rate constant k= 0.02232 /min\n",
"\n",
"At t=20min rate constant k= 0.02326 /min\n",
"\n",
"NOTE:Calculation mistake in book\n",
"\n",
"If we calculate the rate constant at other t values we will see that k values are almost constnat\n"
]
}
],
"prompt_number": 2
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example no:3.3,Page no:87"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Variable declaration\n",
"T=40.5 #in min#\n",
"R1=25.0 #percentage of decomposed reactant#\n",
"import math\n",
"\n",
"#Calculation\n",
"R2=100.0-R1 #percentage of left out reactant which is a-x value#\n",
"R3=100.0/R2 #value of a/(a-x)#\n",
"K=(2.303/T)*math.log10(R3) #formula of rate constant for first order reaction#\n",
"\n",
"#Result\n",
"print\"The rate constant of the reaction is %.2e\"%K,\"/min\" \n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The rate constant of the reaction is 7.10e-03 /min\n"
]
}
],
"prompt_number": 3
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example no:3.4,Page no:87"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Variable declaration\n",
"pi=0.0 #pressure of N2 at t=0#\n",
"t1=2.0 \n",
"t2=8.0 \n",
"t3=16.0 \n",
"t4=24.0 \n",
"t5=50.0 \n",
"pf=34.0 #pressure of N2 at infinity#\n",
"p1=1.6 #pressure of N2 at t=2min#\n",
"p2=6.2 #pressure of N2 at t=8min#\n",
"p3=11.2 #pressure Of N2 at t=16min#\n",
"p4=15.5 #pressure of N2 at t=24min#\n",
"p5=24.4 #pressure of N2 at t=50min#\n",
"import math\n",
"\n",
"#Calculation\n",
"a=pf-pi #value of a#\n",
"a1=pf-p1 #a-x value at t=2min#\n",
"a2=pf-p2 #a-x value at t=8min#\n",
"a3=pf-p3 #a-x value at t=16min#\n",
"a4=pf-p4 #a-x value at t=24min#\n",
"a5=pf-p5 #a-x value at t=50min#\n",
"k1=(1/t1)*math.log(a/a1) #rate constant at t=2min#\n",
"k2=(1/t2)*math.log(a/a2) #rate constant at t=8min#\n",
"k3=(1/t3)*math.log(a/a3) #rate constant at t=16min#\n",
"k4=(1/t4)*math.log(a/a4) #rate constant at t=24min#\n",
"k5=(1/t5)*math.log(a/a5) #rate constant at t=50min#\n",
"k=(k1+k2+k3+k4+k5)/5 \n",
"\n",
"#Result\n",
"print\"Time(min): 2\\t\\t8\\t\\t16\\t\\t24\\t\\t50\"\n",
"print\"k1 per min %.2e\\t\"%k1,\"%.2e\\t\"%k2,\"%.2e\\t\"%k3,\"%.3e\\t\"%k4,\"%.2e\"%k5\n",
"print\"\\nAverage rate constant is %.3e\"%k,\"min^-1\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Time(min): 2\t\t8\t\t16\t\t24\t\t50\n",
"k1 per min 2.41e-02\t2.52e-02\t2.50e-02\t2.536e-02\t2.53e-02\n",
"\n",
"Average rate constant is 2.498e-02 min^-1\n"
]
}
],
"prompt_number": 4
},
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Example no:3.5.,Page no:88"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Variable declaration\n",
"t1=0 \n",
"t2=4.89 \n",
"t3=10.07 \n",
"t4=23.66 \n",
"v1=47.65 #ml of alkali used at t=0min or a value#\n",
"v2=38.92 #ml of alkali used or a-x value at t=4.89min#\n",
"v3=32.62 #ml of alkali used or a-x value at t=10.07min#\n",
"v4=22.58 #ml of alkali used or a-x value at t=23.66min#\n",
"\n",
"#Calculation\n",
"x2=v1-v2 #x value at t=4.89min#\n",
"x3=v1-v3 #x value at t=10.07min#\n",
"x4=v1-v4 #x value at t=23.66min#\n",
"k22=(1/t2)*(x2/(v1*v2)) #rate constant for second order equation#\n",
"\n",
"#Result\n",
"print\"Rate constant k2 value at t=\",t2,\"min is \",round(k22,6),\"/min\"\n",
"k23=(1/t3)*(x3/(v1*v3)) #rate constant for second order equation#\n",
"print\"\\nRate constant k2 value at t=\",t3,\"min is \",round(k23,6),\"/min\"\n",
"k24=(1/t4)*(x4/(v1*v4)) #rate constant for second order equation#\n",
