summaryrefslogtreecommitdiff
path: root/TRANSPORT_PROCESSES_AND_UNIT_OPERATIONS/GeankoplisChapter14.ipynb
blob: fcc586ae1d76945d744e2a412c14f7a0b750db17 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
{
 "metadata": {
  "name": "",
  "signature": "sha256:9dc557e244e58a44c157bc89005c7dae2dc1b963927f29d131f60895891071ce"
 },
 "nbformat": 3,
 "nbformat_minor": 0,
 "worksheets": [
  {
   "cells": [
    {
     "cell_type": "heading",
     "level": 1,
     "metadata": {},
     "source": [
      "Chapter 14: Mechanical-Physical Seperation Processes"
     ]
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 14.2-1, Page number 810 "
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Evaluation of Filtration Constants for Constant-Pressure Filtration\n",
      "#Variable declaration\n",
      "A = 0.0439                 #Filter area of the plate and frame press (m2)\n",
      "P = -338000.               #Pressure applied accross yhe plates (N/m2)\n",
      "Cs = 23.47                 #Slurry concentration (kg/m3)\n",
      "mu = 0.0008937              #Viscosity of water in SI units (kg/m.s)\n",
      "\n",
      "#Calculation\n",
      "from numpy import arange,array,ones,linalg, divide\n",
      "from pylab import plot,show\n",
      "\n",
      "xi = arange(0.0,0.00501,0.00005)\n",
      "t = [4.4,9.5,16.3,24.6,34.7,46.1,59.0,73.6,89.4,107.3]\n",
      "\n",
      "# linearly generated sequence\n",
      "y = [0.498e-3,1.0e-3,1.501e-3,2.0e-3,2.498e-3,3.002e-3,3.506e-3,4.004e-3,4.502e-3,5.009e-3]\n",
      "yy = divide(t,y)\n",
      "Aa = array([y, ones(10)])\n",
      "w = linalg.lstsq(Aa.T,yy)[0] # obtaining the parameters\n",
      "# Use w[0] and w[1] for your calculations and give good structure to this ipython notebook\n",
      "# plotting the line\n",
      "line = w[0]*xi+w[1] # regression line\n",
      "plot(xi,line,'r-',y,yy,'o')\n",
      "ylabel('$t/V^2$')\n",
      "xlabel('$V$')\n",
      "xlim(0.0,5.1e-3)\n",
      "ylim(0.0,22e3)\n",
      "show()\n",
      "Kp = 2.0*w[0]\n",
      "B = w[1]\n",
      "\n",
      "alpha = (Kp*(A**2*(-P)))/(mu*Cs)\n",
      "Rm = (B*(A*(-P)))/(mu)\n",
      "#Result\n",
      "print 'The value of constant alpha: %4.2e m/kg'%(alpha)\n",
      "print 'The value of constant Rm: %4.3e 1/m'%(Rm)\n",
      "print 'The values of alpha and Rm are more accurate than book the code utilises built in function'\n",
      "print 'for regression, which gives better results than from graphical slope and intercept estimates'"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "metadata": {},
       "output_type": "display_data",
       "png": "iVBORw0KGgoAAAANSUhEUgAAAZ0AAAEMCAYAAAAf5WtEAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XtcVVX+//HXUUibSqc0QTkWiSjiBZ0SrakJhwAvaaV9\nNfvmpZzHJJX3r+PMNM3YzJjY45cppF0xrSaxq9ighONEfpu8pXT5SqNEqNxzRE1NQWD9/th5RkY0\nuZy9D/B+Ph48hjZnHz57jZ63a6+113IZYwwiIiI2aOV0ASIi0nIodERExDYKHRERsY1CR0REbKPQ\nERER2yh0RETENn5OF+AL+vfvz2effeZ0GSIiTcatt95KZmZmnc9TTwf47LPPMMa06K8//OEPjtfg\nC19qB7WD2uDi2uHDDz+s1+etQkdERM6RlraZuLjfsXJlJnFxvyMtbXOjvK9ur4mISA1paZuZMeN9\ncnMXAPPZv38+ubmPAjBixM8a9N7q6QgAUVFRTpfgE9QOFrVDy26DxMSM7wMHIAqA3NwFJCVtbPB7\nK3QEaNl/wc6mdrCoHVp2G5SXn30TLMrz3alTrRv83godERGpoU2bylqPt21b1eD3VuiIiEgN0x+O\nJiRwRo1jISG/Zdq0mAa/t8sY0+K3NnC5XKgZRKTFO34cVq6EJUtIa9WepB8N4FT7INpeWs20aTE1\nJhHU93NToYNCR0RauIICeOYZeOkluPVWmD0bbroJXK7znlLfz03dXhMRaal27YIJE6BfPzh1CrZv\nh7ffhp/+9IKB0xAKHRGRlqS6Gt57D4YMgTvusALn669hyRLo1s3rv14Ph4qItATffQerVsHTT0O7\ndjBnDtx9N/j721qGQkdEpDkrLrbGa154wbptlpwMN9/stdtnP0S310REmqPPPoPJk6F3bzh6FD7+\nGNauhVtucSxwwMHQyc/PZ8iQIfTu3Zs+ffqQmJgIQFlZGTExMfTo0YPY2FiOHDniOWfhwoWEhoYS\nFhZGRkaG5/jOnTvp27cvoaGhzJjx77nl5eXljBs3jtDQUAYPHsz+/fvtu0AREbtVV8P69XDbbTB8\nOPTsCV99ZfV0QkOdrs5iHFJcXGyysrKMMcYcO3bM9OjRw2RnZ5u5c+eaRYsWGWOMSUhIMPPmzTPG\nGLN7924TERFhKioqTF5engkJCTHV1dXGGGMGDhxotm3bZowxZtiwYWbDhg3