summaryrefslogtreecommitdiff
path: root/Textbook_Of_Heat_Transfer/Chapter_8_Condensation_and_boiling.ipynb
blob: 0b5c20588f76df7d3e3980c5ab78506a532af314 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
{
 "metadata": {
  "name": "",
  "signature": "sha256:0879cd22772a64b93e3052735e29d09cf3e246362da6a06c0b0212fbf34b9367"
 },
 "nbformat": 3,
 "nbformat_minor": 0,
 "worksheets": [
  {
   "cells": [
    {
     "cell_type": "heading",
     "level": 1,
     "metadata": {},
     "source": [
      "Chapter 8: Condensation and boiling"
     ]
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 8.1 , Page no:318"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "from __future__ import division\n",
      "\n",
      "#Variable declaration\n",
      "Ts = 80 ; #C\n",
      "Tw = 70 ; #C\n",
      "L = 1 ; #m\n",
      "g = 9.8 ; #m/s^2\n",
      "#From table A.1\n",
      "rho = 978.8 ; #kg/m^3\n",
      "k = 0.672 ; #W/m K\n",
      "hfg = 2309 ; #At 80 C,kJ/kg\n",
      "\n",
      "#calculations\n",
      "Tm = (Ts + Tw)/2 ; #Assuming condensate film is laminar and Re < 30\n",
      "u = 381 *10**-6 ; #kg/m s\n",
      "v = u/rho ;\n",
      "#Substituting in eqn 8.3.9, we get\n",
      "h = 0.943*(( hfg *1000*( rho**2)*g*(k**3)) /(( Ts -Tw)*u*L) )**(1/4) ; #W/m^2 K\n",
      "rate = h*L*(Ts -Tw)/( hfg *1000) ; #kg/m s\n",
      "Re = 4* rate /u;\n",
      "#Substituting h = Re*(lambda*1000)*u/(4*L*(Ts-Tw)), in eqn 8.3.12\n",
      "Re_1 = (((4* L*(Ts -Tw)*k/( hfg *1000* u)*(g/(v**2) )**(1/3) )+5.2)/1.08)**(1/1.22) ; #Substituting h = Re*(hfg*1000)*u/(4*L*(Ts-Tw))\n",
      "#From eqn 8.3.12\n",
      "h_1 = ((Re /(1.08*( Re**1.22) -5.2) )*k *(( g/v**2)**(1/3) )); #W/m^2 K\n",
      "m = h_1*L *10/( hfg *1000) ; #rate of condensation,kg/m s\n",
      "\n",
      "#result\n",
      "print\"Assuming condensate film is laminar and Re < 30\";\n",
      "print\"h =\",round(h,4),\"W/m^2 K\";\n",
      "print\"ReL =\",round(Re,4);\n",
      "print\"Initial assumption was wrong, Now considering the effect of ripples, we get\";\n",
      "print\"Re =\",round(Re_1,4);\n",
      "print\"Heat Transfer Cofficient =\",round(h_1,4),\"W/m^2 K\";\n",
      "print\"Rate of condensation =\",round(m,6),\"kg/m s\";"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Assuming condensate film is laminar and Re < 30\n",
        "h = 6078.7864 W/m^2 K\n",
        "ReL = 276.3936\n",
        "Initial assumption was wrong, Now considering the effect of ripples, we get\n",
        "Re = 320.4829\n",
        "Heat Transfer Cofficient = 7287.8478 W/m^2 K\n",
        "Rate of condensation = 0.031563 kg/m s\n"
       ]
      }
     ],
     "prompt_number": 1
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 8.2 , Page no:321"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "from __future__ import division\n",
      "\n",
      "#Variable declaration\n",
      "Ts = 262 ; #K\n",
      "D = 0.022 ; #m\n",
      "Tw = 258 ; #K\n",
      "#Properties at Tm\n",
      "rho = 1324 ; #kg/m^3\n",
      "k = 0.1008 ; #W/m K\n",
      "g = 9.81 ; #m/s^2\n",
      "\n",
      "#calculations\n",
      "Tm = (Ts+Tw) /2;\n",
      "v = 1.90*10**-7 ; #m^2/s\n",
      "hfg = 215.1*10**3 ; #J/kg\n",
      "u = v*rho ; #Viscosity\n",
      "#From eqn 8.4.1\n",
      "h = 0.725*( hfg *( rho**2) *g*(k**3) /(( Ts -Tw)*u*D))**(1/4) ;\n",
      "rate = h*3.14*D*(Ts -Tw) / hfg ; #kg/s m\n",
      "Re = 4* rate /u ;\n",
      "\n",
      "#result\n",
      "print\"Heat transfer coefficient =\",round(h,4),\"W/m^2 K\";\n",
      "print\"Condensation rate per unit length =\",round(rate,6),\"kg/s m\";\n",
      "print\"Film Reynolds number =\",round(Re,4);"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Heat transfer coefficient = 2622.2475 W/m^2 K\n",
        "Condensation rate per unit length = 0.003369 kg/s m\n",
        "Film Reynolds number = 53.5629\n"
       ]
      }
     ],
     "prompt_number": 2
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 8.3 , Page no:322"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "from __future__ import division\n",
      "\n",
      "#Variable declaration\n",
      "m = 25/60 ; #kg/sec\n",
      "ID = 0.025 ; #m\n",
      "OD = 0.029 ; #m\n",
      "Tci = 30 ; #C\n",
      "Tce = 70 ; #C\n",
      "g = 9.8 ; #m/s^2\n",
      "Ts = 100 ; #C\n",
      "#Assuming 5.3.2 is valid, properties at 50 C\n",
      "#Properties at Tm\n",
      "rho = 988.1 ; #kg/m^3\n",
      "k = 0.648 ; #W/m K\n",
      "Pr = 3.54 ;\n",
      "#From eqn 4.6.4a\n",
      "f = 0.005635;\n",
      "#From eqn 5.3.2\n",
      "Nu = 198.39 ;\n",
      "Tw = 90 ; #Assuming average wall temperature = 90 C\n",
      "#Properties at Tm\n",
      "#Properties at Tm\n",
      "rho = 961.9 ; #kg/m^3\n",
      "k = 0.682 ; #W/m K\n",
      "l = 0; #initial guess, assumed value for fsolve function\n",
      "\n",
      "#calculations\n",
      "v = 0.556*10**-6; #m^2/s\n",
      "Re = 4*m/(3.14*ID*rho *v);\n",
      "h = Nu*k/ID ;\n",
      "u = 298.6*10**-6 ; #kg/m s\n",
      "hfg = 2257*10**3 ; #J/kg\n",
      "#Equating the heat flow from the condensing steam to the tube wall, to the heat flow from the tube wall to the flowing water.\n",
      "#Solving the simplified equation\n",
      "h = 0.725*(hfg *( rho**2) *g*(k**3) /(( Ts -Tw)*u*OD))**(1/4) ;\n",
      "#By solving trial and error method, the temperature value we get\n",