"print\"\\nRate constant k2 value at t=\",t4,\"min is\",round(k24,5),\"/min\" \n",
"print\"\\nAlmost constant values of k2 indicate that reaction is second order\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Rate constant k2 value at t= 4.89 min is 0.000963 /min\n",
"\n",
"Rate constant k2 value at t= 10.07 min is 0.00096 /min\n",
"\n",
"Rate constant k2 value at t= 23.66 min is 0.00098 /min\n",
"\n",
"Almost constant values of k2 indicate that reaction is second order\n"
]
}
],
"prompt_number": 5
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example no:3.6,Page no:88"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Variable declaration\n",
"t=1590 #half life of given radio active element in years#\n",
"\n",
"#Calculation\n",
"k=0.693/t #formula of decay constant for first order reactions#\n",
"\n",
"#Result\n",
"print\"the value of decay constant is \",round(k,6),\"/year\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"the value of decay constant is 0.000436 /year\n"
]
}
],
"prompt_number": 6
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example no:3.8,Page no:89"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Variable declaration\n",
"t1=5.0 \n",
"t2=15.0 \n",
"t3=25.0 \n",
"t4=45.0 \n",
"a=37.0 #volume of KMnO4 in cm**3 at t=0 or value of a#\n",
"a1=29.8 #volume of KMnO4 in cm**3 or a-x value at t=5min#\n",
"a2=19.6 #volume of KMnO4 in cm**3 or a-x value at t=15min#\n",
"a3=12.3 #volume of KMnO4 in cm**3 or a-x value at t=25min#\n",
"a4=5.0 #volume of KMnO4 in cm**3 or a-x value at t=45min#\n",
"import math\n",
"\n",
"#Calculation\n",
"k1=(2.303/t1)*math.log10(a/a1) \n",
"print\"\\nRate constant value at t=5min is %.3e\"%k1,\"min**-1\"\n",
"k2=(2.303/t2)*math.log10(a/a2) \n",
"print\"\\nRate constant value at t=15min is %.3e\"%k2,\"min**-1\"\n",
"k3=(2.303/t3)*math.log10(a/a3) \n",
"print\"\\nRate constant value at t=25min is %.3e\"%k3,\"min**-1\"\n",
"k4=(2.303/t4)*math.log10(a/a4) \n",
"print\"\\nRate constant value at t=45min is %.3e\"%k4,\"min**-1\"\n",
"print\"\\nAs the different values of k are nearly same,the reaction is of first oredr.\"\n",
"k=(k1+k2+k3+k4)/4.0 \n",
"\n",
"#Result\n",
"print\"\\nThe average value of k is %.3e\"%k,\"min**-1\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"Rate constant value at t=5min is 4.329e-02 min**-1\n",
"\n",
"Rate constant value at t=15min is 4.237e-02 min**-1\n",
"\n",
"Rate constant value at t=25min is 4.406e-02 min**-1\n",
"\n",
"Rate constant value at t=45min is 4.449e-02 min**-1\n",
"\n",
"As the different values of k are nearly same,the reaction is of first oredr.\n",
"\n",
"The average value of k is 4.355e-02 min**-1\n"
]
}
],
"prompt_number": 7
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example no:3.9,Page no:89"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Variable declaration\n",
"k=6.0*10**-4 #rate constant of first order decomposition of N2O5 in CCl4 in /min#\n",
"\n",
"#Calculation\n",
"#Part-a#\n",
"k1=k/60.0 \n",
"#Part-b#\n",
"t=0.693/k \n",
"\n",
"#Result\n",
"print\"(a) Rate constant in terms of seconds is \",k1,\"/s\"\n",
"print\"\\n(b) Half life of the reaction is %.2e\"%t,\"min\"\n",
"print\"NOTE:Slight rounding off in book in final answer\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"(a) Rate constant in terms of seconds is 1e-05 /s\n",
"\n",
"(b) Half life of the reaction is 1.15e+03 min\n",
"NOTE:Slight rounding off in book in final answer\n"