GGGOWLVtm4uPjjTHG\npKSkmHHjxtVai4PNICLScN99Z8zzzxsTFmZM//7GvPqqMeXlXv2V9f3cdKynExgYSP/+/QG4/PLL\n6dWrF4WFhaxbt45JkyYBMGnSJNauXQtAamoq48ePx9/fn+DgYLp37862bdsoLi7m2LFjREZGAjBx\n4kTPOWe/15gxY9i0aZPdlyki4j2lpfD738O118Jf/wrPPmtNg77vPrjkEqerq5VPTCTYt28fWVlZ\nDBo0iNLSUgICAgAICAigtLQUgKKiIgYPHuw5x+12U1hYiL+/P26323M8KCiIwsJCAAoLC+natSsA\nfn5+tG/fnrKyMq666iq7Lk1EpM7S0jaTmJhBebkfbdpUMn16bM0tBf7v/6xZaO+8A+PGwf/+r3Ur\nrQlwPHSOHz/OmDFjWLp0KVdccUWNn7lcLlwODniJiNit5l42ltzcR8EYRvifgsWL4fPP4eGHIScH\nOnZ0sNq6czR0Tp8+zZgxY5gwYQJ33nknYPVuSkpKCAwMpLi4mE6dOgFWDyY/P99zbkFBAW63m6Cg\nIAoKCs45fuacAwcO0KVLFyorKzl69Oh5eznz58/3fB8VFdWilzUXEefU3MvGkpu7gKR7hjCi2yFr\niZp166BNG1vryszMJDMzs+Fv1MhjSxeturraTJgwwcycObPG8blz55qEhARjjDELFy48ZyJBeXm5\n+frrr023bt08EwkiIyPN1q1bTXV19TkTCaZOnWqMMWb16tWaSCAiPu/WW/9gwJzzdWvfacZ8/5nn\nC+r7uelYT+cf//gHr732Gv369WPAgAGANSX617/+NWPHjiU5OZng4GDeeOMNAMLDwxk7dizh4eH4\n+fmxfPlyz6235cuXM3nyZE6ePMnw4cMZOnQoAFOmTGHChAmEhobSoUMHUlJSnLlYEZGL1Ob0kVqP\nt+3S3tHnaxqLVplGq0yLiMOMgU2bYPFi0j7+ghmtbif38LOeH4eE/JalS4fWnEzgMG1t0AAKHRFx\nRHk5pKRYkwMqK2HWLLjvPtI2bScpaSOnTrWmbduqc/ay8QUKnQZQ6IiIrQ4dgueeg2XLoE8fa/HN\n2NgmdftM++mIiPi6vXvhoYege3fIzYX334eMDIiLa1KB0xCOP6cjItKsGQMffghPPQXbtsHUqfDl\nlxAY6HRljlDoiIh4Q0UFvPGGNV5z8iTMnGn996WXOl2ZozSmg8Z0RKQRHT5s7V2TlGQtTTNnDgwd\nCq2a12hGfT831dMREWkMX30FS5fCX/4CI0daC3B+v6ix/Fvzil4RETsZYy22edddcOONcMUV1mKc\nq1YpcM5DPR0Rkbo6fRreessarzl61Hq+5rXX4LLLnK7M52lMB43piMi/XXBbgSNH4KWXIDERunWz\nxmtGjGh24zUXQ2M6IiINdN5tBUpKGPHFx/DKKzBsGLz7Llx/vYOVNl3q6aCejohY4uJ+R0bGn889\n7ncT6XN+Bo88AmdtGtmSqacjItJA5eW1fySeGhwNCX+yuZrmqeXdiBQRqc2339Km5Ktaf9RW8wMa\njUJHRFq2/futCQHXXcf0TocJCZpT48chIb9l2rQYh4prfnR7TURapu3brSnPGzfCAw9AVhYjrrkG\n0jaTlPTYWdsK+NY+Nk2dJhKgiQQiLUZVFaSmWmFTWAjTp8OUKdCundOVNTmaSCAicj7HjsHLL8OS\nJRAQYN1Ou/NO8NNHoN3U4iLSfOXnwzPPQHIyDBlirYt2441OV9WiaSKBiDQ/n3wC994LERHWFgM7\ndsCbbypwfIB6OiLSPFRVWSs7L14M+/bBtGnw7LPQvr3TlclZFDoi0rSdOGGt6vz003DlldZ4zZgx\nGq/xUfp/RUSapqIia7zmxRfhlltgxQq4+WZwuZyuTC5AYzoi0rRkZcHEidCnjzUrbetWeOcdK3gU\nOD5PoSMivq+62hqv+fnPYdQoK3Byc60toUNCnK5O6kC310TEp9TYz8avnOk9DSM2rbU2SJs9G8aO\nBX9/p8uUelLoiIjPqHU/my33w2PTGDHvId0+awZ0e01EfEbigrdrBA5A7ncvk5RZosBpJhQ6IuKs\n6mrYsAFiYij/5MtaX3LqVGubixJv0e01EXHGqVPw2mvWw5yXXAKzZtGGPfC3c1/atm2V/fWJVyh0\nRMRe33wDy5dbqwXccIP1rM2QIeByMb3jZnLzHq1xi83az2aogwVLY1LoiIg9srOtVQPeftuagfbh\nhxAWVuMlZ/at0X42zZf200H76Yh4jTHwt79Zt9A+/RQeegji46FjR6crkwbSfjoi4jvKy+H1162w\nAev5mnffhbZtna1LHKfQEZHG869/wXPPwbJl1rYCTz0FMTGa7iwemjItIg23Zw9MnQqhoda2Ahs3\nQno6xMYqcKQG9XREpH6MgQ8+sG6h7dhhjdX885/WdtAi56HQEZG6qaiAlBQrbCoqrPGaN9+ESy91\nujJpAjR7Dc1eE7koZWXw/PPWczXh4TBrFgwdCq10l74lqu/npv60iMiF5eTAww9bWwjs2WMtWbNx\nIwwfrsCROtPtNRHx8GwrcKo1bU4eZHqrHEZ8/Rk8+KD1cGfnzk6XKE2cQkdEgDPbCqSTm/uE51ju\n1Y/As3MZMSbWwcqkOXG0b/zAAw8QEBBA3759Pcfmz5+P2+1mwIABDBgwgA0bNnh+tnDhQkJDQwkL\nCyMjI8NzfOfOnfTt25fQ0FBmzJjhOV5eXs64ceMIDQ1l8ODB7N+/354LE2lqDh8mcdbzNQIHIPfg\nMyS9+L8OFSXNkaOhc//995Oenl7jmMvlYvbs2WRlZZGVlcWwYcMAyM7OZs2aNWRnZ5Oens5DDz3k\nGcSKj48nOTmZnJwccnJyPO+ZnJxMhw4dyMnJYdasWcybN8/eCxTxdbm5MH06hIRQfrSy1pdoWwFp\nTI6Gzi233MKVV155zvHaZkSkpqYyfvx4/P39CQ4Opnv37mzbto3i4mKOHTtGZGQkABMnTmTt2rUA\nrFu3jkmTJgEwZswYNm3a5MWrEWkijIGPPoLRo2HQIGsb6C++oE3/0Fpfrm0FpDH55NSTpKQkIiIi\nmDJlCkeOHAGgqKgIt9vteY3b7aawsPCc40FBQRQWFgJQWFhI165dAfDz86N9+/aUlZXZeCUiPqSy\nEtassYLm/vvh5z+3Vg9YuBCCgpg+PZaQkEdrnGJtKxDjTL3SLPncRIL4+Hh+//vfA/DYY48xZ84c\nkpOTHa5KpAk7ehReegkSEyE4GB59FG6/HVrXvG2mbQXEDj4XOp06dfJ8/4tf/IKRI0cCVg8mPz/f\n87OCggLcbjdBQUEUFBScc/zMOQcOHKBLly5UVlZy9OhRrrrqqlp/7/z58z3fR0VFERUV1YhXJeKA\nffusoFm50nqI8623YODAC54yYsTPFDJSq8zMTDIzMxv+RsZheXl5pk+fPp7/Lioq8ny/ePFiM378\neGOMMbt37zYRERGmvLzcfP3116Zbt26murraGGNMZGSk2bp1q6murjbDhg0zGzZsMMYYs2zZMjN1\n6lRjjDGrV68248aNq7UGH2gGkcbz8cfG3H23MVddZcz//I8xBw44XZE0Q/X93HS0pzN+/Hg+/PBD\n/vWvf9G1a1cef/xxMjMz+fTTT3G5XFx33XU8//zzAISHhzN27FjCw8Px8/Nj+fLluL5fvXb58uVM\nnjyZkydPMnz4cIYOtba2nTJlChMmTCA0NJQOHTqQkpLi2LWKeFVlJaxda62HVlICM2fCihVwxRVO\nVyZSg