1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
|
{
"metadata": {
"name": "",
"signature": "sha256:9b1229db232c49aaabbc7f0d29465c24cc6508532c6b435aa2f1e98a362531bd"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
" Chapter 1:Introduction"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 1.1 , Page no:5"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Variable declaration\n",
"v=28.8*10**-6; #the viscosity of water at 100 degree Celsius in kgf s/m^2\n",
"g=9.81; #Acceleration due to gravity in m/s^2\n",
"\n",
"#calculations\n",
"v=28.8*10**-6*g; # Conversion of unit\n",
"\n",
"#result\n",
"print (\"The viscosity of water at 100 degree Celsius = {:.4e}\".format(v)),\"N s/m^2 (or kg/m s)\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The viscosity of water at 100 degree Celsius = 2.8253e-04 N s/m^2 (or kg/m s)\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 1.2, Page no:14"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#variable declaration\n",
"i=950; # radiation flux [W/m^ 2 ]\n",
"A=1.5; # area [m^ 2 ]\n",
"Ti=61; # inlet temperature\n",
"To=69; # outlet temperature\n",
"m=1.5; # mass flow rate\n",
"M=1.5/60; # kg/sec\n",
"Qconductn=50; # W\n",
"t=0.95; # transmissivity\n",
"a=0.97; # absoptivity\n",
"Cp=4183; # J/kg K\n",
"\n",
"#calculations\n",
"q=M*Cp*(To-Ti); # heat gain rate\n",
"n=q/(i*A); # thermal efficiency\n",
"n_percent=n*100; # thermal efficiency\n",
"Qreradiated=(i*A*t*a)-Qconductn-q; # rate at which energy is lost by re-radiation\n",
"\n",
"#result\n",
"print \"Useful heat gain rate is \",round(q,4),\"W\"\n",
"print \"Thermal efficiency is\",'%.4E'%n,\"i.e\",round(n_percent,3),\"%\"\n",
"print \"The rate at which energy is lost by re-radiation and convection is \", round(Qreradiated,6),\"W\"\n",
" \n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Useful heat gain rate is 836.6 W\n",
"Thermal efficiency is 5.8709E-01 i.e 58.709 %\n",
"The rate at which energy is lost by re-radiation and convection is 426.5375 W\n"
]
}
],
"prompt_number": 2
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 1.3, Page no:16"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#variable declaration\n",
"vi=10; # velocity at inlet in m/s\n",
"q=1000; # heat in w\n",
"di=0.04; # inside diameter in m\n",
"do=0.06; # outside diameter in m\n",
"den1=0.946; # density in kg/m^3 at 100 degree C\n",
"Cp=1009; # specific heat in J/kg k\n",
"den2=0.773; # specific heat at To=183.4 degree C\n",
"\n",
"#calculations\n",
"m=den1*(3.14/4)*(di**2)*vi; # kg/s\n",
"dh=q/m; # j/kg\n",
"To=dh/Cp+100; # Exit Temperature\n",
"vo=m/(den2*(3.14/4)*(do)**2); # Exit velocity \n",
"dKeKg=(vo**2-vi**2)/2; # Change in Kinetic Energy per kg\n",
"\n",
"#result\n",
"print \"Exit Temperature is\",round(To,4),\"degree C\"\n",
"print \"Exit velocity is \",round(vo,4),\"m/s\"\n",
"print \"Change in Kinetic Energy per kg =\",round(dKeKg,5),\"J/kg\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Exit Temperature is 183.4119 degree C\n",
"Exit velocity is 5.4391 m/s\n",
"Change in Kinetic Energy per kg = -35.20795 J/kg\n"
]
}
],
"prompt_number": 3
}
],
"metadata": {}
}
]
}
|