      "T=86.964984;# in oC\n",
      "#Therefore\n",
      "hc = 21338.77/(100 - T)**(1/4) ; #W/m^2 K\n",
      "#Now, equating the heat flowing from the condensing steam to the tube wall to the heat gained by the water, we have\n",
      "#Solving by trial and error method, we get\n",
      "L=5.216152; #in meter\n",
      "\n",
      "#result\n",
      "print\"Temperature obtained from trial and error =\",round(T,4),\"oC\";\n",
      "print\"hc =\",round(hc,4),\"W/m^2 K\";\n",
      "print\"Length of the tube =\",round(L,4),\"m\";"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Temperature obtained from trial and error = 86.965 oC\n",
        "hc = 11230.3034 W/m^2 K\n",
        "Length of the tube = 5.2162 m\n"
       ]
      }
     ],
     "prompt_number": 3
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 8.4 , Page no:322"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "from __future__ import division\n",
      "#Properties at (Tw+Ts)/2 = 100.5 degree celsius\n",
      "deltaT1 = 1;                  #in degree celsius\n",
      "p1 = 7.55*10**-4;           #[K^(-1) p1 is coefficient of cubical expansion\n",
      "v1 = 0.294*10**-6;                #[m^2/sec]  viscosity at 100.5 degree celsius\n",
      "k1 = 0.683;                  #[W/m-k]thermal conductivity\n",
      "Pr1 = 1.74;                  #Prandtl number\n",
      "g = 9.81;                    #acceleration due to gravity\n",
      "L = 0.14*10**-2;                 #diameter in meters\n",
      "#Properties at (Tw+Ts)/2 =102.5\n",
      "deltaT2 = 5;                 #in degree celsius\n",
      "p2 = 7.66*10**-4;            #[K^(-1) p1 is coefficient of cubical expansion\n",
      "v2 = 0.289*10**-6;            #[m^2/sec]  viscosity at 102.5 degree celsius \n",
      "k2 = 0.684;                 #[W/m-k]thermal conductivity\n",
      "Pr2 = 1.71;                  #Prandtl number \n",
      "#Properties at (Tw+Ts)/2 =105\n",
      "deltaT3 = 10;                 #in degree celsius\n",
      "p3 = 7.80*10**-4;            #[K^(-1) p1 is coefficient of cubical expansion\n",
      "v3 = 0.284*10**-6;            #[m^2/sec]  viscosity at 105 degree celsius \n",
      "k3 = 0.684;                 #[W/m-k]thermal conductivity\n",
      "Pr3 = 1.68;                  #Prandtl number\n",
      "\n",
      "\n",
      "#Calculations\n",
      "\n",
      "Ra1 = ((p1*g*deltaT1*L**3)/(v1**2))*Pr1;\n",
      "q1=(k1/L)*(deltaT1)*(0.36+(0.518*Ra1**(1/4))/(1+(0.559/Pr1)**(9/16))**(4/9))\n",
      "\n",
      "Ra2 = ((p2*g*deltaT2*L**3)/(v2**2))*Pr2;\n",
      "q2=(k2/L)*(deltaT2)*(0.36+(0.518*Ra2**(1/4))/(1+(0.559/Pr2)**(9/16))**(4/9))\n",
      "\n",
      "Ra3 = ((p3*g*deltaT3*L**3)/(v3**2))*Pr3;\n",
      "q3=(k3/L)*(deltaT3)*(0.36+(0.518*Ra3**(1/4))/(1+(0.559/Pr3)**(9/16))**(4/9))\n",
      "\n",
      "#At 100 degree celsius\n",
      "Cpl = 4.220;          #[kJ/kg]\n",
      "lamda = 2257;         #[kJ/kg]\n",
      "ul = 282.4*10**-6;        #viscosity is in kg/m-sec\n",
      "sigma = 589*10**-4;       #Surface tension is in N/m\n",
      "pl = 958.4;           #density in kg/m^3\n",
      "pv =0.598;            #density of vapour in kg/m^3\n",
      "deltap = pl-pv;\n",
      "Prl = 1.75;           #Prandtl no. of liquid\n",
      "Ksf = 0.013;\n",
      "deltaT11=5;\n",
      "deltaT12=10;\n",
      "deltaT13=20;\n",
      "q11=141.32*deltaT11**3\n",
      "q12=141.32*deltaT12**3\n",
      "q13=141.32*deltaT13**3\n",
      "\n",
      "\n",
      "L1 = (L/2)*(g*(pl-pv)/sigma)**(1/2);\n",
      "f_L = 0.89+2.27*math.exp(-3.44*L1**(0.5));\n",
      "q2 = f_L*((3.14/24)*lamda*10**(3)*pv**(0.5)*(sigma*g*(pl-pv))**(0.25));\n",
      "\n",
      "Tn=pow(q2/141.32,1/3)\n",
      "q3 = 0.09*lamda*10**3*pv*(sigma*g*(pl-pv)/(pl+pv)**(2))**(0.25);\n",
      "Ts1 = 140;          #surface temperature in degree celsius\n",
      "Ts2 = 200;          #surface temperature in degree celsius\n",
      "Ts3 = 600;          #surface temperature in degree celsius\n",
      "Twm1 = (140+100)/2; #Mean film temperature\n",
      "#properties of steam at 120 degree celsius and 1.013 bar\n",
      "kv = 0.02558;       #thermal conductivity in W/mK\n",
      "pv1 = 0.5654;       #vapor density in kg/m**3\n",
      "uv=13.185*10**(-6);  #viscosity of vapour in kg/m sec\n",
      "lamda1 = (2716.1-419.1)*10**(3);#Latent heat of fusion in J/kg\n",
      "hc = 0.62*((kv**3)*pv*(pl-pv)*g*lamda1/(L*uv*(140-100)))**(0.25);\n",
      "qrad = 5.67*10**(-8)*(413**4 - 373**4)/((1/0.9)+1-1);\n",
      "hr = qrad/(413-373);\n",
      "h = hc + 0.75*hr;\n",
      "\n",
      "hc_200 = 0.62*((kv**3)*pv*(pl-pv)*g*lamda1/(L*uv*(200-100)))**(0.25);\n",
      "qrad1 = 5.67*10**(-8)*(473**4 - 373**4)/((1/0.9)+1-1);\n",
      "hr_200 = qrad1/(200-100);\n",
      "h_200 = hc_200 +0.75*hr_200;\n",
      "hc_600 = 0.62*((kv**3)*pv*(pl-pv)*g*lamda1/(L*uv*(600-100)))**(0.25);\n",
      "qrad2 = 5.67*10**(-8)*(873**4 - 373**4)/((1/0.9)+1-1);\n",
      "hr_600 = qrad1/(600-100)\n",
      "\n",
      "#Results\n",
      "\n",
      "print \"\\n q/A = \",round(q1,2),\" W/m^2 at (Tw-Ts)=1\";\n",
      "print \"\\n q/A = \",round(q2,2),\" W/m^2 at (Tw-Ts)=5\";\n",
      "print \"\\n q/A = \",round(q3,2),\" W/m^2 at (Tw-Ts)=10\";\n",
      "print \"\\n q/A at deltaT = 5 degree celsius = \",q11,\" W/m^2\";\n",