9ZeQ2uvSRN27JgVLkuWQFCQtfjmHXecM14j0ti0c6hIS3LgACQlWYFz222wejUMHux0VSI/\nyCenTIvIeezYAePHw4ABUF0NO3da06AVONJEqKcj4uuqqmDdOmu8Jj8fZsywthho187pykTqTKEj\n4quOH7emOy9ZAh06WOM1Y8aAn/7aStOlP70iPsKzrcC3VbQpyWX6vz5iROyN8MorcOON8P1sTZGm\nTKEj4gPS0jYzY+o6cgv+n+dY7jW/ggduZ8RNNzlYmUjj0kQCESdVV8O6dSRO+HONwAHIPfAkSUkb\nHSpMxDvU0xFxwokT1m2zp5+Gdu0oDxgIh899mbYVkOZGPR0ROxUXWwtuBgdDRgYkJ8OOHbS5pkOt\nL9e2AtLcKHRE7PD55zB5MvTuba36/PHH8O67cMst4HJpWwFpMbQMDloGR7ykuhrS063na778EqZN\ng1/+Es6z0nla2maSkjaeta1AjFZ8Fp9V389NhQ4KHWlkJ0/Cq69a4zVt28KcOTB2LFxyidOViTQa\nrb0m4rTSUli+HJ57DiIjre+jovR8jchZNKYj0lBffAEPPABhYVbwbN4M770HQ4YocET+g3o6IvVh\njDX7bPFiK3QefhhycqBjR6crE/FpCh2Rujh1Cv7yF2u8pnVraz20e+6BNm2crkykSVDoiFyMgwfh\n2WetcZoBA6xFOKOjdftMpI40piNyIdnZ1jTnHj2sbQX+/nfYsMHaOE2BI1Jn6umI/CdjYNMma7xm\n1y6Ij4c9e6BTJ6crE2nyFDoiZ5SXQ0qKFTZVVTBrFrzzjvWsjYg0Cj0cih4ObfEOHSJt1mMkrvmc\n8h9dTZtuAUx/fDwjbr/V6cpEfJYeDhWpq717YckS0la9w4zWt5Nb8RFUALsgd+aj4HJpGRqRRqaJ\nBNKyGAMffAAjR8LNN0OHDiQOnEDusZdqvCw3d4H2shHxAoWOtAwVFfDaa3D99dbEgJEjYf9++NOf\nKOeyWk/RXjYijU+316R5O3wYnn8ekpKgVy/4859h6FBo9e9/b7VpU1nrqdrLRqTxqacjzdNXX1lb\nCYSEWNsKpKXB3/4Gw4fXCBxAe9mI2Eg9HWk+jIGPPrKmPH/0kfVQ5+7d0LnzBU87M1kgKemxs/ay\nGapJBCJeoCnTaMp0k3f6NLz1lhU2R49az9dMnAiX1T5WIyINp03cGkCh00QdOQIvvmiN14SEWGFz\n++3n3D4TkcZX38/NH/zbefz4cQBOnz5NVZUGVsUH5OXBzJnQrRt8+im8+641DXrUKAWOiI+74N/Q\nJ598kj/+8Y/Mnj2bo0ePMnXqVLvqEjnXli1w990wcKC1NM3nn1vbDFx/vdOVichFuuBEgkGDBjFo\n0CD8/f15/fXXqa6utqsuEUtlpdWTWbzY2l5g5kxYuRIuv9zpykSkHi7Y07nssstYuXIlrVu3JiEh\ngZ/85Cd21SUt3bffWhulde8OS5fCr35lrfT8yCMKHJEm7KInEmRlZeFyudi9ezfR0dEEBgZ6uzbb\naCKBD9m/HxITrd5MTIy1M2dkpNNVich/sHX22qZNm/jmm28YNWoUlzWDaakKHR+wfTs89ZT1AOf9\n91sPdl57rdNVich5eD10Dh48yNVXX+3576qqKlJTU2nVqhWjRo2iVROeNaTQcUhVFaSmkva7RSTm\ntaE8qAdtru3I9NnD9WCmiI/z+tYGs2fPJjo6mvz8fAoKCjz/W1ZWxurVq1mzZk2df7m0UMeOwcsv\nW9sKXNKBGUduIvfUUsgFciF3v7UkjYJHpPm56J5OZGQkI0aMwO121/hq3769t2v0OvV0bJKfD888\nA8nJMGQIzJ5N3Pw0MjL+fM5L4+IeIz39Tw4UKSIXw+s9nVWrVtGrV686/wIRPvnEmvKcnm4tT7Nj\nB1x3HQDl5e/Xeoq2FRBpni5qIGbPnj34+WltUKmD78dr+NnPYPRo6wHOvDxYssQTOKBtBURamotK\nkpCQEDIzM8nIyKBVq1YMHDiQG264wdu1SVN04oQ13XnJErjySpgzB8aMgfP8o2X69Fhycx8lN3eB\n55i1rcBQmwoWETvVa8r09u3b2blzJ9XV1fTs2ZOoqKgm3RPSmE4jKCqyxmtefBFuucV6vuanPwWX\n6wdPTUvbTFLSxrO2FYjRJAIRH+fYKtN79uwhMzOTiooKgoKCiIuLu+hndx544AHS0tLo1KkTX3zx\nBQBlZWWMGzeO/fv3ExwczBtvvMGPf/xjABYuXMiKFSto3bo1iYmJxMbGArBz504mT57MqVOnGD58\nOEuXLgWgvLyciRMnsmvXLjp06MCaNWu4tpZnPxQ6DZCVZa0c8N57cN991jI1ISFOVyUiXlbvz01T\nD8XFxZ7vT5w44fm+sLDQpKSkXPT7bN682ezatcv06dPHc2zu3Llm0aJFxhhjEhISzLx584wxxuze\nvdtERESYiooKk5eXZ0JCQkx1dbUxxpiBAweabdu2GWOMGTZsmNmwYYMxxphly5aZ+Ph4Y4wxKSkp\nZty4cbXWUc9maLmqqox57z1jhgwxJijImEWLjCkrc7oqEbFRfT8363TWggULzPr1680LL7zgObZ9\n+3bz97//vV6/3Bhj8vLyaoROz549TUlJiTHGCreePXsaY4x54oknTEJCgud1cXFxZsuWLaaoqMiE\nhYV5jq9evdo8+OCDntds3brVGGPM6dOnTceOHWutQaFzkU6cMObZZ43p0cOYn/zEmNdeM6aiwumq\nRMQB9f3crNNAzF133cUHH3xAcnIy69atIzAwkMjISAoLCxkyZEjdu1m1KC0tJSAgAICAgABKS0sB\nKCoqYvDgwZ7Xud1uCgsL8ff3x+12e44HBQVRWFgIQGFhIV27dgXAz8+P9u3bU1ZWxlVXXdUotbYY\nJSWwbBk8/zwMHgwvvGDNSruI8RoRkbPVKXR69epFr169uO666xg2bBglJSXs2LHDa6tPu1wuXDZ9\nsM2fP9/zfVRUFFFRUbb8Xp/2xRfW8zWpqTB+PHz0EfTo4XRVIuKAzMxMMjMzG/w+9ZpyNmzYMAAC\nAwMZOXJkg4s4W0BAACUlJQQGBlJcXEynTp0AqweTn5/veV1BQQFut5ugoCAKCgrOOX7mnAMHDtCl\nSxcqKys5evToeXs5Z4dOi1ZdDe+/b4VNdra1lUBODnTo4HRlIuKg//zH+OOPP16v9/G5VTpHjRrF\nqlWrAGsVhDvvvNNzPCUlhYqKCvLy8sjJySEyMpLAwEDatWvHtm3bMMbw6quvcscdd5zzXm+99RbR\n0dHOXJQPS0vbTFzc74i65THiek8m7do+8JvfwIQJ1sOcv/mNAkdEGk/jDi3VzT333GM6d+5s/P39\njdvtNitWrDCHDh0y0dHRJjQ01MTExJjDhw97Xr9gwQITEhJievbsadLT0z3HP/nkE9OnTx8TEhJi\npk2b5jl+6tQp81//9V+me/fuZtCgQSYvL6/WOhxuBsf89a8fmpDgXxkwnq+QLjPNX9/LdLo0EfFx\n9f3cbPBzOs1Bi3xOJzubuNjfklG49pwfabFNEfkh9f3c9Lnba+JFxsDGjTBsGERHU+7341pfpsU2\nRcRbFDotQXm5tX9Nv37W8jRjx8K+fbTp6a715VpsU0S8RaHTnB08CH/6EwQHw5o11nbQn39ubQfd\npg3Tp8cSEvJojVOsxTZjnKlXRJq9prtKp5zfP/9prYf2xhvWtgIbN0KfPue87MyimklJj5212OZQ\nLbYpIl6jiQQ4N5EgLW0ziYkZlJf70aZNJdOnx9b/A98Y+OAD6/maTz6BqVMhPh6+X91BRKQxeX3n\nUGlcaWmbmTHj/Rr7yOTmWre66hQ8FRWQkmKFTUWFNWbz5ptw6aWNXbKISIOpp4MzPZ24uN+RkfHn\nWo5f5HTlsjJrLbRnnoHwcCts4uKglYbpRMT7NGW6iSkvr72T+YPTlffuhYcftvas2bsXNmz49zRo\nBY6I+DjdXnNImzaVtR6vdbqyMbB5s3ULbcsWePBBa120zp29XKWISOPSP40dclHTlU+fhr/8BW64\nAX75S6s3s2+fNQ1agSMiTZDGdHB29lpS0sazpivHWJMIDh+GF1+EpCTo3h3mzIHhw3X7TER8Rn0/\nNxU6+NDaa7m5sHQpvPYa3H47zJoFAwY4XZWIyDk0kaCpMsbaHG30aBg0CH70I2vztFdeUeCISLOj\niQROqayEt96yJgeUlVm9mldegcsvd7oyERGv0e01bL69dvQovPQSJCZaa6LNnm3dSmutlZ1FpOnQ\nigS+bt8+a7xm1SoYOhTeftualSYi0oJoTMfbtm61thK4/nrw84PPPoPXX1fgiEiLpJ6ON1RWwtq1\n1nhNSQnMnAnJyXDFFU5XJiLiKIVOY/r2W1ixwrqN1qWL9XzNnXdqvEZE5HsKncZw4IA1MeDllyE6\nGlavhsGDna5KRMTnaEynIXbsgPHjredpjIGdO62N0xQ4IiK1Uk+nrqqqYN06a7wmPx9mzLC2GGjX\nzunKRER8nkLnYh0/bt0+W7IEOna0xmtGj7ZmpImIyEXRJ+YPKSiwNkp76SWIioJXX4UbbwSXy+nK\nRESaHI3pnM+uXXDffdCvH5w6Bdu3W8vW3HSTAkdEpJ4UOmerrrbGa6KirKnOERHw9dfWLbVu3Zyu\nTkSkydPttTOefRaeftqaEDBnDtx9N/j7O12ViEizotA5IyPDWjXg5pt1+0xExEu0yjQ+tImbiEgT\noU3cRETE5yl0RETENgodERGxjUJHRERso9ARERHbKHRERMQ2Ch0REbGNQkdERGyj0BEREdsodERE\nxDYKHRERsY1CR0REbKPQERER2/hs6AQHB9OvXz8GDBhAZGQkAGVlZcTExNCjRw9iY2M5cuSI5/UL\nFy4kNDSUsLAwMjIyPMd37txJ3759CQ0NZcaMGbZfh4iI/JvPho7L5SIzM5OsrCy2b98OQEJCAjEx\nMezdu5fo6GgSEhIAyM7OZs2aNWRnZ5Oens5DDz3kWXI7Pj6e5ORkcnJyyMnJIT093bFrEhFp6Xw2\ndIBz9mpYt24dkyZNAmDSpEmsXbsWgNTUVMaPH4+/vz/BwcF0796dbdu2UVxczLFjxzw9pYkTJ3rO\nERER+/ls6LhcLm677TZuuOEGXnzxRQBKS0sJCAgAICAggNLSUgCKiopwu92ec91uN4WFheccDwoK\norCw0MarEBGRs/nsdtX/+Mc/6Ny5MwcPHiQmJoawsLAaP3e5XLgacVvp+fPne76PiooiKiqq0d5b\nRKSpy8zMJDMzs8Hv47Oh07lzZwCuvvpq7rrrLrZv305AQAAlJSUEBgZSXFxMp06dAKsHk5+f7zm3\noKAAt9tNUFAQBQUFNY4HBQXV+vvODh0REanpP/8x/vjjj9frfXzy9tp3333HsWPHADhx4gQZGRn0\n7duXUaNGsWrVKgBWrVrFnXfeCcCoUaNISUmhoqKCvLw8cnJyiIyMJDAwkHbt2rFt2zaMMbz66que\nc0RExH4+2dMpLS3lrrvuAqCyspL//u//JjY2lhtuuIGxY8eSnJxMcHAwb7zxBgDh4eGMHTuW8PBw\n/Pz8WL58uefW2/Lly5k8eTInT55k+PDhDB061LHrEhFp6VzmP6eItUAul+ucmXIiInJ+9f3c9Mnb\nayIi0jwpdERExDYKHRERsY1CR0REbKPQERER2yh0RETENgodERGxjUJHRERso9ARERHbKHRERMQ2\nCh0REbGNQkdERGyj0BEREdsodERExDYKHRERsY1CR0REbKPQERER2yh0RETENgodERGxjUJHRERs\no9ARERHbKHRERMQ2Ch0REbGNQkdERGyj0BEREdsodERExDYKHRERsY1CR0REbKPQERER2yh0RETE\nNgodERGxjUJHRERso9ARERHbKHRERMQ2Ch0REbGNQkdERGyj0BEREdsodERExDYKHRERsY1CR0RE\nbKPQERER27SI0ElPTycsLIzQ0FAWLVrkdDkiIi1Wsw+dqqoqHnnkEdLT08nOzmb16tV8+eWXTpfl\nczIzM50uwSeoHSxqB7XBGY3dDs0+dLZv30737t0JDg7G39+fe+65h9TUVKfL8jn6C2ZRO1jUDmqD\nMxQ6dVRR5qKHAAAGFklEQVRYWEjXrl09/+12uyksLHSwIhGRlqvZh47L5XK6BBEROcM0c1u2bDFx\ncXGe/37iiSdMQkJCjdeEhIQYQF/60pe+9HWRXxEREfX6THYZYwzNWGVlJT179mTTpk106dKFyMhI\nVq9eTa9evZwuTUSkxfFzugBv8/Pz45lnniEuLo6qqiqmTJmiwBERcUiz7+mIiIjvaHYTCS7mQdDp\n06cTGhpKREQEWVlZP3huWVkZMTEx9OjRg9jYWI4cOeL162gob7TDm2++Se/evWndujW7du3y+jU0\nlDfaYO7cufTq1YuIiAhGjx7N0aNHvX4dDeWNdnjssceIiIigf//+REdHk5+f7/XraAhvtMEZTz31\nFK1ataKsrMxr9TcWb7TD/PnzcbvdDBgwgAEDBpCenn7hIuo9Qu+DKisrTUhIiMnLyzMVFRUmIiLC\nZGdn13hNWlqaGTZsmDHGmK1bt5pBgwb94Llz5841ixYtMsYYk5CQYObNm2fjVdWdt9rhyy+/NHv2\n7DFRUVFm586d9l5UHXmrDTIyMkxVVZUxxph58+a12D8L3377ref8xMREM2XKFJuuqO681QbGGHPg\nwAETFxdngoODzaFDh+y7qHrwVjvMnz/fPPXUUxddR7Pq6VzMg6Dr1q1j0qRJAAwaNIgjR45QUlJy\nwXPPPmfSpEmsXbvW3gurI2+1Q1hYGD169LD9eurDW20QExNDq1atPOcUFBTYe2F15K12uOKKKzzn\nHz9+nI4dO9p3UXXkrTYAmD17Nk8++aSt11Nf3mwHU4dRmmYVOhfzIOj5XlNUVHTec0tLSwkICAAg\nICCA0tJSb15Gg3mrHZoSO9pgxYoVDB8+3AvVNx5vtsOjjz7KNddcw6pVq/j1r3/txatoGG+1QWpq\nKm63m379+nn5ChqHN/8sJCUlERERwZQpU35w+KFZhc7FPgh6MalsjKn1/Vwul88/cNqY7dBUebsN\nFixYwCWXXMK9995br/Pt4s12WLBgAQcOHGDy5MnMmjWrzufbxRttcPLkSZ544gkef/zxep3vBG/9\nWYiPjycvL49PP/2Uzp07M2fOnAu+vllNmQ4KCqoxoJmfn4/b7b7gawoKCnC73Zw+ffqc40FBQYDV\nuykpKSEwMJDi4mI6derk5StpmMZsh9rObQq82QYrV65k/fr1bNq0yYtX0Djs+LNw7733+nSPzxtt\nkJuby759+4iIiPC8/vrrr2f79u0++/ngrT8LZ1/vL37xC0aOHHnhQho2NOVbTp8+bbp162by8vJM\neXn5Dw6UbdmyxTNQdqFz586d61nFYOHChT4/eOytdjgjKirKfPLJJ/ZcTD15qw02bNhgwsPDzcGD\nB+29oHryVjvs3bvXc35iYqK57777bLqiuvP23wdjTJOYSOCtdigqKvKcv3jxYjN+/PgL1tGsQscY\nY9avX2969OhhQkJCzBNPPGGMMea5554zzz33nOc1Dz/8sAkJCTH9+vWrMQurtnONMebQoUMmOjra\nhIaGmpiYGHP48GH7LqievNEO77zzjnG73aZt27YmICDADB061L4LqgdvtEH37t3NNddcY/r372/6\n9+9v4uPj7bugevJGO4wZM8b06dPHREREmNGjR5vS0lL7LqgevNEGZ7vuuut8PnSM8U47TJgwwfTt\n29f069fP3HHHHaakpOSCNejhUBERsU2zmkggIiK+TaEjIiK2UeiIiIhtFDoiImIbhY6IiNhGoSMi\nIrZR6IiIiG0UOiIiYhuFjogPyc7OJjIykgkTJnDw4EEAsrKy6N27N+vXr3e4OpGGa1YLfoo0deHh\n4YwYMYJrr72Wq6++GrBWB37zzTcJDw93uDqRhlNPR8THuN3uGiv67t69W4EjzYZCR8THuN1uz46k\nmzZtIjo62uGKRBqPQkfEx5zp6VRVVfHNN98QGBjodEkijUahI+JjzvR0UlNTGTVqlNPliDQqhY6I\nj2nfvj1lZWW0atWKyy67zOlyRBqVQkfEB/30pz9VL0eaJW3iJiIitlFPR0REbKPQERER2yh0RETE\nNgodERGxjUJHRERso9ARERHbKHRERMQ2Ch0REbHN/wfqctZlL8VHLAAAAABJRU5ErkJggg==\n",
       "text": [
        "<matplotlib.figure.Figure at 0x5fd7950>"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The value of constant alpha: 1.79e+11 m/kg\n",
        "The value of constant Rm: 1.126e+11 1/m\n",
        "The values of alpha and Rm are more accurate than book the code utilises built in function\n",
        "for regression, which gives better results than from graphical slope and intercept estimates\n"
       ]
      }
     ],
     "prompt_number": 4
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 14.2-2, Page number 811"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Time Required to perform a Filtration\n",
      "from numpy import arange,array,ones,linalg, divide\n",
      "from pylab import plot,show\n",
      "\n",
      "#Variable declaration\n",
      "A = 0.873                  #Filter area of each frame (m2)\n",
      "C = 0.0439                 #Proportionality constant\n",
      "V = 3.37                   #Volume of filtrate (m3)\n",
      "xi = arange(0.0,0.00501,0.00005)\n",
      "t = [4.4,9.5,16.3,24.6,34.7,46.1,59.0,73.6,89.4,107.3]\n",
      "y = [0.498e-3,1.0e-3,1.501e-3,2.0e-3,2.498e-3,3.002e-3,3.506e-3,4.004e-3,4.502e-3,5.009e-3]\n",
      "\n",
      "#Calculation\n",
      "        # linearly generated sequence\n",
      "yy = divide(t,y)\n",
      "Aa = array([y, ones(10)])\n",
      "w = linalg.lstsq(Aa.T,yy)[0] # obtaining the parameters\n",
      "# Use w[0] and w[1] for your calculations and give good structure to this ipython notebook\n",
      "# plotting the line\n",
      "line = w[0]*xi+w[1] # regression line\n",
      "plot(xi,line,'r-',y,yy,'o')\n",
      "ylabel('$t/V^2$')\n",
      "xlabel('$V$')\n",
      "xlim(0.0,5.1e-3)\n",
      "ylim(0.0,22e3)\n",
      "show()\n",
      "Kp = 2.0*w[0]\n",
      "B = w[1]\n",
      "\n",
      "At = A*20.                 #Total area of the 20 frames (m2)\n",
      "Kpc = Kp*(C/At)**2         #Corrected slope (s/m6)\n",
      "Bc = B*(C/At)              #Corrected intercept (s/m3)\n",
      "#t = Kpc*V**2/2 + Bc*V\n",
      "t = Kpc*V**2/2 + Bc*V\n",
      "\n",
      "#Result\n",
      "print 'The time required to recover the filtrate is %5.2f s'%t\n",
      "print 'The values slope and intercept of plot of t/v2 vs V is more accurate than book the code utilises '\n",
      "print 'built in function for regression, which gives better results than from graphical estimates; Hence'\n",
      "print 'time required to recover 3.37 m3 is different than given in book'"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "metadata": {},
       "output_type": "display_data",