]
}
],
"prompt_number": 8
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example no:3.10,Page no:90"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Variable declaration\n",
"t1=40.0 \n",
"t2=80.0 \n",
"t3=120.0 \n",
"t4=160.0 \n",
"t5=240.0 \n",
"vi=0.0 #volume of oxygen collected at constant pressure in ml at t=0#\n",
"v1=15.6 #volume of oxygen collected at constant pressure in ml at t=40#\n",
"v2=27.6 #volume of oxygen collected at constant pressure in ml at t=80#\n",
"v3=37.7 #volume of oxygen collected at constant pressure in ml at t=120#\n",
"v4=45.8 #volume of oxygen collected at constant pressure in ml at t=160#\n",
"v5=58.3 #volume of oxygen collected at constant pressure in ml at t=200#\n",
"vf=84.6 #volume of oxygen collected at constant pressure in ml at t=infinity#\n",
"import math\n",
"\n",
"#Calculation\n",
"a=vf-vi #the initial concentration of N2O5 in solution i.e a#\n",
"a1=vf-v1 #a-x value at t=40min#\n",
"a2=vf-v2 #a-x value at t=80min#\n",
"a3=vf-v3 #a-x value at t=120min#\n",
"a4=vf-v4 #a-x value at t=160min#\n",
"a5=vf-v5 #a-x value at t=200min#\n",
"k1=(1.0/t1)*math.log(a/a1) \n",
"k2=(1.0/t2)*math.log(a/a2) \n",
"k3=(1.0/t3)*math.log(a/a3) \n",
"k4=(1.0/t4)*math.log(a/a4) \n",
"k5=(1.0/t5)*math.log(a/a5) \n",
"\n",
"#Result\n",
"print\"Time(min): 40\\t\\t80\\t\\t120\\t\\t160\\t\\t240\"\n",
"print\"k1 per min %.2e\\t\"%k1,\"%.2e\\t\"%k2,\"%.2e\\t\"%k3,\"%.3e\\t\"%k4,\"%.2e\"%k5\n",
"print\"\\nNOTE:Calculation mistake in book in calculating a4,it should be 38.8\"\n",
"print\"\\nAs k value is fairly constant the reaction is first order\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Time(min): 40\t\t80\t\t120\t\t160\t\t240\n",
"k1 per min 5.10e-03\t4.94e-03\t4.92e-03\t4.872e-03\t4.87e-03\n",
"\n",
"NOTE:Calculation mistake in book in calculating a4,it should be 38.8\n",
"\n",
"As k value is fairly constant the reaction is first order\n"
]
}
],
"prompt_number": 9
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example no:3.11,Page no:90"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Variable declaration\n",
"t1=120.0 #time in sec#\n",
"t2=240.0 \n",
"t3=530.0 \n",
"t4=600.0 \n",
"a=0.05 #initial concentration#\n",
"x1=32.95 #extent of reaction or x value at t=120sce#\n",
"x2=48.8 #extent of reaction or x value at t=240sce#\n",
"x3=69.0 #extent of reaction or x value at t=530sce#\n",
"x4=70.35 #extent of reaction or x value at t=600sce#\n",
"a1=100.0-x1 #extent of left out or a-x value at t=120sec#\n",
"a2=100.0-x2 #extent of left out or a-x value at t=240sec#\n",
"a3=100.0-x3 #extent of left out or a-x value at t=530sec#\n",
"a4=100.0-x4 #extent of left out or a-x value at t=600sec#\n",
"\n",
"#Calculation\n",
"k1=(1.0/(a*t1))*(x1/a1) \n",
"print\"Rate constant value at t=120sec is %.2e\"%k1,\"dm**3 mol**-1.s**-1\"\n",
"k2=(1.0/(a*t2))*(x2/a2) \n",
"print\"\\nRate constant value at t=240sec is %.2e\"%k2,\"dm**3 mol**-1.s**-1\"\n",
"k3=(1.0/(a*t3))*(x3/a3) \n",
"print\"\\nRate constant value at t=530sec is %.2e\"%k3,\"dm**3 mol**-1.s**-1\"\n",
"k4=(1.0/(a*t4))*(x4/a4) \n",
"print\"\\nRate constant value at t=600sec is %.2e\"%k4,\"dm**3 mol**-1.s**-1\"\n",
"k=(k1+k2+k3+k4)/4.0 \n",
"\n",
"#Result\n",
"print\"\\n\\nAverage value of rate constant is %.1e\"%k,\"dm**3 mol**-1.s**-1\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Rate constant value at t=120sec is 8.19e-02 dm**3 mol**-1.s**-1\n",
"\n",
"Rate constant value at t=240sec is 7.94e-02 dm**3 mol**-1.s**-1\n",