      "print \"\\nq/A at deltaT = 10 degree celsius = \",q12,\" W/m^2\";\n",
      "print \"\\n q/A at deltaT =20 degree celsius = \",q13,\" W/m^2\";\n",
      "print \"\\n Peak heat flux L =  \",round(L1,2);    \n",
      "print \"\\n f(l) = \",round(f_L,2);\n",
      "print \"\\n q/A = \",q2,\" W/m^2\";\n",
      "print \"Tw-Ts = \",Tn,\" degree celsius\"\n",
      "print \"\\n\\n Minimum heat flux\";\n",
      "print \"\\n q/A \",q3, \"W/m^2\"\n",
      "print \"\\n\\n Stable film boiling\"\n",
      "print \"\\n hc = \",hc,\" W/m^2\"\n",
      "print \"\\n q/A due to radiation = \",qrad,\" W/m^2\";\n",
      "print \"\\n hr = \",hr,\" W/m^2 K \";\n",
      "print \"\\n Since hr<hc \";\n",
      "print \"\\n The total heat transfer coefficient \";\n",
      "print \" h = \",h,\" W/m^2 K\";\n",
      "print \"\\n Total heat flux \",h*(140-100),\" W/m^2 K\";\n",
      "print \"\\n\\n hc = \",hc_200,\" W/m^2\";\n",
      "print \"\\n hr = \",hr_200,\" W/m^2 K\";\n",
      "print \"\\n q/A due to radiation = \",qrad1,\" W/m^2\";\n",
      "print \"\\n Total heat flux = \",h_200*100,\" W/m^2\";\n",
      "print \"\\n\\n hc = \",hc_600,\" W/m^2\";\n",
      "print \"\\n hr = \",hr_600,\" W/m^2 K\";\n",
      "print \"\\n q/A due to radiation = \",qrad2,\" W/m^2\";\n",
      "\n",
      "#Graph\n",
      "\n",
      "import matplotlib.pyplot as plt\n",
      "import numpy as np\n",
      "from pylab import *\n",
      "figure(1); # For Plotting y-x Diagram\n",
      "%matplotlib inline\n",
      "q = [q11, q12, q13];\n",
      "plt.plot ([1, 5, 10],q);\n",
      "deltaT=linspace(1,10,10);\n",
      "q1=141.32*deltaT**3;\n",
      "plt.plot (deltaT,q1)\n",
      "plt.title (\"Boiling curve\");\n",
      "plt.xlabel(\" (Tw - Ts)degree celsius \");\n",
      "plt.ylabel(\" Heat flux,(q/A)W/m^2 \");"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "\n",
        " q/A =  1116.99  W/m^2 at (Tw-Ts)=1\n",
        "\n",
        " q/A =  1393519.91  W/m^2 at (Tw-Ts)=5\n",
        "\n",
        " q/A =  19025.3  W/m^2 at (Tw-Ts)=10\n",
        "\n",
        " q/A at deltaT = 5 degree celsius =  17665.0  W/m^2\n",
        "\n",
        "q/A at deltaT = 10 degree celsius =  141320.0  W/m^2\n",
        "\n",
        " q/A at deltaT =20 degree celsius =  1130560.0  W/m^2\n",
        "\n",
        " Peak heat flux L =   0.28\n",
        "\n",
        " f(l) =  1.26\n",
        "\n",
        " q/A =  1393519.90741  W/m^2\n",
        "Tw-Ts =  21.4438708455  degree celsius\n",
        "\n",
        "\n",
        " Minimum heat flux\n",
        "\n",
        " q/A  19025.295556 W/m^2\n",
        "\n",
        "\n",
        " Stable film boiling\n",
        "\n",
        " hc =  455.986290831  W/m^2\n",
        "\n",
        " q/A due to radiation =  496.874268274  W/m^2\n",
        "\n",
        " hr =  12.4218567068  W/m^2 K \n",
        "\n",
        " Since hr<hc \n",
        "\n",
        " The total heat transfer coefficient \n",
        " h =  465.302683361  W/m^2 K\n",
        "\n",
        " Total heat flux  18612.1073344  W/m^2 K\n",
        "\n",
        "\n",
        " hc =  362.632549817  W/m^2\n",
        "\n",
        " hr =  15.665080604  W/m^2 K\n",
        "\n",
        " q/A due to radiation =  1566.5080604  W/m^2\n",
        "\n",
        " Total heat flux =  37438.136027  W/m^2\n",
        "\n",
        "\n",
        " hc =  242.507001959  W/m^2\n",
        "\n",
        " hr =  3.13301612081  W/m^2 K\n",
        "\n",
        " q/A due to radiation =  28652.514946  W/m^2\n"
       ]
      },
      {
       "metadata": {},
       "output_type": "display_data",
       "png": "iVBORw0KGgoAAAANSUhEUgAAAaAAAAEXCAYAAADr+ZCUAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3XdcU2f7P/ArTAdKGBIgQVYCKFBAZYi1RREQ67YyrIKr\ndTxatX0o2vFVv62Ktj7VVq2/p5UCWkDrRCuIi2qVIQoWB0uCkDDUkLBncv/+OD39IkIZAodxvV+v\n80pycsaVtObDfc597sMihABCCCHU25SYLgAhhNDghAGEEEKIERhACCGEGIEBhBBCiBEYQAghhBiB\nAYQQQogRGEAIdbNffvnlPS8vr0v0ayUlJUVeXp4ZAMCaNWt++Oqrrz5nrjqE+g4WXgeE0KtMTEzy\nnz17pqesrCxXVVVtdHV1vX348OHVPB5P1NltKSkpKXJzc/lmZmZ5PVErQv0VtoAQagWLxSIXLlyY\nWVlZOaK4uNiAw+GUrl+//num6+ppTU1NKkzXgAYPDCCE2qGurl6/YMGCU48ePRpLzysvL9cMCAiI\n0NPTe2ZiYpK/Y8eOzwghLACAsLCwpZMnT77Z2raWLl0a9sUXX3wJAJCQkODG4/FE//nPfz7icDil\nhoaGRWFhYUvpZSUSic6sWbPOa2pqljs5OaV8/vnnX7W1XQCAP/74401XV9fbWlpa0tGjRxdEREQE\nAAC4ubklHDlyZAW9XMv6lJSUFIcOHVprYWGRbWFhkb127dpDQUFBXzff9pw5c859++23mwAAioqK\nDBcsWHBKT0/vmZmZWd7333+/vpNfKUIAgAGEUJvoQKmpqRl2/Phx34kTJybS761fv/77ysrKEUKh\n0PT3339/OyIiIuDnn39e1t42WSwWYbFYfx/3Li0t5VRUVIwsKioyPHLkyIp//etfB8vLyzUBAP71\nr38dHDFiRGVpaSknPDw8MCIiIqD5us09ffrUeMaMGRc3bNiw/8WLF7rp6en2dnZ291vbZ2vOnTs3\nJyUlxenx48dj/P39o44fP+5LvyeVSrUuX77s4e/vH6VQKJRmzZp13sHBIa2oqMjw6tWr7vv27dsY\nHx/v2d5nR6glDCCEWkEIYc2dO/eslpaWlM1my65ever+73//+xsAALlcrnz8+HHfXbt2bRk+fHi1\nsbHx048//njv0aNHl3R02/RzVVXVxv/5n//5X2VlZbm3t3eshoZGVVZWlqVcLlc+ffr0/O3bt28d\nMmRI3ZgxYx4HBgaGN1+3ucjIyEUeHh6XfX19jysrK8u1tbXL6ADqiC1btuxis9kydXX1+jfffPMP\nFotFbt68ORkA4OTJk++6urre1tfXL7lz547jixcvdD///POvVFRUmkxNTYUrV678KTo62q+j+0KI\nhsd7EWoFi8Ui586dmzN16tRrhBDW2bNn57799tu/P378eAwhhNXY2KhqbGz8lF5+9OjRBWKxmNvZ\n/ejo6EiUlJQU9Othw4bVVFVVaTx//nxUU1OTipGRUSH93j91gBCJRLzX6eTQfD8sFov4+flFR0VF\n+U+ePPlmZGTkooCAgAgAqqVVVFRkqKWlJaWXl8vlym+99daNru4bDV7YAkKoHSwWi8ybN++MsrKy\n/I8//nhTV1f3haqqamN+fr4JvUxBQcHojvaQa+9wGADAqFGjnquoqDQVFhYa0fOaP2/JyMio8MmT\nJ+atvTd8+PDq6urq4fTrkpIS/fZq8vf3jzp58uS7T58+NU5JSXFasGDBKQAqaE1NTYVSqVSLnioq\nKkZeuHBhZnufCaGWMIAQagN9uIsQwjp37twcqVSqNWbMmMfKyspyHx+fE5999tmOqqoqjadPnxp/\n++23mxYvXnysI9ts6zBac8rKyvL58+ef3rZt27ba2tqhmZmZVkePHl3SVni99957v1y5cmXar7/+\nurCpqUlFIpHo3L9/3w4AwN7ePv306dPza2trh+bm5vKbd0hoi729fbquru6LlStX/jR9+vS4kSNH\nVgAAODk5pYwYMaJyz549n9TW1g6Vy+XKDx48sElNTZ3Q3jYRagkDCKE2zJo16/yIESMqNTU1y7/4\n4osvIyIiAsaMGfMYAOD7779fP3z48GozM7O8yZMn33zvvfd+WbZs2c8Ar570b/m8rfdaOnDgwLry\n8nJNfX39ksDAwHB/f/8oNTW1htaWNTIyKrx48eKMvXv3fqyjoyNxcHBI+/PPP98AANi0adO3ampq\nDRwOp3TZsmU/L168+FhHali0aFHktWvXpi5atCiSnqekpKS4cOHCzPT0dHszM7O8UaNGPf/ggw/+\nW1FRMbIj3ylCzeGFqAj1E8HBwbufPXum15Hedgj1Bz3WAlq+fHkoh8MptbW1zaDnBQUFfT1mzJjH\ndnZ29+fPn3+a7m4KALBr164tAoEgx8rKKrN5l867d++Ot7W1zRAIBDkbNmzYT8+vr69X9/X1PS4Q\nCHJcXFySnj59aky/Fx4eHkhf00BfCwEAIBQKTZ2dnZMFAkGOn59fdGNjo2pPfX6EXldWVpbln3/+\n+QYhhJWSkuIUGhq6fN68eWeYrguhbkMI6ZHpxo0bk+/du+dgY2OTQc+Lj4/3kMvlSoQQCA4ODgkO\nDg4hhMDDhw/H2tnZpTc0NKgKhUITc3PzXIVCwSKEgKOjY0pycrITIQS8vb0vxsbGTieEwMGDB9eu\nWbPmECEEoqOjfX19faMJISCRSLTNzMyeSKVStlQqZZuZmT2RyWSahBBYuHDhiePHj/sQQmD16tU/\n/PDDD6t76vPjhNPrTnfu3JnA5/Nzhg0bVm1qapoXEhISzHRNOOHUnVOPblwoFJo0D6Dm0+nTp+e9\n9957xwghsHPnzi3N/3F5eXnFJSYmuhQVFRlYWVk9pudHRUX5rVq16jC9TFJSkjMhBBobG1V0dXWf\nE0IgMjLSf/Xq1T/Q66xatepwVFSUn0KhYOnq6j6nAzAxMdHFy8srjun/ADjhhBNOg3Vi7Dqg0NDQ\n5f7+/lEA1NAeLi4uSfR7PB5PJBaLuaqqqo3Nu7ZyuVwxfa2FWCzm0tcuqKioNGlqapZLJBKdoqIi\nw+br0NsqKyvTZrPZMvqai+bbaq4jXWQRQgi9inSgh2dzjPSC27Fjx2dqamoNzXvX9KTOhgrTfxW0\nnLZu3cp4Df2hpr5aF9aENQ2Gurqi1wMoLCxs6cWLF2f88ssv79HzuFyuuPlFdiKRiMfj8URcLlcs\nEol4LefT6xQUFIwGoEbwLS8v19TR0ZG03FZhYaERl8sVa2trl8lkMrZCoVCit8XlcsW98ZkRQgi9\nqlcDKC4ubvrXX38ddO7cuTlDhgypo+fPnj07Jjo62q+hoUFNKBSa5uTkCJycnFL09fVLRo4cWZGc\nnOxMCGEdPXp0yZw5c87R64SHhwcCUGNVubu7XwUA8PT0jI+Pj/eUyWRsehBFLy+vSywWi0yZMuX6\nr7/+uhCA6ik3d+7cs735+RFCCDXTU80xPz+/KAMDgyJVVdUGHo9XeOTIkeV8Pj9n9OjRT+3t7dPs\n7e3T6F5shBDYsWPHp+bm5rmWlpaZcXFxXvT81NTU8TY2Nhnm5ua569ev/46eX1dXp75w4cITfD4/\nx9nZOUkoFJrQ74WGhi7j8/k5fD4/JywsLJCen5eXZ+rk5JTM5/NzfHx8jjc0NKi20owkfc3169eZ\nLuEVfbEmQvpmXVhTx2BNHdcX6/rrt7NTOYEXorbAYrEIficIIdQ5LBYLSH/ohIAQQghhACGEEGIE\nBhBCCCFGYAAhhBBiBAYQQgghRmAAIYQQYgQGEEIIIUZgACGEEHotRUVdWw8DCCGEUJeJRABvv921\ndTGAEEIIdUlhIYCbG8AHH3RtfQwghBBCnVZQQIXP2rUAQUFd2wYGEEIIoU7Jz6fCZ/16gI8+6vp2\nMIAQQgh1mFBIhc+mTQAbN77ethi7JTdCCKH+JS8PYMoUgOBg6tDb68IWEEIIoXbl5lItny1buid8\nADCAEEIItSMnh2r5fP45wOrV3bddPASHEEKoTVlZAO7uANu3A6xY0b3bxgBCCCHUqsePAaZNA9ix\nA2Dp0u7fPgYQQgihVzx6BODhAbBrF0BAQM/sAwMIIYTQSx48APD0BNizB2Dx4p7bDwYQQgihv2Vk\nUOGzdy/AokU9uy8MIIQQQgAAcP8+wPTpAPv2Afj69vz+MIAQQghBWhqAtzfA998DLFzYO/vEAEII\noUHu3j0qfA4dAliwoPf2ixeiIoTQIJaaSoXP4cO9Gz4A2AJCCKFBKyUFYNYsgB9/BJg9u/f3jwGE\nEEKDUFISFTqhoQAzZzJTAwYQQggNMomJAHPmAISFAcyYwVwdPXYOaPny5aEcDqfU1tY2g55XVlam\n7eHhcdnCwiLb09MzXiaTsen3du3atUUgEORYWVllxsfHe9Lz7969O97W1jZDIBDkbNiwYT89v76+\nXt3X1/e4QCDIcXFxSXr69Kkx/V54eHighYVFtoWFRXZERMTf1/AKhUJTZ2fnZIFAkOPn5xfd2Nio\n2lOfHyGE+qJbt6jwiYhgNnwAAIAQ0iPTjRs3Jt+7d8/BxsYmg54XFBS0Z/fu3Z8QQiAkJCQ4ODg4\nhBACDx8+HGtnZ5fe0NCgKhQKTczNzXMVCgWLEAKOjo4pycnJToQQ8Pb2vhgbGzudEAIHDx5cu2bN\nmkOEEIiOjvb19fWNJoSARCLRNjMzeyKVStlSqZRtZmb2RCaTaRJCYOHChSeOHz/uQwiB1atX//DD\nDz+sblk39ZUghNDAc+MGIaNGEXLpUvdv+6/fzk7lRI8FECEEhEKhSfMAsrS0zCwpKeEQQqC4uFjf\n0tIykxACO3fu3BISEhJML+fl5RWXmJjoUlRUZGBlZfWYnh8VFeW3atWqw/QySUlJzoQQaGxsVNHV\n1X1OCIHIyEj/1atX/0Cvs2rVqsNRUVF+CoWCpaur+1wulysRQiAxMdHFy8sr7pUvBAMIITQAJSRQ\n4XP5cs9svysB1KvngEpLSzkcDqcUAIDD4ZSWlpZyAACKiooMXVxckujleDyeSCwWc1VVVRt5PJ6I\nns/lcsVisZgLACAWi7lGRkaFAAAqKipNmpqa5RKJRKeoqMiw+Tr0tsrKyrTZbLZMSUlJ0XJbLW3b\ntu3v525ubuDm5taN3wJCCPWu69epkQ2iowGmTu2ebSYkJEBCQsJrbYOxTggsFouwWCzSW/vqzPLN\nAwghhPqzq1cB/PwAfv2VuqNpd2n5x/n27ds7vY1evRCVw+GUlpSU6AMAFBcXG+jp6T0DoFojhYWF\nRvRyIpGIx+PxRFwuVywSiXgt59PrFBQUjAYAaGpqUikvL9fU0dGRtNxWYWGhEZfLFWtra5fJZDK2\nQqFQorfF5XLFvfPJEUKo912+DODvD3DqVPeGT3fp1QCaPXt2THh4eCAA1VNt7ty5Z+n50dHRfg0N\nDWpCodA0JydH4OTklKKvr18ycuTIiuTkZGdCCOvo0aNL5syZc67ltk6ePPmuu7v7VQAAT0/P+Pj4\neE+ZTMaWSqValy9f9vDy8rrEYrHIlClTrv/6668LW+4fIYQGmkuXAN57D+D0aYC33mK6mjZ09qRR\nRyc/P78oAwODIlVV1QYej1cYGhq6TCKRaLu7u18RCATZHh4e8VKplE0vv2PHjk/Nzc1zLS0tM+Pi\n4rzo+ampqeNtbGwyzM3Nc9evX/8dPb+urk594cKFJ/h8fo6zs3OSUCg0od8LDQ1dxufzc/h8fk5Y\nWFggPT8vL8/Uyckpmc/n5/j4+BxvaGhQbVk3YCcEhFA/d/Ei1eHg1q3e2yd0oRMCi1oP0VgsFsHv\nBCHUX124ALB8OUBMDICLS+/tl8ViASGE1Zl1cCQEhBAaIM6fB1ixggohJyemq2kfjoaNEEIDwLlz\nACtXAvz2W/8IHwAMIIQQ6vdOnwb44AOAixcBHB2ZrqbjMIAQQqgfO3kSYO1agLg4gPHjma6mczCA\nEEKonzpxAmDdOqrLtYMD09V0HgYQQgj1Q9HRABs2AMTHA9jZMV1N12AAIYRQP/PLLwAffUSNdPDG\nG0xX03UYQAgh1I8cPQoQFESFj40N09W8HgwghBDqJ8LCADZvpgYYtbZmuprXhwGEEEL9QGgowOef\nA1y7BjBmDNPVdA8cCQEhhPq4n34C2L6dCh8LC6ar6T4YQAgh1If9v/8HsGMHFT4CAdPVdC8MIIQQ\n6qMOHQLYvZu6o6m5OdPVdD8MIIQQ6oMOHAD45hsqfMzMmK6mZ7TZCaG8vFxz8+bNIYsXLz4WGRm5\nqPl7a9euPdTzpSGE0OD03XcAe/cCJCQM3PAB+IcAWrZs2c8AAAsWLDgVFRXlv2DBglN1dXVDAAAS\nExMn9laBCCE0mHz7LcC+fVT4mJgwXU3PajOAnjx5Yh4SErJ53rx5Z86fPz9r3Lhx99zd3a++ePFC\ntzcLRAihweKbbwAOHqTCx9iY6Wp6XpvngBoaGtQUCoWSkpKSAgDgs88+28HlcsVvv/3271VVVRq9\nVyJCCA18u3dT3a0TEgB4PKar6R1ttoBmzpx54erVq+7N5y1dujRs7969H6upqTX0fGkIITQ47NoF\ncOTI4AofAAAWIYTpGvoUFotF8DtBCPWWr74COHaMus7H0JDparqOxWIBIYTVmXXaHYqnsrJyRNdL\nQggh1Jbt26mRra9f79/h01X/GEBisZj7zjvv/NZbxSCE0GBACMDWrdQN5RISAAwMmK6IGW12Qnj4\n8KG1r6/v8Z9++mllbxaEEEIDGSEAX3wBcO4c1fLR02O6Iua0eQ5o1KhRz8+ePTt30qRJt3q5Jkbh\nOSCEUE8hBOCzzwAuXKBuqTBqFNMVdZ9uPQfk5OSUcvbs2bmvXxZCCCFCqHv5XLxIdTgYSOHTVW0G\n0Llz5+bIZDL2J598sqc3C0IIoYGGkP+7i+nVqwC6eDk/APxDAKmoqDT9+OOP72toaFT1ZkEIITSQ\nEALw0UdUZ4MrVwB0dJiuqO/A64BawHNACKHuQgjAxo0At28DxMcDaGkxXVHP6ZHrgAAApFKp1v37\n9+3u3bs3jp66ViJl165dW6ytrR/a2tpmLFq0KLK+vl69rKxM28PD47KFhUW2p6dnvEwmYzdfXiAQ\n5FhZWWXGx8d70vPv3r073tbWNkMgEORs2LBhPz2/vr5e3dfX97hAIMhxcXFJevr06d+jKoWHhwda\nWFhkW1hYZEdERAS8zudACKG2EALw4YcASUnUobeBHD5dRgj5x+nzzz//ksfjFb711lu/u7m5Xaen\n9tZraxIKhSampqZ5dXV16oQQ8PHxOR4WFhYYFBS0Z/fu3Z8QQiAkJCQ4ODg4hBACDx8+HGtnZ5fe\n0NCgKhQKTczNzXMVCgWLEAKOjo4pycnJToQQ8Pb2vhgbGzudEAIHDx5cu2bNmkOEEIiOjvb19fWN\nJoSARCLRNjMzeyKVStlSqZRNP29eH/WVIIRQ18nlhKxZQ4iLCyEyGdPV9I6/fjs7lQftLiAQCLLr\n6+vVOrvhtiaJRKJtYWGRVVZWptXY2Kgyc+bM8/Hx8R6WlpaZJSUlHEIIFBcX61taWmYSQmDnzp1b\nQkJCgun1vby84hITE12KiooMrKysHtPzo6Ki/FatWnWYXiYpKcmZEAKNjY0qurq6zwkhEBkZ6b96\n9eof6HVWrVp1OCoqyu+lLwQDCCH0GuRyQj74gBBXV0LKy5mupvd0JYDavSOqtbX1Q6lUqsXhcEq7\no8Wlra1d9vHHH+8dPXp0wdChQ2u9vLwueXh4XC4tLeXQ++BwOKWlpaUcAICioiJDFxeXJHp9Ho8n\nEovFXFVV1UYejyei53O5XLFYLOYCUCM4GBkZFQJQnSk0NTXLJRKJTlFRkWHzdehttaxx27Ztfz93\nc3MDNze37vjoCKEBTqEAWLUKIDMTIC4OYMQAHsgsISEBEhISXmsb7QbQp59+utPBwSHNxsbmgbq6\nej0AdaI+JiZmdld2+OTJE/N9+/ZtzM/PN9HU1CxfuHDhr8eOHVvcfBkWi0VYLBZjPQGaBxBCCHWE\nQgGwciVAbi5AbCyAxgC/aU3LP863b9/e6W20G0ABAQERmzdvDrGxsXlA3xvodcIhNTV1gqur620d\nHR0JAMD8+fNPJyYmTtTX1y8pKSnR19fXLykuLjbQ09N7BkC1bAoLC43o9UUiEY/H44m4XK5YJBLx\nWs6n1ykoKBhtaGhY1NTUpFJeXq6po6Mj4XK54oSEBDd6ncLCQqOpU6de6+pnQQghAAC5HGDFCoD8\nfOpC04EePt2mvWN0EyZMuNPZ43r/NKWnp9tZW1s/qKmpGapQKFgBAQHhBw4c+FdQUNAe+lzPrl27\nNrfshFBfX6+Wl5dnamZm9oTuhODk5JSclJTkrFAoWC07IdDneqKiovyad0IwNTXNk0ql7LKyMi36\nefP6AM8BIYQ6oamJkCVLCJkyhZCqKqarYQ70xDmgyZMn39yyZcuu2bNnx9CH4AAAxo0bd68rgWdn\nZ3c/ICAgYsKECalKSkqKcePG3fvggw/+W1lZOcLHx+fEkSNHVpiYmOSfOHHCBwBg7Nixj3x8fE6M\nHTv2kYqKStOhQ4fW0i2wQ4cOrV26dGlYbW3t0BkzZlycPn16HADAihUrjixZsuSoQCDI0dHRkURH\nR/sBUOefvvjiiy8dHR3vAABs3bp1O5vNlnXlcyCEUFMTQGAgwLNn1Phuw4YxXVH/0u6FqG5ubgmt\nHXK7fv36lB6rikF4ISpCqCOamgCWLAGQSKiRrYcOZboiZnXlQtQ2A+j27duuEydOTGSyMwATMIAQ\nQu1pbAR47z2AigqAM2cwfAC6eSSEiIiIgHHjxt3z8/OLDgsLW1pSUqL/+iUihFD/1tgI4O8PUF0N\ncPYshs/raPcQ3OPHj8fExsZ6x8fHe8pkMvbUqVOvTZ8+PW7SpEm3lJWV5b1UZ6/BFhBCqC0NDQB+\nflQInTwJoK7OdEV9R7cegmtNTU3NsOvXr0+JjY31TkxMnHj37t3xna6yj8MAQgi1pqEBwMeHGuPt\nxAkMn5a6NYA2bNiwf9KkSbcmTZp0i8vlirulwn4AAwgh1FJ9PcDChQDKygDHjwOoqTFdUd/TreeA\n+Hx+Ln1LbmNj46f+/v5RBw4cWJeWluagUCg6NIo2Qgj1d3V1AAsWAKiqUi0fDJ/u06FDcGKxmJuY\nmDjx9u3brufOnZvz/PnzURUVFSN7ob5ehy0ghBCtrg5g3jxqTLdffqFCCLWuKy2gf7wQlRDC+vPP\nP9+4ffu26+3bt10fPXo0ls/n5wYEBES8XqkIIdS31dYCzJ1L3cfn2DEAlXYv20ed1WYLyMPD43JF\nRcVIe3v7dGdn5+SJEycmWllZZQ7064KwBYQQqqkBmDMHQE8PIDwcw6cjuvUckJmZWR6LxSI5OTmC\nnJwcQW5uLl8ikeDdzBFCA1pNDcCsWQD6+gARERg+Pandc0Dl5eWaSUlJLomJiRMTExMnvnjxQtfa\n2vrhQL2dNbaAEBq8qqsBZs4EGD0aIDSU6vWGOqbbzwEBAAwZMqRu2LBhNUOHDq1VV1evLywsNKqv\nr8ce8AihAaWqCuCddwDMzAB++gnDpze02QLatGnTt7dv33bNzs62cHBwSHN1db09adKkWxMnTkwc\nyCNIYwsIocGnshJgxgwAS0uA//4XQAkvNOm0bm0BmZiY5C9evPiYnZ3dfRUVlabXLw8hhPqeigoA\nb28Aa2uAw4cxfHpTh64DyszMtMrPzzdhsVjE2Nj4qZWVVWYv1MYIbAEhNHiUlwNMnw5gbw9w8CCG\nz+vo1haQUCg0/fbbbzddvHhxBpfLFRsaGhYRQljFxcUGIpGIN3PmzAubNm361sTEJP+1K0cIoV5W\nXg7g5QUwfjzAgQMArE79dKLu0GYLyMfH58T777//o5ubW4Kqqmpj8/caGxtVr1+/PuWnn35aSd+5\ndKDAFhBCA59MBuDpCeDiArB/P4ZPd+jx0bBpjY2Nqi1DaaDAAEJoYCsro8Jn8mSA//wHw6e7dOuF\nqC0RQlhXrlyZtmLFiiODaXRshNDAUVYGMG0awNtvY/j0Be0GUGJi4sQPP/zwO2Nj46dz5849O3ny\n5JuZmZlWvVEcQgh1F4kEwN2dCqBvvsHw6QvaPAS3ZcuWXadOnVpgZmaW5+Pjc2Lu3Llnx48ff1co\nFJr2co29Cg/BITTwPH9OBc+MGQA7d2L49IRuPQc0atSo5+PHj7+7Zs2aH7y9vWPV1NQaTE1NhRhA\nCKH+5NkzquUzZw7Al19i+PSUbj0HVFxcbLBhw4b9p0+fnm9ubv5kyZIlR2tra4c2NjbiHTEQQv1C\naSnAlCnUPX0wfPqeDvWCq6urG3LhwoWZUVFR/n/88ceb7u7uVyMjIxf1Qn29DltACA0MJSUAU6cC\n+PoCbN3KdDUDX7cegrt9+7brxIkTE1ve/6eiomLkmTNn5gUGBoa/Rq19FgYQQv1fcTEVPosWAXzx\nBdPVDA7dGkCrV68+nJyc7GxhYZHt7e0dO3369Dh9ff2Sbqm0D8MAQqh/E4up8AkMBPj0U6arGTx6\n5ELUx48fj4mNjfWOj4/3lMlk7KlTp16bPn163KRJk24pKyvLX6viPggDCKH+SySizvmsXAkQHMx0\nNYNLj4+EUFNTM+z69etTYmNjvRMTEyfevXt3fKer7OMwgBDqnwoLqfBZtQogKIjpagafHhkJoays\nTJue6urqhkycODFx+/btW+Pj4z3Lysq0u1KoTCZjv/vuuyfHjBnzeOzYsY+Sk5Ody8rKtD08PC5b\nWFhke3p6xstkMja9/K5du7YIBIIcKyurzPj4eE96/t27d8fb2tpmCASCnA0bNuyn59fX16v7+voe\nFwgEOS4uLklPnz41pt8LDw8PtLCwyLawsMgeqHd1RWiwefoUwM0NYO1aDJ9+hRDyj5OxsXE+i8VS\naGtrS7S1tSUsFkthYmIiNDExEZqamua1t35rU0BAQPiRI0eWE0KgsbFRRSaTaQYFBe3ZvXv3J4QQ\nCAkJCQ4ODg4hhMDDhw/H2tnZpTc0NKgKhUITc3PzXIVCwSKEgKOjY0pycrITIQS8vb0vxsbGTieE\nwMGDB9dhjs3uAAAgAElEQVSuWbPmECEEoqOjfX19faMJISCRSLTNzMyeSKVStlQqZdPPm9dGfSUI\nof5CKCTE1JSQb79lupLB7a/fzk5lQbsLrFy58sfffvttBv364sWL3u+///5/O7sjepLJZJqtBZel\npWVmSUkJhxACxcXF+paWlpmEENi5c+eWkJCQYHo5Ly+vuMTERJeioiIDKyurx/T8qKgov1WrVh2m\nl0lKSnImfwWcrq7uc0IIREZG+q9evfoHep1Vq1YdjoqK8nvpC8EAQqjfyMsjxNiYkO++Y7oS1JUA\navN+QLTExMSJP/744/v0a29v79igoKCvu9riEgqFpqNGjXq+bNmyn+/fv283fvz4u/v27dtYWlrK\n4XA4pQAAHA6ntLS0lAMAUFRUZOji4pJEr8/j8URisZirqqrayOPxRPR8LpcrFovFXAAAsVjMNTIy\nKgQAUFFRadLU1CyXSCQ6RUVFhs3XobfVssZt27b9/dzNzQ3c3Ny6+nERQj3kyROqt1twMHXoDfWu\nhIQESEhIeK1ttBtAhoaGRV999dXnixcvPkYIYUVGRi56ndGwm5qaVO7duzfuwIED6xwdHe9s3Lhx\nX0hIyObmy7BYLNLy+qPe1DyAEEJ9T24uFT6ffgqwejXT1QxOLf843759e6e30W4nhKioKP9nz57p\nzZs378z8+fNPP3v2TC8qKsq/03v6C4/HE/F4PJGjo+MdAIB333335L1798bp6+uXlJSU6ANQwwDp\n6ek9A6BaNoWFhUb0+iKRiMfj8URcLlcsEol4LefT6xQUFIwGoAKvvLxcU0dHR9JyW4WFhUbNW0QI\nob4vJ4fq7fb55xg+/V5nj9l1xzR58uQbWVlZFoQQ2Lp167agoKA9QUFBe+hzPbt27drcshNCfX29\nWl5enqmZmdkTuhOCk5NTclJSkrNCoWC17IRAn+uJiorya94JwdTUNE8qlbLLysq06OfNawM8B4RQ\nn5WZSQiXS8hPPzFdCWoJurMTwrJly0JTUlIc23o/KSnJeenSpT93doeEEEhPT7ebMGHCnTfeeOP+\nvHnzTstkMk2JRKLt7u5+RSAQZHt4eMQ3D4YdO3Z8am5unmtpaZkZFxfnRc9PTU0db2Njk2Fubp67\nfv367+j5dXV16gsXLjzB5/NznJ2dk4RCoQn9Xmho6DI+n5/D5/NzwsLCAl/5QjCAEOqTHj0ixNCQ\nkJ9/ZroS1JquBFCbF6JmZGTYfv3110FJSUkulpaWWQYGBsWEEFZJSYl+VlaWpaur6+1///vf39jY\n2DzoteZaL8ALURHqex49ou7nExICEIBX7/VJPTISQn19vXpaWprD06dPjVksFjE2Nn5qZ2d3f8iQ\nIXWvVW0fhQGEUN/y4AGApyfAnj0AixczXQ1qS48PxTMYYAAh1HdkZFDhs3cvNbI16rt6ZCielgID\nA8PXrFnzw4MHD2w6uy5CCHXU/ftU+Ozbh+EzUHW6BZSSkuJUUFAwOiUlxWnPnj2f9FBdjMEWEELM\nS0sD8PYG+P57gIULma4GdUSPHIKrq6sb0vJ8z/Pnz0eNGjXqeRdq7PMwgBBi1t27ADNmABw6BLBg\nAdPVoI7qkUNwjo6OdxITEyfSr0+dOrXA1dX1dlcKRAihf5KaSoXP4cMYPoNBu0PxREZGLlq+fHmo\nm5tbglgs5kokEp3r169P6Y3iEEKDR0oKwKxZAD/+CDB7NtPVoN7QoXNAZ86cmbdkyZKjI0aMqLx5\n8+ZkPp+f2wu1MQIPwSHU+5KSqNAJDQWYOZPpalBXdOUQXLstoBUrVhzJzc3lZ2Rk2GZnZ1vMnDnz\nwrp16w6sW7fuQNdLRQghyu3bAHPnAoSFUYff0ODR7jkgGxubBwkJCW6mpqZCLy+vS8nJyc5paWkO\nvVEcQmhgu3WLCp+ICAyfwQgvRG0BD8Eh1Dtu3qQ6Ghw7Rl3vg/q3HjkEZ2pqKmxlRyQvL8+sMztC\nCCHa779T1/dERlJjvKHBqd0AunPnjiP9vK6ubsjJkyfflUgkOj1bFkJooLp+HcDXFyA6mrqpHBq8\nunQIbty4cffu3bs3rgfqYRwegkOo51y9CuDnB/DrrwB4p/uBpUcOwd29e3c8fXtshUKhlJqaOkEu\nlyt3tUiE0OB0+TI1ptupUwBvvcV0NagvaDeAPv744710AKmoqDSZmJjknzhxwqfnS0MIDRSXLgEs\nWQJw5gzAm28yXQ3qK7AXXAt4CA6h7hUbCxAYCHD2LICrK9PVoJ7SrYfg9u7d+3GzDf/9i0wIYbFY\nLPLRRx/9p2tlIoQGiwsXAJYvB4iJAXBxYboa1Ne0GUBVVVUavVkIQmhgOX8eYMUKKoScnJiuBvVF\nbQZQdXX18D179nxy4sQJHx8fnxO9WRRCqH87dw7ggw8AfvsNwNGx/eXR4NTmOSAbG5sHGRkZtuPG\njbs3mIbewXNACL2e06cB1qwBuHgRYPx4pqtBvaVbzwF5e3vHamlpSauqqjRGjBhR2WJHpKKiYmRX\nC0UIDUwnTwKsWwcQFwfgMGj+bEVd1W4vuNmzZ8fExMQMmrtzYAsIoa45fhxgwwaqy7WdHdPVoN7W\nI7fkHmwwgBDqvKgogI8+osLnjTeYrgYxoUduyY0QQv/kl18APv6YGukAwwd1BgYQQqjLjh4FCAqi\nwsfGhulqUH/TbgDt379/Q0fmIYQGl7AwgM2bqQFGra2Zrgb1R+0GUFhY2NKW837++edlPVINQqhf\nCA0F+PxzgGvXAMaMYboa1F+12Q07KirKPzIycpFQKDSdNWvWeXp+ZWXlCB0dHUnvlIcQ6mt+/BHg\nf/+XCh8LC6arQf0aIaTVKT8/3/j69etuzs7OSQkJCW9fv37d7fr1626pqanjGxsbVdparyNTU1OT\nsr29fdrMmTPPE0JAIpFoT5s27bJAIMj28PCIl0qlbHrZnTt3buHz+TmWlpaZly5d8qTnp6amjrex\nscng8/k5H3744X56fl1dnbqPj89xPp+f4+zsnJSfn29MvxcWFhYoEAiyBQJBdnh4eEBrtVFfCUKo\nNYcPE2JkREh2NtOVoL7mr9/OTmVBl0Pkdaa9e/d+tGjRol9mzZoVQwiBoKCgPbt37/6EEAIhISHB\nwcHBIYQQePjw4Vg7O7v0hoYGVaFQaGJubp6rUChYhBBwdHRMSU5OdiKEgLe398XY2NjphBA4ePDg\n2jVr1hwihEB0dLSvr69vNPkr5MzMzJ5IpVK2VCpl089f+UIwgBBq1cGDhIweTUhuLtOVoL6oKwHU\n7jmgxMTEiY6Ojnc0NDSqVFVVG5WUlBQjR46s6GqLSyQS8S5evDhj5cqVP5G/+ozHxMTMDgwMDAcA\nCAwMDD979uxcAIBz587N8ff3j1JVVW00MTHJ5/P5ucnJyc7FxcUGlZWVI5ycnFIAAAICAiLodZpv\na8GCBaeuXr3qDgBw6dIlL09Pz3g2my1js9kyDw+Py3FxcdNbq3Hbtm1/TwkJCV39qAgNGAcOAOzZ\nQ91O29yc6WpQX5CQkPDSb2VXtHtDunXr1h2Ijo728/HxOZGamjohIiIiICsry7JLewOATZs2ffv1\n118HNR/Kp7S0lMPhcEoBADgcTmlpaSkHAKCoqMjQxcUliV6Ox+OJxGIxV1VVtZHH44no+VwuVywW\ni7kAAGKxmGtkZFQIQN1AT1NTs1wikegUFRUZNl+H3lZrNXb1y0RoINq/H2DfPoCEBAATE6arQX2F\nm5sbuDW7r/r27ds7vY0OXQckEAhy5HK5srKysnzZsmU/t9VyaM+FCxdm6unpPXNwcEgjbVwxy2Kx\nSPP7DyGEmPPtt1QAYfigntBuC2j48OHV9fX16nZ2dvc/+eSTPfr6+iVthUd7bt++7RoTEzP74sWL\nM+rq6oZUVFSMXLJkyVEOh1NaUlKir6+vX1JcXGygp6f3DIBq2RQWFhrR64tEIh6PxxNxuVyxSCTi\ntZxPr1NQUDDa0NCwqKmpSaW8vFxTR0dHwuVyxQkJCW70OoWFhUZTp0691pXPgdBg8M03AIcPU+Ez\nejTT1aABqb2TREKh0KSmpmaoTCbT3Lp167ZNmzb9Jycnh9/Zk00tp4SEhLfpXnBBQUF7QkJCggkh\nsGvXrs0tOyHU19er5eXlmZqZmT2hOyE4OTklJyUlOSsUClbLTgirV6/+gRACUVFRfs07IZiamuZJ\npVJ2WVmZFv28ZV2AnRAQIiEhhPD5hBQWMl0J6i+gp3rBVVdXD8vMzLTs7Mb/aUpISHib7gUnkUi0\n3d3dr7TWDXvHjh2fmpub51paWmbGxcV50fPpbtjm5ua569ev/46eX1dXp75w4cITdDdsoVBoQr8X\nGhq6jM/n5/D5/JywsLDAVr8QDCA0yO3YQYhAQIhIxHQlqD/pSgC1Oxp2TEzM7KCgoK/r6+vV8/Pz\nTdLS0hy2bt26faDeogFHw0aD2VdfARw7Rl1kamjIdDWoP+mR0bC3bdu2LTk52VlLS0sKAODg4JCW\nl5dn1tUiEUJ90/bt1MjW169j+KDe0W4nBFVV1UY2my1rPk9JSUnRcyUhhHoTIQDbtlF3M01IAOBw\nmK4IDRbtBpC1tfXDX3755b2mpiaVnJwcwXffffehq6vr7d4oDiHUswgB+OILgHPnqJaPnh7TFaHB\npN1DcN9///36hw8fWqurq9f7+/tHjRw5smLfvn0be6M4hFDPIQTg008BYmKocz4YPqi34S25W8BO\nCGgwIIS6l8+lSwBXrgDo6jJdEervutIJoc1DcM1vwfDXjzKr+euB2gsOoYGOEOoupteuUTeT09Fh\nuiI0WLUZQB9//PFeOnjef//9H3/66aeVdAjhUDkI9U+EAHz0EcDNm1TLR1ub6YrQYNahQ3AODg5p\naWlpDr1QD+PwEBwaqAgB2LgR4PZtgPh4AC0tpitCA0m3HoJDCA0chACsXw9w5w7A5csAbDbTFSH0\nDwFUVlamDQBACGHJ5XJl+jVNW1u7rKeLQwi9PoUCYN06gLQ0quWjqcl0RQhR2jwEZ2Jikk+f6yGE\nsJqf92GxWGSgjoaAh+DQQKJQAKxZA/DgAUBsLMDIke2vg1BXdOUQHHbDbgEDCA0UCgXAqlUAmZkA\nFy8CjBjBdEVoIMNzQAghAACQywHefx8gN5dq+WhoMF0RQq/CAEJogJHLAVasAMjPp1o+GD6or8IA\nQmgAkcsBli0DEIkAfvsNYPhwpitCqG0YQAgNEE1NAIGBAM+eAVy4ADBsGNMVIfTPMIAQGgCamgCW\nLAEoK6MGFx06lOmKEGofBhBC/VxjI8B77wFUVlK3VRgyhOmKEOoYDCCE+rHGRgB/f4DaWoAzZzB8\nUP+CAYRQP9XQAODnR4XQ6dMA6upMV4RQ52AAIdQPNTQA+PhQY7ydPInhg/qndu+IihDqW+rrARYs\nAGCxAH79FcMH9V8YQAj1I3V1APPnA6ipAZw4QT0i1F9hACHUT9TVAcybR11cGh0NoKrKdEUIvR4M\nIIT6gdpagDlzqFspREZi+KCBAQMIoT6upgZg9mwAXV2AY8cAVLDrEBogMIAQ6sOqqwFmzQLQ1weI\niMDwQQMLBhBCfVR1NcDMmQA8HkBYGICyMtMVIdS9ej2ACgsLjaZMmXLd2tr6oY2NzYPvvvvuQwDq\nFuAeHh6XLSwssj09PeNlMtnfd63ftWvXFoFAkGNlZZUZHx/vSc+/e/fueFtb2wyBQJCzYcOG/fT8\n+vp6dV9f3+MCgSDHxcUl6enTp8b0e+Hh4YEWFhbZFhYW2REREQG99bkR6oyqKoAZMwBMTABCQzF8\n0ABFCOnVqbi4WD8tLc2eEAKVlZUaFhYWWY8ePRoTFBS0Z/fu3Z8QQiAkJCQ4ODg4hBACDx8+HGtn\nZ5fe0NCgKhQKTczNzXMVCgWLEAKOjo4pycnJToQQ8Pb2vhgbGzudEAIHDx5cu2bNmkOEEIiOjvb1\n9fWNJoSARCLRNjMzeyKVStlSqZRNP29eH/WVIMScigpC3nyTkBUrCJHLma4GoY7567ezU3nQ6y0g\nfX39Ent7+3QAAA0NjaoxY8Y8FovF3JiYmNmBgYHhAACBgYHhZ8+enQsAcO7cuTn+/v5RqqqqjSYm\nJvl8Pj83OTnZubi42KCysnKEk5NTCgBAQEBABL1O820tWLDg1NWrV90BAC5duuTl6ekZz2azZWw2\nW+bh4XE5Li5uem9/Bwi1paICYPp0gDFjAP77XwAlPEiOBjBGT2nm5+ebpKWlOTg7OyeXlpZyOBxO\nKQAAh8MpLS0t5QAAFBUVGbq4uCTR6/B4PJFYLOaqqqo28ng8ET2fy+WKxWIxFwBALBZzjYyMCgEA\nVFRUmjQ1NcslEolOUVGRYfN16G21rGvbtm1/P3dzcwM3N7du/+wItVReToWPvT3AwYMYPqhvS0hI\ngISEhNfaBmMBVFVVpbFgwYJT+/fv3zBixIjK5u+xWCzCYrEIU7U1DyCEeoNMBuDlBTBhAsCBA9Qw\nOwj1ZS3/ON++fXunt8HI31iNjY2qCxYsOLVkyZKjc+fOPQtAtXpKSkr0AQCKi4sN9PT0ngFQLZvC\nwkIjel2RSMTj8XgiLpcrFolEvJbz6XUKCgpGAwA0NTWplJeXa+ro6EhabquwsNCoeYsIISbIZACe\nngDOzhg+aHDp9QAihLBWrFhxZOzYsY82bty4j54/e/bsmPDw8EAAqqcaHUyzZ8+OiY6O9mtoaFAT\nCoWmOTk5AicnpxR9ff2SkSNHViQnJzsTQlhHjx5dMmfOnHMtt3Xy5Ml33d3drwIAeHp6xsfHx3vK\nZDK2VCrVunz5soeXl9el3v4OEKKVlQFMmwYwaRLA/v0YPmiQ6Wyvhdedbt68+SaLxVLY2dml29vb\np9nb26fFxsZOl0gk2u7u7lcEAkG2h4dHfPPeaTt27PjU3Nw819LSMjMuLs6Lnp+amjrexsYmw9zc\nPHf9+vXf0fPr6urUFy5ceILP5+c4OzsnCYVCE/q90NDQZXw+P4fP5+eEhYUFtqwPsBcc6iUvXhDi\n4EDIRx8RolAwXQ1Crwe60AuORa2HaCwWi+B3gnraixdUy8fTE2D3bmz5oP6PxWIBIaRT/ydjPxuE\netnz5wDu7gDe3hg+aHDDAEKoFz17BjB1KjW+286dGD5ocMMAQqiXlJYCTJlC3VDuyy8xfBDCAEKo\nF5SUUOHj4wOwfTuGD0IAGEAI9bjiYgA3NwB/f4CtW5muBqG+A+8uglA3qa0FyMkByMykpqws6jE7\nG2DLFoBPP2W6QoS6R4O8AR49fwRpxWmQVpIG6SXpXdoOdsNuAbtho39CCHU4rWXIZGVR883NASwt\nAaysXn7U1GS6coS6pqqhCv4s/fPvsEkrSYPHzx+DCdsEHAwcwEGfmqaZT+t0N2wMoBYwgBAAQF0d\nQG7uqyGTmQkwdGjrIWNigncsRf3bi5oXLwVNWnEaFJQXgLWe9d9B42DgALZ6tjBcbfhL63blOiAM\noBYwgAYPQqhu0a2FjFgMYGr6ashYWgJoazNdOUKvhxACBeUFLwVNWkkaVNZXgr2+/UstGytdK1BV\nVm13mxhA3QADaOBpaKBaMy1DJjOTarG0DBkrKyp8VNv/N4dQnydXyCFLkvVKy0ZdRR0c9B1gnMG4\nv1s2pmxTYHWxiyYGUDfAAOqfCKGGt2ktZAoLAYyNWz9spqvLdOUIdZ+6pjrIKM14KWgePHsA+hr6\nL7VqHAwcQF9Dv1v3jQHUDTCA+rbGRoC8vFdDJisLQKGggqVlyJibA6ipMV05Qt1LVieD9JL0l1o2\nT8qegEBH8FLQ2HHsQHNIz/eCwQDqBhhAfUNZWeshk58PwOO1fths1Ci8wBMNLIQQKKkqgSxJFmS9\nyIJMSSZkvciCxy8ew/Pq5/AG542XWjY2ejagrqLOSK0YQN0AA6j3NDUBCIWvhkxmJnXeprWQ4fMB\n1Jn594VQj6lrqoMcSQ5kvsikwuavwMmSZIG6sjpY6lqCpQ41WelagaWuJZhrmYOykjLTpf8NA6gb\nYAB1P5ms9ZARCgEMDF4NGSsrAA4HWzNoYCGEQFFl0UvhQgdOSVUJmLJNwVL3r4D5K2wsdS1Be2j/\n6HaJAdQNMIC6Ri6nDo+17ASQlQVQXf1yuDRvzQwdynTlCHWvmsYayJHkvBQwWS+yIFuSDUNVh74S\nMJY6lmCqZQoqSv37IjIMoG6AAfTPKipaD5ncXAA9vdY7ARgaYmsGDSyEEBBXiqnzMs0Om2W+yIRn\n1c/AXMu81cNm7CFspkvvMRhA3QADiOpNVlDQ+gWa5eX/d0Fm87ARCACGD29/2wj1J7I6GQilwlcO\nm2VLsmGE+oi/WzFWOlZ/B44J26RPnZvpLRhA3WAwBVBVFRUsLUMmJwdAR6f1w2ZcLoASjqGOBgC5\nQg7FVcVQUF4AT2VPqcfylx8JIWDCNnmpNUM/742uzf0JBlA3GGgBpFAAiEStX6BZVka1XFqGjIUF\ngIYG05Uj9HpqGmugsLzwlVChw0ZcKQadoTowWnM0GLONqUfN/3s0ZhuDprpml0cGGGwwgLpBfw2g\nmhpq2P+WIZOTAzByZOvnZkaPxtYM6p8IISCplbTacqHnVdRXgJGm0f8FCh0uf4WN0Ugjxq6ZGYgw\ngLpBXw4gQgCKilq/QPPZM6pXWWuDZ44cyXTlCHVOo7wRxJXiVw6P0UFTUF4A6srqr7RemoeM3nA9\nUGLhX1i9BQOoG/SFAKJvbNYyZLKyqBP9rV2gaWwMoDz4znuifqa2sRZKq0uhtKr05ce/nhdVFsHT\n8qdQWlUKHA3Oy62WkdQjPW+E+gimPw5qBgOoG/RWADW/sVnL8zMlJQBmZq0PnskeuL04UT9V1VD1\naqC0CBb6sV5eD5zhHOBocF5+/Ou5gYYBGLONgTuC26FbAKC+AwOoG3R3ANXXv9yaaf6ort56yJia\n4o3NEHMIIVBeX95umJRWl8Kz6mdACHk1UFoEC/2IJ/UHLgygbtCVAKJvbNZayIhE1J0yWzs3o6PT\nM58BoebqmupAVicDaa2UeqyjHp9XP281WJ5VPwM1ZbVWw0RvuN4r8zXUNDBUEAZQd/inAGpoAHjy\npPXDZkpKrZ+bMTPDG5uh16MgCiivK38pPFqGCf3Y2ntyhRy0hmqB1hAtYA9hg9ZQ6lF3mG6rrRS9\n4XowTHUY0x8b9TMYQN2AxWKR589JqyFTUEB1XW5t8MyevLFZQkICuLm59dwOuqAv1gTQN+u6fv06\nOL/p3GZASGulIKt/dT79XmVDJYxQG/F3cLQMErY6u833tIZowRCVIa+0UPri94Q1dVxfrKsrATTo\nzjTExcVN37hx4z65XK68cuXKn4KDg3e3XIbuzkyHzLJl1HOmbmzWF/9n64s1AXS9LkII1Mvrobqh\nGqobq9t/7MgyDdVQ1VAFlfGVoOau9mpwNAsMQw1DGKs79pUgYQ9hw0j1kd0+tEtf/O+HNXVcX62r\nswZVAMnlcuV169YduHLlyjQulyt2dHS8M3v27JgxY8Y8br6cVIqDZzKJEAJNiiaol9dDg7wB6pvq\n//F5fdNfr+X1kFacBt8lf9fpoKhprAFlJWUYrjochqsN79CjvoZ+h5b7T+1/4MvPvmT6a0WozxlU\nAZSSkuLE5/NzTUxM8gEA/Pz8os+dOzenZQD1p/AhhICCKKBJ0QRyIge5Qv738yZFU6uvu/pe833c\nLboLB1MOth4MLUKhvQBpLUyUWEqgrqIOaspqoK6s/spzdeW/Xrd4XlBRANmS7L9//LWGaIGGmkaH\nQqWnhsNXZuEFWgi1ZlCdAzp58uS7ly5d8vrxxx/fBwA4duzY4uTkZOfvv/9+Pb0Mi8UaPF8IQgh1\nIzwH9A86Ei6d/QIRQgh1zaAaKInL5YoLCwuN6NeFhYVGPB5PxGRNCCE0WA2qAJowYUJqTk6OID8/\n36ShoUHt+PHjvrNnz45hui6EEBqMBtUhOBUVlaYDBw6s8/LyuiSXy5VXrFhxpGUHBIQQQr2EEIIT\nIbBs2bJQPT29Uhsbmwyma6GngoICIzc3t+tjx459aG1t/WD//v0fMl1TbW3tECcnp2Q7O7v0MWPG\nPNq8efMupmuip6amJmV7e/u0mTNnnme6FnoyNjbOt7W1/dPe3j7N0dExhel6CCEglUrZCxYsOGll\nZfV4zJgxjxITE12YrCczM9PS3t4+jZ5GjhxZ3hf+X9+5c+eWsWPHPrSxscnw9/ePrKurU2e6JkII\n7Nu3b4ONjU2GtbX1g3379m1goobWfi8lEon2tGnTLgsEgmwPD494qVTKbm87jH+ZfWW6cePG5Hv3\n7jn0pQAqLi7WT0tLsyeEQGVlpYaFhUXWo0ePxjBdV3V19TBCCDQ2Nqo4Ozsn3bx5802mayKEwN69\nez9atGjRL7NmzYphuhZ6MjExEUokEm2m62g+BQQEhB85cmQ5/d9QJpNpMl0TPcnlciV9ff3igoIC\nIybrEAqFJqampnl06Pj4+BwPCwsLZPr7ycjIsLGxscmora0d0tTUpDxt2rTLubm55r1dR2u/l0FB\nQXt27979CSEEQkJCgoODg0Pa286gOgf0TyZPnnxTS0tLynQdzenr65fY29unAwBoaGhUjRkz5nFR\nUZEh03UNGzasBgCgoaFBTS6XK2tra5cxXZNIJOJdvHhxxsqVK38ifawnY1+qp7y8XPPmzZuTly9f\nHgpAHZbW1NQsZ7ou2pUrV6aZm5s/MTIyKmSyjpEjR1aoqqo21tTUDGtqalKpqakZxuVyxUzWBACQ\nmZlp5ezsnDxkyJA6ZWVl+dtvv/376dOn5/d2Ha39XsbExMwODAwMBwAIDAwMP3v27Nz2toMB1E/k\n5+ebpKWlOTg7OyczXYtCoVCyt7dP53A4pVOmTLk+duzYR0zXtGnTpm+//vrrICUlJQXTtTTHYrHI\ntGnTrkyYMCGVvv6MSUKh0HTUqFHPly1b9vO4cePuvf/++z/W1NT0mZFHo6Oj/RYtWhTJdB3a2tpl\nH3rMn6EAAAwDSURBVH/88d7Ro0cXGBoaFrHZbNm0adOuMF2XjY3Ng5s3b04uKyvTrqmpGfbbb7+9\nIxKJeEzXBQBQWlrK4XA4pQAAHA6ntLS0lNPeOhhA/UBVVZXGu+++e3L//v0bNDQ0qpiuR0lJSZGe\nnm4vEol4N27ceCshIcGNyXouXLgwU09P75mDg0NaX2ptAADcunVrUlpamkNsbKz3wYMH/3Xz5s3J\nTNbT1NSkcu/evXFr1649dO/evXHDhw+vDgkJ2cxkTbSGhga18+fPz1q4cOGvTNfy5MkT83379m3M\nz883KSoqMqyqqtL45Zdf3mO6Lisrq8zg4ODdnp6e8d7e3rEODg5pfe2PLgDqD6+OXHeJAdTHNTY2\nqi5YsODU4sWLj82dO/cs0/U0p6mpWf7OO+/8lpqaOoHJOm7fvu0aExMz29TUVOjv7x917dq1qQEB\nARFM1kQzMDAoBgAYNWrU83nz5p1JSUlxYrIeHo8n4vF4IkdHxzsAAO++++7Je/fujWOyJlpsbKz3\n+PHj744aNeo507WkpqZOcHV1va2joyNRUVFpmj9//unbt2+7Ml0XAMDy5ctDU1NTJ/z+++9vs9ls\nmaWlZRbTNQFQrZ6SkhJ9AIDi4mIDPT29Z+2tgwHUhxFCWCtWrDgyduzYRxs3btzHdD0AAC9evNCV\nyWRsAIDa2tqhly9f9nBwcEhjsqadO3d+WlhYaCQUCk2jo6P9pk6dei0iIiKAyZoAAGpqaoZVVlaO\nAACorq4eHh8f72lra5vBZE36+volRkZGhdnZ2RYA1DkXa2vrh0zWRIuKivL39/ePYroOAKqlkZSU\n5FJbWzuUEMK6cuXKtL5wqBkA4NmzZ3oAAAUFBaPPnDkzry8csgQAmD17dkx4eHggAEB4eHhgh/5g\nZrpXR1+Z/Pz8ogwMDIrU1NTqeTxeYWho6DKma7p58+abLBZLYWdnl053UY2NjZ3OZE1//vmnrYOD\nwz07O7t0W1vbP/fs2RPE9PfUfEpISHi7r/SCy8vLM7Wzs0u3s7NLt7a2frBz584tTNdECIH09HS7\nCRMm3HnjjTfuz5s373Rf6AVXVVU1XEdH50VFRcUIpmuhp927d39Cd8MOCAgIb2hoUGW6JkIITJ48\n+cbYsWMf2tnZpV+7dm0KEzXQv5eqqqoN9O+lRCLRdnd3v9KZbtiDajBShBBCfQcegkMIIcQIDCCE\nEEKMwABCCCHECAwghBBCjMAAQgPWtGnTrhQUFIx2cHBIc3BwSDMwMCjm8XgiBweHtHHjxt1rbGxU\nfZ3tr1u37oCDg0OatbX1w2HDhtXQ+2k5NEp9fb36W2+9dUOhULT6723p0qVhp06dWvA6tTAhLCxs\n6fr1679v6/27d++O37Bhw/7erAn1L4Pqdgxo8Lh27dpUS0vLrNGjRxekpaU5AABs375964gRIyo/\n+uij/3THPg4cOLAOAODp06fGM2fOvEDvpyV1dfX6yZMn3zx79uzc+fPnn275fkevGm9PU1OTioqK\nStPrbqej2qt5/Pjxd8ePH3+3t+pB/Q+2gNCAFBkZuWjOnDnnWs4nhLCeP38+iv5hvH//vp2SkpKC\nHk/L3Nz8SV1d3ZDO7Is0G/7n4cOH1s7OzskODg5pdnZ293Nzc/kA1EV6UVFR/vTy69atO2BlZZXp\n4eFx+dmzZ3r0Nu7evTvezc0tYcKECanTp0+Po68sv3PnjuMbb7zxp4ODQ1pQUNDX9AWtYWFhS2fP\nnh3j7u5+1cPD43JNTc2w5cuXhzo7OyePGzfuXkxMzGwAALlcrhwUFPS1k5NTip2d3f3//ve/H7T2\nWSIiIgLs7Ozu29vbp9OjSTx//nzUu+++e9LJySnFyckppbURAX799deFtra2Gfb29ulubm4JAAAJ\nCQlus2bNOg8AsG3btm179+79mF7exsbmQUFBwejq6urh77zzzm/29vbptra2GSdOnPDpzHeP+jds\nAaEB6datW5P27NnzScv5LBaLjBo16nl9fb16ZWXliJs3b052dHS8c+PGjbcmTZp0i8PhlA4ZMqSu\nq/s9fPjw6g0bNuxftGhRZFNTk0pTU5MKAIC9vX06/cN95syZednZ2RaPHz8eU1JSoj927NhHK1as\nONLY2Ki6fv3678+fPz9LR0dHcvz4cd/PPvtsx5EjR1YsW7bs5yNHjqxwdnZO3rJly67mrY+0tDSH\njIwMWzabLfv00093uru7Xw0NDV0uk8nYzs7OydOmTbty7NixxWw2W5aSkuJUX1+v/uabb/7h6ekZ\nb2Jikk9v5+HDh9Y7duz4LDExcaK2tnYZPeLFhg0b9m/atOnbSZMm3SooKBg9ffr0uEePHo1tHrxf\nfvnlF/Hx8Z4GBgbFFRUVI1v73lu+JoSw4uLipnO5XPFvv/32DgBAa+uigQsDCA1IRUVFhq3dJoL+\n0XR1db1969atSTdv3py8ZcuWXXFxcdMJIazJkyfffJ39urq63t6xY8dnIpGIN3/+/NN8Pj8XgDoM\np1AolGpra4feuHHjrUWLFkWyWCxiYGBQPHXq1GsAAFlZWZYPHz60pkddlsvlyoaGhkXl5eWaVVVV\nGvRI6IsWLYq8cOHCTHqfHh4el9lstgwAID4+3vP8+fOzvvnmm38DUOefCgoKRsfHx3tmZGTYnjx5\n8l0A6oc+NzeX3zyArl27NtXHx+cE/b3R27xy5cq0x48fj6GXq6ysHFFdXT28+eeeNGnSrcDAwHAf\nH58TrR1mbA2LxSJvvPHGn//+97+/2bx5c8jMmTMvvPnmm390+ktH/RYGEBqU3nrrrRs3btx4q6Cg\nYPScOXPOhYSEbGaxWGTmzJkXWi47ffr0uNLSUo6jo+Odtg5d0fz9/aNcXFySLly4MHPGjBkX/397\ndxcSVR4FAPyYHzskgs0ikS9qcRPu3Hudq+nm9xc6kQ8yWbnggg+rxFQKi6KLziAyFrZsCJM6SPkQ\nGDhqRg9XtCjd0vVj1Tt5nYEc1PZlRcQxiJFcy+lh+NM0NAQW3ZjO72mG+3Xezj3/++ecrq6uC7m5\nuaMAnuRHvve4/XTtVqlUNt8lLlKJEL7XhoeHu7z/Dw4OnqEoyuF77/b29ssFBQUP/cXuLy632x00\nPT39U1hY2P++55PfZrNZNzMzkyIIQlFSUtLc3Nxckve5ISEhb7w3YZBlToqiHKIo8oIgFOn1+pb8\n/PxHBoPB6C9GFFjwGxAKSNHR0f9tbm7+6O94Zmbm056enl8oinIEBQW5lUqlc2ho6PTH3sCHh4dP\niaLIfyr5AACsrKwcjYuLW62qqrpRXFx8X5IkFsBTiQQHB79VKBSvs7KynlgsltK9vb0Da2trR0ZH\nR3MBAOLj459vbGxETU1NnQTwdEK32+10ZGTky4iIiFekk3Zvb+/P/p6v0WhGTCZTNflPNkZoNJqR\nzs7Oi2RJcGlp6bjvHKC8vLzH/f3955xOpxIAYGtr6xAAQGFh4QPve1qtVjXAh4lweXn5WEpKykxz\nc3NTVFTUhu+MmtjY2Bek6/b8/Hzi6upqHICna7JCoXhdVlZ2p7a29s9vpTM3+jowAaGAlJGRMf6x\nMRHkrT0mJuZfAE8lBPB+wuN+p4OS+/b19Z1nGGaR53nRZrOpyId8URT51NTUSQAArVZ7j6IoB03T\n9vLy8ttpaWl/AwCEhobuDgwMnK2vr7+mVqutPM+Lk5OTqQAA3d3dv1ZWVt7keV7c3t4+SOL03UFn\nMBiMu7u7oRzHLTAMs9jU1NQMAFBRUXGLpml7YmLiPMuykk6nM5NkRNA0bW9sbLySnZ39l1qtttbU\n1FwHADCZTNWzs7MnEhISnqlUKhtJxN7Prqur+4PjuAWWZaX09PQJjuMWvI+XlJTcdTqdSoZhFjs6\nOi6REQKSJLFk04bRaDRg9fN9wWakKCCNjY3lWCyWUrPZrJM7FgCAhoaGq8nJyf9otdp7+7ne5XKF\nk6W21tbW39fX1w+3tbX99mWjROjrwgoIBaScnJwxh8NBkXk8ctrZ2flhfHw843MGCgqCUMTzvMiy\nrDQxMZGu1+tbvmSMCMkBKyCEEEKywAoIIYSQLDABIYQQkgUmIIQQQrLABIQQQkgWmIAQQgjJAhMQ\nQgghWbwDrHA2pVW5S0IAAAAASUVORK5CYII=\n",
       "text": [
        "<matplotlib.figure.Figure at 0x480b930>"
       ]
      }
     ],
     "prompt_number": 4
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 8.5 , Page no:337"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "from __future__ import division\n",
      "\n",
      "#Variable declaration\n",
      "D = 0.02 ; #m\n",
      "l = 0.15 ; #m\n",
      "T = 500+273 ; #K\n",
      "Tc = -196+273 ; #K\n",
      "e = 0.4;\n",
      "#Properties\n",
      "k = 0.0349 ; #W/m K\n",
      "rho = 0.80 ; #kg/m^3\n",
      "Cpavg = 1.048 ; #kJ/kg J\n",
      "rholiq = 800 ; #kg/m^3\n",
      "\n",
      "#calculations\n",
      "s = 5.670*10**-8;\n",
      "#Film boiling will occur, hence eqn 8.7.9 is applicable\n",
      "Tm = (T+Tc) /2; #Film boiling will occur\n",
      "u = 23*10**-6 ; #kg/m s\n",
      "latent = 201*10**3 ; #J/kg\n",
      "hfg = (latent + Cpavg *(Tm -Tc) *1000); #Jk/g\n",
      "hc = 0.62*((( k**3) *rho *799.2*9.81* hfg )/(D*u*(T-Tc)) )**(1/4) ; #W/m^2 K\n",
      "#Taking the emissivity of liquid surface to be unity and using equation 3.9.1, the exchange of radiant heat flux\n",
      "flux = s*(T**4- Tc**4) /(1/ e +1/1 -1) ; #W/m^2\n",
      "hr = flux /(T-Tc);\n",
      "#Since h_r < h_c, total heat transfer coefficient is determined from eqn 8.7.11\n",
      "h = hc +3/4* hr ; #W/m^2 K\n",
      "fluxi = h*(T-Tc);\n",
      "Rate = fluxi *3.14*D*l; #W\n",
      "\n",
      "#result\n",
      "print\"Initial heat flux =\",round(fluxi,4),\"W/m^2\";\n",
      "print\"Initial heat transfer rate =\",round(Rate,4),\"W\";"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Initial heat flux = 69646.6128 W/m^2\n",
        "Initial heat transfer rate = 656.0711 W\n"
       ]
      }
     ],
     "prompt_number": 5
    }
   ],
   "metadata": {}
  }
 ]
}