"\n",
"Rate constant value at t=530sec is 8.40e-02 dm**3 mol**-1.s**-1\n",
"\n",
"Rate constant value at t=600sec is 7.91e-02 dm**3 mol**-1.s**-1\n",
"\n",
"\n",
"Average value of rate constant is 8.1e-02 dm**3 mol**-1.s**-1\n"
]
}
],
"prompt_number": 10
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example no:3.13,Page no:91"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Variable declaration\n",
"t1=75.0 #time in min#\n",
"t2=119.0 \n",
"t3=183.0 \n",
"vi=9.62 #volume of alkali used in ml at t=0min#\n",
"v1=12.10 #volume of alkali used in ml at t=75min#\n",
"v2=13.10 #volume of alkali used in ml at t=119min#\n",
"v3=14.75 #volume of alkali used in ml at t=183min#\n",
"vf=21.05 #volume of alkali used in ml at t=infinity#\n",
"import math\n",
"\n",
"#Calculation\n",
"k1=(1.0/t1)*math.log((vf-vi)/(vf-v1)) #formula of rate constant for first order reactions#\n",
"k2=(1.0/t2)*math.log((vf-vi)/(vf-v2)) \n",
"k3=(1.0/t3)*math.log((vf-vi)/(vf-v3)) \n",
"\n",
"#Result\n",
"print\"\\nRate constant value at t=75min is \",round(k1,6),\"min**-1\"\n",
"print\"\\nRate constant value at t=119min is \",round(k2,6),\"min**-1\"\n",
"print\"\\nRate constant value at t=183min is \",round(k3,6),\"min**-1\"\n",
"\n",
"print\"\\nNOTE:Slight Calculation mistake in book in k calculation above\" \n",
"print\"\\nAn almost constant value of k shows that the hydrolysis of ethyl acetateis a first order reaction\"\n",
"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"Rate constant value at t=75min is 0.003261 min**-1\n",
"\n",
"Rate constant value at t=119min is 0.003051 min**-1\n",
"\n",
"Rate constant value at t=183min is 0.003255 min**-1\n",
"\n",
"NOTE:Slight Calculation mistake in book in k calculation above\n",
"\n",
"An almost constant value of k shows that the hydrolysis of ethyl acetateis a first order reaction\n"
]
}
],
"prompt_number": 11
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example no:3.14,Page no:92"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Variable declaration\n",
"t=15 #the half time of given first order reaction in min#\n",
"k=0.693/t #formula of rate constant#\n",
"print\"The rate constant value of the given first order reaction is is\",k,\"min**-1\"\n",
"a=100 #percentage of initial concentration#\n",
"x=80 #percentage of completed reaction#\n",
"import math\n",
"\n",
"#Calculation\n",
"a1=a-x #percentage of left out concentration#\n",
"t1=(2.303/k)*(math.log10(a/a1)) #formula to find time taken#\n",
"t2=t1*60 \n",
"\n",
"#Result\n",
"print\"\\nThe time taken to complete 80 percentage of the reaction is \",round(t1,2),\"min or\",round(t2),\"sec\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The rate constant value of the given first order reaction is is 0.0462 min**-1\n",
"\n",
"The time taken to complete 80 percentage of the reaction is 34.84 min or 2091.0 sec\n"
]
}
],
"prompt_number": 12
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example no:3.15,Page no:92"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Variable declaration\n",
"t1=6.18 #time in min#\n",
"t2=18.0 \n",
"t3=27.05 \n",
"ri=24.09 #rotation in degrees when t=0min#\n",
"r1=21.4 #rotation in degrees when t=6.18min#\n",
"r2=17.7 #rotation in degrees when t=18min#\n",
"r3=15.0 #rotation in degrees when t=27.05min#\n",
"rf=-10.74 #rotation in degrees when t=infinity#\n",
"import math\n",
"\n",
"#Calculation\n",
"a=ri-rf #a value#\n",
"a1=r1-rf #a-x value at t=6.18min#\n",
"a2=r2-rf #a-x value at t=18min#\n",
"a3=r3-rf #a-x value at t=27.05min#\n",
"k1=(2.303/t1)*math.log10(a/a1) \n",
"k2=(2.303/t2)*math.log10(a/a2) \n",
"k3=(2.303/t3)*math.log10(a/a3) \n",
"\n",
"#Result\n",
"print\"Rate constant value at t=\",t1,\"min %.3e\"%k1,\"min**-1\"\n",
"print\"\\nRate constant value at t=\",t2,\"min %.3e\"%k2,\"min**-1\"\n",
"print\"\\nRate constant value at t=\",t3,\"min %.3e\"%k3,\"min**-1\"\n",
"\n",
"print\"\\nNOTE:Again,Calculation mistake in book\"\n",
"print\"\\nSince rate constant values are nearly same,hence reaction is of first order\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Rate constant value at t= 6.18 min 1.301e-02 min**-1\n",
"\n",
"Rate constant value at t= 18.0 min 1.126e-02 min**-1\n",
"\n",
"Rate constant value at t= 27.05 min 1.118e-02 min**-1\n",
"\n",
"NOTE:Again,Calculation mistake in book\n",
"\n",
"Since rate constant values are nearly same,hence reaction is of first order\n"
]
}
],
"prompt_number": 13
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example no:3.16,Page no:93"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Variable declaration\n",
"t1=10.0#time in min#\n",
"t2=20.0 \n",
"t3=30.0 \n",
"t4=40.0 \n",
"ri=32.4 #rotation in degrees when t=0min#\n",
"r1=28.8 #rotation in degrees when t=10min#\n",
"r2=25.5 #rotation in degrees when t=20min#\n",
"r3=22.4 #rotation in degrees when t=30min#\n",
"r4=19.6 #rotation in degrees when t=40min#\n",
"rf=-11.1 #rotation in degrees when t=0min#\n",
"import math\n",
"\n",
"#Calculation\n",
"a=ri-rf #a value#\n",
"a1=r1-rf #a-x value at t=10min#\n",
"a2=r2-rf #a-x value at t=20min#\n",
"a3=r3-rf #a-x value at t=30min#\n",
"a4=r4-rf #a-x value at t=40min#\n",
"k1=(1.0/t1)*math.log(a/a1) \n",
"k2=(1.0/t2)*math.log(a/a2) \n",
"k3=(1.0/t3)*math.log(a/a3) \n",
"k4=(1.0/t4)*math.log(a/a4) \n",
"\n",
"#Result\n",
"print\"Rate constant value at t=10min \",round(k1,6),\"min**-1\"\n",
"print\"\\nRate constant value at t=20min \",round(k2,6),\"min**-1\"\n",
"print\"\\nRate constant value at t=30min \",round(k3,6),\"min**-1\"\n",
"print\"\\nRate constant value at t=40min \",round(k4,6),\"min**-1\"\n",
"print\"\\nSince rate constant values are nearly same,hence inversion of sucrose is of first order\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Rate constant value at t=10min 0.008638 min**-1\n",
"\n",
"Rate constant value at t=20min 0.008636 min**-1\n",
"\n",
"Rate constant value at t=30min 0.008707 min**-1\n",
"\n",
"Rate constant value at t=40min 0.008712 min**-1\n",
"\n",
"Since rate constant values are nearly same,hence inversion of sucrose is of first order\n"
]
}
],
"prompt_number": 14
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example no:3.17,Page no:93"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Variable declaration\n",
"T1=27.0 #initial temparature in C#\n",
"T1=T1+273 #in kelvin#\n",
"Tr=10.0 #rise in temparature#\n",
"T2=T1+Tr #final temparature in kelvin#\n",
"r=2.0 #ratio of final to initial rates of chemical reactions(k1/k2)#\n",
"R=8.314 #value of constant R in J/K.mol#\n",
"import math\n",
"\n",
"#Calculation\n",
"E=math.log(r)*R*305*295/Tr #from equation k=A*e**(-E/R*T)#\n",
"\n",
"#Result\n",
"print\"Activation energy of the reaction is \",round(E/1000,2),\"kJ/mol\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Activation energy of the reaction is 51.85 kJ/mol\n"
]
}
],
"prompt_number": 15
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example no:3.18,Page no:94"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Variable declaration\n",
"k=4.5*10**3 #value of k in /sec of a first order reaction at 1C#\n",
"E=58*10**3 #activation energy in J/mol#\n",
"T=1 #temperature in C#\n",
"T1=T+273 #in kelvin#\n",
"R=8.314 #value of constant R in J/K.mol#\n",
"import math\n",
"\n",
"#Calculation\n",
"lA=math.log10(k)+(E/(2.303*R*T1)) \n",
"k1=10**4 #value of k in /sec at some temperature#\n",
"a=math.log10(k1) \n",
"b=lA-a \n",
"T2=E/(2.303*R*b) \n",
"\n",
"#Result\n",
"print\"The temperature at which k=1*10**4/sec is\",round(T2),\"K\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The temperature at which k=1*10**4/sec is 283.0 K\n"
]
}
],
"prompt_number": 16
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example no:3.19,Page no:94"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Variable declaration\n",
"T1=300.0 #temperature in kelvin#\n",
"t1=20.0 #half time of chemical reaction in min at T=300K#\n",
"T2=350.0 #temperature in kelvin#\n",
"t2=5.0 #half time of chemical reaction in min at T=350K#\n",
"import math\n",
"\n",
"#Calculation\n",
"k1=0.6932/t1 \n",
"k2=0.6932/t2 \n",
"l=math.log10(k2/k1) \n",
"R=8.314 #value of constant R in J/K.mol#\n",
"E=l*2.303*R*T1*T2/(T2-T1) \n",
"\n",
"#Result\n",
"print\"Rate constant of the reaction at T=300k is \",k1,\"/min\" \n",
"print\"\\nRate constant of the reaction at T=350k is \",k2,\"/min\"\n",
"print\"\\nActivation energy of the reaction is\",E,\"J/mol OR\",round(E/1000,1),\"kJ/mol\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Rate constant of the reaction at T=300k is 0.03466 /min\n",
"\n",
"Rate constant of the reaction at T=350k is 0.13864 /min\n",
"\n",
"Activation energy of the reaction is 24208.2291076 J/mol OR 24.2 kJ/mol\n"
]
}
],
"prompt_number": 17
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example no:3.20,Page no:94"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Variable declaration\n",
"R=8.314 #value of constant R in J/K.mol#\n",
"H=1.25*10**4 #value of E/(2.303*R).It is given in the question#\n",
"\n",
"#Calculation\n",
"\n",
"#Part-i#\n",
"E=H*2.303*R \n",
"la=14.34 #value of math.log(a)#\n",
"T=670 #temperature in kelvin#\n",
"#Part-ii#\n",
"lk=la-(H/T) \n",
"k=10**lk \n",
"\n",
"#Result\n",
"print\"(i) Activation energy is %.2e\"%E,\"J mol**-1 or\",round(E/1000),\"kJ mol**-1\"\n",
"print\"\\n(ii) Rate constant at 670K is %.1e\"%k,\"s**-1\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"(i) Activation energy is 2.39e+05 J mol**-1 or 239.0 kJ mol**-1\n",
"\n",
"(ii) Rate constant at 670K is 4.8e-05 s**-1\n"
]
}
],
"prompt_number": 18
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example no:3.21,Page no:95"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Variable declaration\n",
"Ti=27.0 #given temperature in C#\n",
"T1=Ti+273.0 #in kelvin#\n",
"t1=T1-5\n",
"Tr=10.0 #rise in temperature#\n",
"import math\n",
"\n",
"#Calculation\n",
"T2=T1+Tr \n",
"t2=T2-5\n",
"k=3.0 #value of k1/k2#\n",
"R=8.314 #value of constant R in J/K.mol#\n",
"E=math.log(k)*R*t1*t2/(T2-T1) \n",
"\n",
"#Result\n",
"print\"Activation energy of the reaction is\",round(E),\"J mol**-1 or\",round(E/1000,2),\"kJ mol**-1\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Activation energy of the reaction is 82182.0 J mol**-1 or 82.18 kJ mol**-1\n"
]
}
],
"prompt_number": 19
}
],
"metadata": {}
}
]
}
|