       "png": "iVBORw0KGgoAAAANSUhEUgAAAZ0AAAEMCAYAAAAf5WtEAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XtcVVX+//HXUUibSqc0QTkWiSjiBZ0SrakJhwAvaaV9\nNfvmpZzHJJX3r+PMNM3YzJjY45cppF0xrSaxq9ighONEfpu8pXT5SqNEqNxzRE1NQWD9/th5RkY0\nuZy9D/B+Ph48hjZnHz57jZ63a6+113IZYwwiIiI2aOV0ASIi0nIodERExDYKHRERsY1CR0REbKPQ\nERER2yh0RETENn5OF+AL+vfvz2effeZ0GSIiTcatt95KZmZmnc9TTwf47LPPMMa06K8//OEPjtfg\nC19qB7WD2uDi2uHDDz+s1+etQkdERM6RlraZuLjfsXJlJnFxvyMtbXOjvK9ur4mISA1paZuZMeN9\ncnMXAPPZv38+ubmPAjBixM8a9N7q6QgAUVFRTpfgE9QOFrVDy26DxMSM7wMHIAqA3NwFJCVtbPB7\nK3QEaNl/wc6mdrCoHVp2G5SXn30TLMrz3alTrRv83godERGpoU2bylqPt21b1eD3VuiIiEgN0x+O\nJiRwRo1jISG/Zdq0mAa/t8sY0+K3NnC5XKgZRKTFO34cVq6EJUtIa9WepB8N4FT7INpeWs20aTE1\nJhHU93NToYNCR0RauIICeOYZeOkluPVWmD0bbroJXK7znlLfz03dXhMRaal27YIJE6BfPzh1CrZv\nh7ffhp/+9IKB0xAKHRGRlqS6Gt57D4YMgTvusALn669hyRLo1s3rv14Ph4qItATffQerVsHTT0O7\ndjBnDtx9N/j721qGQkdEpDkrLrbGa154wbptlpwMN9/stdtnP0S310REmqPPPoPJk6F3bzh6FD7+\nGNauhVtucSxwwMHQyc/PZ8iQIfTu3Zs+ffqQmJgIQFlZGTExMfTo0YPY2FiOHDniOWfhwoWEhoYS\nFhZGRkaG5/jOnTvp27cvoaGhzJjx77nl5eXljBs3jtDQUAYPHsz+/fvtu0AREbtVV8P69XDbbTB8\nOPTsCV99ZfV0QkOdrs5iHFJcXGyysrKMMcYcO3bM9OjRw2RnZ5u5c+eaRYsWGWOMSUhIMPPmzTPG\nGLN7924TERFhKioqTF5engkJCTHV1dXGGGMGDhxotm3bZowxZtiwYWbDhg3GGGOWLVtm4uPjjTHG\npKSkmHHjxtVai4PNICLScN99Z8zzzxsTFmZM//7GvPqqMeXlXv2V9f3cdKynExgYSP/+/QG4/PLL\n6dWrF4WFhaxbt45JkyYBMGnSJNauXQtAamoq48ePx9/fn+DgYLp37862bdsoLi7m2LFjREZGAjBx\n4kTPOWe/15gxY9i0aZPdlyki4j2lpfD738O118Jf/wrPPmtNg77vPrjkEqerq5VPTCTYt28fWVlZ\nDBo0iNLSUgICAgAICAigtLQUgKKiIgYPHuw5x+12U1hYiL+/P26323M8KCiIwsJCAAoLC+natSsA\nfn5+tG/fnrKyMq666iq7Lk1EpM7S0jaTmJhBebkfbdpUMn16bM0tBf7v/6xZaO+8A+PGwf/+r3Ur\nrQlwPHSOHz/OmDFjWLp0KVdccUWNn7lcLlwODniJiNit5l42ltzcR8EYRvifgsWL4fPP4eGHIScH\nOnZ0sNq6czR0Tp8+zZgxY5gwYQJ33nknYPVuSkpKCAwMpLi4mE6dOgFWDyY/P99zbkFBAW63m6Cg\nIAoKCs45fuacAwcO0KVLFyorKzl69Oh5eznz58/3fB8VFdWilzUXEefU3MvGkpu7gKR7hjCi2yFr\niZp166BNG1vryszMJDMzs+Fv1MhjSxeturraTJgwwcycObPG8blz55qEhARjjDELFy48ZyJBeXm5\n+frrr023bt08EwkiIyPN1q1bTXV19TkTCaZOnWqMMWb16tWaSCAiPu/WW/9gwJzzdWvfacZ8/5nn\nC+r7uelYT+cf//gHr732Gv369WPAgAGANSX617/+NWPHjiU5OZng4GDeeOMNAMLDwxk7dizh4eH4\n+fmxfPlyz6235cuXM3nyZE6ePMnw4cMZOnQoAFOmTGHChAmEhobSoUMHUlJSnLlYEZGL1Ob0kVqP\nt+3S3tHnaxqLVplGq0yLiMOMgU2bYPFi0j7+ghmtbif38LOeH4eE/JalS4fWnEzgMG1t0AAKHRFx\nRHk5pKRYkwMqK2HWLLjvPtI2bScpaSOnTrWmbduqc/ay8QUKnQZQ6IiIrQ4dgueeg2XLoE8fa/HN\n2NgmdftM++mIiPi6vXvhoYege3fIzYX334eMDIiLa1KB0xCOP6cjItKsGQMffghPPQXbtsHUqfDl\nlxAY6HRljlDoiIh4Q0UFvPGGNV5z8iTMnGn996WXOl2ZozSmg8Z0RKQRHT5s7V2TlGQtTTNnDgwd\nCq2a12hGfT831dMREWkMX30FS5fCX/4CI0daC3B+v6ix/Fvzil4RETsZYy22edddcOONcMUV1mKc\nq1YpcM5DPR0Rkbo6fRreessarzl61Hq+5rXX4LLLnK7M52lMB43piMi/XXBbgSNH4KWXIDERunWz\nxmtGjGh24zUXQ2M6IiINdN5tBUpKGPHFx/DKKzBsGLz7Llx/vYOVNl3q6aCejohY4uJ+R0bGn889\n7ncT6XN+Bo88AmdtGtmSqacjItJA5eW1fySeGhwNCX+yuZrmqeXdiBQRqc2339Km5Ktaf9RW8wMa\njUJHRFq2/futCQHXXcf0TocJCZpT48chIb9l2rQYh4prfnR7TURapu3brSnPGzfCAw9AVhYjrrkG\n0jaTlPTYWdsK+NY+Nk2dJhKgiQQiLUZVFaSmWmFTWAjTp8OUKdCundOVNTmaSCAicj7HjsHLL8OS\nJRAQYN1Ou/NO8NNHoN3U4iLSfOXnwzPPQHIyDBlirYt2441OV9WiaSKBiDQ/n3wC994LERHWFgM7\ndsCbbypwfIB6OiLSPFRVWSs7L14M+/bBtGnw7LPQvr3TlclZFDoi0rSdOGGt6vz003DlldZ4zZgx\nGq/xUfp/RUSapqIia7zmxRfhlltgxQq4+WZwuZyuTC5AYzoi0rRkZcHEidCnjzUrbetWeOcdK3gU\nOD5PoSMivq+62hqv+fnPYdQoK3Byc60toUNCnK5O6kC310TEp9TYz8avnOk9DSM2rbU2SJs9G8aO\nBX9/p8uUelLoiIjPqHU/my33w2PTGDHvId0+awZ0e01EfEbigrdrBA5A7ncvk5RZosBpJhQ6IuKs\n6mrYsAFiYij/5MtaX3LqVGubixJv0e01EXHGqVPw2mvWw5yXXAKzZtGGPfC3c1/atm2V/fWJVyh0\nRMRe33wDy5dbqwXccIP1rM2QIeByMb3jZnLzHq1xi83az2aogwVLY1LoiIg9srOtVQPeftuagfbh\nhxAWVuMlZ/at0X42zZf200H76Yh4jTHwt79Zt9A+/RQeegji46FjR6crkwbSfjoi4jvKy+H1162w\nAev5mnffhbZtna1LHKfQEZHG869/wXPPwbJl1rYCTz0FMTGa7iwemjItIg23Zw9MnQqhoda2Ahs3\nQno6xMYqcKQG9XREpH6MgQ8+sG6h7dhhjdX885/WdtAi56HQEZG6qaiAlBQrbCoqrPGaN9+ESy91\nujJpAjR7Dc1eE7koZWXw/PPWczXh4TBrFgwdCq10l74lqu/npv60iMiF5eTAww9bWwjs2WMtWbNx\nIwwfrsCROtPtNRHx8GwrcKo1bU4eZHqrHEZ8/Rk8+KD1cGfnzk6XKE2cQkdEgDPbCqSTm/uE51ju\n1Y/As3MZMSbWwcqkOXG0b/zAAw8QEBBA3759Pcfmz5+P2+1mwIABDBgwgA0bNnh+tnDhQkJDQwkL\nCyMjI8NzfOfOnfTt25fQ0FBmzJjhOV5eXs64ceMIDQ1l8ODB7N+/354LE2lqDh8mcdbzNQIHIPfg\nMyS9+L8OFSXNkaOhc//995Oenl7jmMvlYvbs2WRlZZGVlcWwYcMAyM7OZs2aNWRnZ5Oens5DDz3k\nGcSKj48nOTmZnJwccnJyPO+ZnJxMhw4dyMnJYdasWcybN8/eCxTxdbm5MH06hIRQfrSy1pdoWwFp\nTI6Gzi233MKVV155zvHaZkSkpqYyfvx4/P39CQ4Opnv37mzbto3i4mKOHTtGZGQkABMnTmTt2rUA\nrFu3jkmTJgEwZswYNm3a5MWrEWkijIGPPoLRo2HQIGsb6C++oE3/0Fpfrm0FpDH55NSTpKQkIiIi\nmDJlCkeOHAGgqKgIt9vteY3b7aawsPCc40FBQRQWFgJQWFhI165dAfDz86N9+/aUlZXZeCUiPqSy\nEtassYLm/vvh5z+3Vg9YuBCCgpg+PZaQkEdrnGJtKxDjTL3SLPncRIL4+Hh+//vfA/DYY48xZ84c\nkpOTHa5KpAk7ehReegkSEyE4GB59FG6/HVrXvG2mbQXEDj4XOp06dfJ8/4tf/IKRI0cCVg8mPz/f\n87OCggLcbjdBQUEUFBScc/zMOQcOHKBLly5UVlZy9OhRrrrqqlp/7/z58z3fR0VFERUV1YhXJeKA\nffusoFm50nqI8623YODAC54yYsTPFDJSq8zMTDIzMxv+RsZheXl5pk+fPp7/Lioq8ny/ePFiM378\neGOMMbt37zYRERGmvLzcfP3116Zbt26murraGGNMZGSk2bp1q6murjbDhg0zGzZsMMYYs2zZMjN1\n6lRjjDGrV68248aNq7UGH2gGkcbz8cfG3H23MVddZcz//I8xBw44XZE0Q/X93HS0pzN+/Hg+/PBD\n/vWvf9G1a1cef/xxMjMz+fTTT3G5XFx33XU8//zzAISHhzN27FjCw8Px8/Nj+fLluL5fvXb58uVM\nnjyZkydPMnz4cIYOtba2nTJlChMmTCA0NJQOHTqQkpLi2LWKeFVlJaxda62HVlICM2fCihVwxRVO\nVyZSg9ZeQ2uvSRN27JgVLkuWQFCQtfjmHXecM14j0ti0c6hIS3LgACQlWYFz222wejUMHux0VSI/\nyCenTIvIeezYAePHw4ABUF0NO3da06AVONJEqKcj4uuqqmDdOmu8Jj8fZsywthho187pykTqTKEj\n4quOH7emOy9ZAh06WOM1Y8aAn/7aStOlP70iPsKzrcC3VbQpyWX6vz5iROyN8MorcOON8P1sTZGm\nTKEj4gPS0jYzY+o6cgv+n+dY7jW/ggduZ8RNNzlYmUjj0kQCESdVV8O6dSRO+HONwAHIPfAkSUkb\nHSpMxDvU0xFxwokT1m2zp5+Gdu0oDxgIh899mbYVkOZGPR0ROxUXWwtuBgdDRgYkJ8OOHbS5pkOt\nL9e2AtLcKHRE7PD55zB5MvTuba36/PHH8O67cMst4HJpWwFpMbQMDloGR7ykuhrS063na778EqZN\ng1/+Es6z0nla2maSkjaeta1AjFZ8Fp9V389NhQ4KHWlkJ0/Cq69a4zVt28KcOTB2LFxyidOViTQa\nrb0m4rTSUli+HJ57DiIjre+jovR8jchZNKYj0lBffAEPPABhYVbwbN4M770HQ4YocET+g3o6IvVh\njDX7bPFiK3QefhhycqBjR6crE/FpCh2Rujh1Cv7yF2u8pnVraz20e+6BNm2crkykSVDoiFyMgwfh\n2WetcZoBA6xFOKOjdftMpI40piNyIdnZ1jTnHj2sbQX+/nfYsMHaOE2BI1Jn6umI/CdjYNMma7xm\n1y6Ij4c9e6BTJ6crE2nyFDoiZ5SXQ0qKFTZVVTBrFrzzjvWsjYg0Cj0cih4ObfEOHSJt1mMkrvmc\n8h9dTZtuAUx/fDwjbr/V6cpEfJYeDhWpq717YckS0la9w4zWt5Nb8RFUALsgd+aj4HJpGRqRRqaJ\nBNKyGAMffAAjR8LNN0OHDiQOnEDusZdqvCw3d4H2shHxAoWOtAwVFfDaa3D99dbEgJEjYf9++NOf\nKOeyWk/RXjYijU+316R5O3wYnn8ekpKgVy/4859h6FBo9e9/b7VpU1nrqdrLRqTxqacjzdNXX1lb\nCYSEWNsKpKXB3/4Gw4fXCBxAe9mI2Eg9HWk+jIGPPrKmPH/0kfVQ5+7d0LnzBU87M1kgKemxs/ay\nGapJBCJeoCnTaMp0k3f6NLz1lhU2R49az9dMnAiX1T5WIyINp03cGkCh00QdOQIvvmiN14SEWGFz\n++3n3D4TkcZX38/NH/zbefz4cQBOnz5NVZUGVsUH5OXBzJnQrRt8+im8+641DXrUKAWOiI+74N/Q\nJ598kj/+8Y/Mnj2bo0ePMnXqVLvqEjnXli1w990wcKC1NM3nn1vbDFx/vdOVichFuuBEgkGDBjFo\n0CD8/f15/fXXqa6utqsuEUtlpdWTWbzY2l5g5kxYuRIuv9zpykSkHi7Y07nssstYuXIlrVu3JiEh\ngZ/85Cd21SUt3bffWhulde8OS5fCr35lrfT8yCMKHJEm7KInEmRlZeFyudi9ezfR0dEEBgZ6uzbb\naCKBD9m/HxITrd5MTIy1M2dkpNNVich/sHX22qZNm/jmm28YNWoUlzWDaakKHR+wfTs89ZT1AOf9\n91sPdl57rdNVich5eD10Dh48yNVXX+3576qqKlJTU2nVqhWjRo2iVROeNaTQcUhVFaSmkva7RSTm\ntaE8qAdtru3I9NnD9WCmiI/z+tYGs2fPJjo6mvz8fAoKCjz/W1ZWxurVq1mzZk2df7m0UMeOwcsv\nW9sKXNKBGUduIvfUUsgFciF3v7UkjYJHpPm56J5OZGQkI0aMwO121/hq3769t2v0OvV0bJKfD888\nA8nJMGQIzJ5N3Pw0MjL+fM5L4+IeIz39Tw4UKSIXw+s9nVWrVtGrV686/wIRPvnEmvKcnm4tT7Nj\nB1x3HQDl5e/Xeoq2FRBpni5qIGbPnj34+WltUKmD78dr+NnPYPRo6wHOvDxYssQTOKBtBURamotK\nkpCQEDIzM8nIyKBVq1YMHDiQG264wdu1SVN04oQ13XnJErjySpgzB8aMgfP8o2X69Fhycx8lN3eB\n55i1rcBQmwoWETvVa8r09u3b2blzJ9XV1fTs2ZOoqKgm3RPSmE4jKCqyxmtefBFuucV6vuanPwWX\n6wdPTUvbTFLSxrO2FYjRJAIRH+fYKtN79uwhMzOTiooKgoKCiIuLu+hndx544AHS0tLo1KkTX3zx\nBQBlZWWMGzeO/fv3ExwczBtvvMGPf/xjABYuXMiKFSto3bo1iYmJxMbGArBz504mT57MqVOnGD58\nOEuXLgWgvLyciRMnsmvXLjp06MCaNWu4tpZnPxQ6DZCVZa0c8N57cN991jI1ISFOVyUiXlbvz01T\nD8XFxZ7vT5w44fm+sLDQpKSkXPT7bN682ezatcv06dPHc2zu3Llm0aJFxhhjEhISzLx584wxxuze\nvdtERESYiooKk5eXZ0JCQkx1dbUxxpiBAweabdu2GWOMGTZsmNmwYYMxxphly5aZ+Ph4Y4wxKSkp\nZty4cbXWUc9maLmqqox57z1jhgwxJijImEWLjCkrc7oqEbFRfT8363TWggULzPr1680LL7zgObZ9\n+3bz97//vV6/3Bhj8vLyaoROz549TUlJiTHGCreePXsaY4x54oknTEJCgud1cXFxZsuWLaaoqMiE\nhYV5jq9evdo8+OCDntds3brVGGPM6dOnTceOHWutQaFzkU6cMObZZ43p0cOYn/zEmNdeM6aiwumq\nRMQB9f3crNNAzF133cUHH3xAcnIy69atIzAwkMjISAoLCxkyZEjdu1m1KC0tJSAgAICAgABKS0sB\nKCoqYvDgwZ7Xud1uCgsL8ff3x+12e44HBQVRWFgIQGFhIV27dgXAz8+P9u3bU1ZWxlVXXdUotbYY\nJSWwbBk8/zwMHgwvvGDNSruI8RoRkbPVKXR69epFr169uO666xg2bBglJSXs2LHDa6tPu1wuXDZ9\nsM2fP9/zfVRUFFFRUbb8Xp/2xRfW8zWpqTB+PHz0EfTo4XRVIuKAzMxMMjMzG/w+9ZpyNmzYMAAC\nAwMZOXJkg4s4W0BAACUlJQQGBlJcXEynTp0AqweTn5/veV1BQQFut5ugoCAKCgrOOX7mnAMHDtCl\nSxcqKys5evToeXs5Z4dOi1ZdDe+/b4VNdra1lUBODnTo4HRlIuKg//zH+OOPP16v9/G5VTpHjRrF\nqlWrAGsVhDvvvNNzPCUlhYqKCvLy8sjJySEyMpLAwEDatWvHtm3bMMbw6quvcscdd5zzXm+99RbR\n0dHOXJQPS0vbTFzc74i65THiek8m7do+8JvfwIQJ1sOcv/mNAkdEGk/jDi3VzT333GM6d+5s/P39\njdvtNitWrDCHDh0y0dHRJjQ01MTExJjDhw97Xr9gwQITEhJievbsadLT0z3HP/nkE9OnTx8TEhJi\npk2b5jl+6tQp81//9V+me/fuZtCgQSYvL6/WOhxuBsf89a8fmpDgXxkwnq+QLjPNX9/LdLo0EfFx\n9f3cbPBzOs1Bi3xOJzubuNjfklG49pwfabFNEfkh9f3c9Lnba+JFxsDGjTBsGERHU+7341pfpsU2\nRcRbFDotQXm5tX9Nv37W8jRjx8K+fbTp6a715VpsU0S8RaHTnB08CH/6EwQHw5o11nbQn39ubQfd\npg3Tp8cSEvJojVOsxTZjnKlXRJq9prtKp5zfP/9prYf2xhvWtgIbN0KfPue87MyimklJj5212OZQ\nLbYpIl6jiQQ4N5EgLW0ziYkZlJf70aZNJdOnx9b/A98Y+OAD6/maTz6BqVMhPh6+X91BRKQxeX3n\nUGlcaWmbmTHj/Rr7yOTmWre66hQ8FRWQkmKFTUWFNWbz5ptw6aWNXbKISIOpp4MzPZ24uN+RkfHn\nWo5f5HTlsjJrLbRnnoHwcCts4uKglYbpRMT7NGW6iSkvr72T+YPTlffuhYcftvas2bsXNmz49zRo\nBY6I+DjdXnNImzaVtR6vdbqyMbB5s3ULbcsWePBBa120zp29XKWISOPSP40dclHTlU+fhr/8BW64\nAX75S6s3s2+fNQ1agSMiTZDGdHB29lpS0sazpivHWJMIDh+GF1+EpCTo3h3mzIHhw3X7TER8Rn0/\nNxU6+NDaa7m5sHQpvPYa3H47zJoFAwY4XZWIyDk0kaCpMsbaHG30aBg0CH70I2vztFdeUeCISLOj\niQROqayEt96yJgeUlVm9mldegcsvd7oyERGv0e01bL69dvQovPQSJCZaa6LNnm3dSmutlZ1FpOnQ\nigS+bt8+a7xm1SoYOhTeftualSYi0oJoTMfbtm61thK4/nrw84PPPoPXX1fgiEiLpJ6ON1RWwtq1\n1nhNSQnMnAnJyXDFFU5XJiLiKIVOY/r2W1ixwrqN1qWL9XzNnXdqvEZE5HsKncZw4IA1MeDllyE6\nGlavhsGDna5KRMTnaEynIXbsgPHjredpjIGdO62N0xQ4IiK1Uk+nrqqqYN06a7wmPx9mzLC2GGjX\nzunKRER8nkLnYh0/bt0+W7IEOna0xmtGj7ZmpImIyEXRJ+YPKSiwNkp76SWIioJXX4UbbwSXy+nK\nRESaHI3pnM+uXXDffdCvH5w6Bdu3W8vW3HSTAkdEpJ4UOmerrrbGa6KirKnOERHw9dfWLbVu3Zyu\nTkSkydPttTOefRaeftqaEDBnDtx9N/j7O12ViEizotA5IyPDWjXg5pt1+0xExEu0yjQ+tImbiEgT\noU3cRETE5yl0RETENgodERGxjUJHRERso9ARERHbKHRERMQ2Ch0REbGNQkdERGyj0BEREdsodERE\nxDYKHRERsY1CR0REbKPQERER2/hs6AQHB9OvXz8GDBhAZGQkAGVlZcTExNCjRw9iY2M5cuSI5/UL\nFy4kNDSUsLAwMjIyPMd37txJ3759CQ0NZcaMGbZfh4iI/JvPho7L5SIzM5OsrCy2b98OQEJCAjEx\nMezdu5fo6GgSEhIAyM7OZs2aNWRnZ5Oens5DDz3kWXI7Pj6e5ORkcnJyyMnJIT093bFrEhFp6Xw2\ndIBz9mpYt24dkyZNAmDSpEmsXbsWgNTUVMaPH4+/vz/BwcF0796dbdu2UVxczLFjxzw9pYkTJ3rO\nERER+/ls6LhcLm677TZuuOEGXnzxRQBKS0sJCAgAICAggNLSUgCKiopwu92ec91uN4WFheccDwoK\norCw0MarEBGRs/nsdtX/+Mc/6Ny5MwcPHiQmJoawsLAaP3e5XLgacVvp+fPne76PiooiKiqq0d5b\nRKSpy8zMJDMzs8Hv47Oh07lzZwCuvvpq7rrrLrZv305AQAAlJSUEBgZSXFxMp06dAKsHk5+f7zm3\noKAAt9tNUFAQBQUFNY4HBQXV+vvODh0REanpP/8x/vjjj9frfXzy9tp3333HsWPHADhx4gQZGRn0\n7duXUaNGsWrVKgBWrVrFnXfeCcCoUaNISUmhoqKCvLw8cnJyiIyMJDAwkHbt2rFt2zaMMbz66que\nc0RExH4+2dMpLS3lrrvuAqCyspL//u//JjY2lhtuuIGxY8eSnJxMcHAwb7zxBgDh4eGMHTuW8PBw\n/Pz8WL58uefW2/Lly5k8eTInT55k+PDhDB061LHrEhFp6VzmP6eItUAul+ucmXIiInJ+9f3c9Mnb\nayIi0jwpdERExDYKHRERsY1CR0REbKPQERER2yh0RETENgodERGxjUJHRERso9ARERHbKHRERMQ2\nCh0REbGNQkdERGyj0BEREdsodERExDYKHRERsY1CR0REbKPQERER2yh0RETENgodERGxjUJHRERs\no9ARERHbKHRERMQ2Ch0REbGNQkdERGyj0BEREdsodERExDYKHRERsY1CR0REbKPQERER2yh0RETE\nNgodERGxjUJHRERso9ARERHbKHRERMQ2Ch0REbGNQkdERGyj0BEREdsodERExDYKHRERsY1CR0RE\nbKPQERER27SI0ElPTycsLIzQ0FAWLVrkdDkiIi1Wsw+dqqoqHnnkEdLT08nOzmb16tV8+eWXTpfl\nczIzM50uwSeoHSxqB7XBGY3dDs0+dLZv30737t0JDg7G39+fe+65h9TUVKfL8jn6C2ZRO1jUDmqD\nMxQ6dVRR5qKHAAAGFklEQVRYWEjXrl09/+12uyksLHSwIhGRlqvZh47L5XK6BBEROcM0c1u2bDFx\ncXGe/37iiSdMQkJCjdeEhIQYQF/60pe+9HWRXxEREfX6THYZYwzNWGVlJT179mTTpk106dKFyMhI\nVq9eTa9evZwuTUSkxfFzugBv8/Pz45lnniEuLo6qqiqmTJmiwBERcUiz7+mIiIjvaHYTCS7mQdDp\n06cTGhpKREQEWVlZP3huWVkZMTEx9OjRg9jYWI4cOeL162gob7TDm2++Se/evWndujW7du3y+jU0\nlDfaYO7cufTq1YuIiAhGjx7N0aNHvX4dDeWNdnjssceIiIigf//+REdHk5+f7/XraAhvtMEZTz31\nFK1ataKsrMxr9TcWb7TD/PnzcbvdDBgwgAEDBpCenn7hIuo9Qu+DKisrTUhIiMnLyzMVFRUmIiLC\nZGdn13hNWlqaGTZsmDHGmK1bt5pBgwb94Llz5841ixYtMsYYk5CQYObNm2fjVdWdt9rhyy+/NHv2\n7DFRUVFm586d9l5UHXmrDTIyMkxVVZUxxph58+a12D8L3377ref8xMREM2XKFJuuqO681QbGGHPg\nwAETFxdngoODzaFDh+y7qHrwVjvMnz/fPPXUUxddR7Pq6VzMg6Dr1q1j0qRJAAwaNIgjR45QUlJy\nwXPPPmfSpEmsXbvW3gurI2+1Q1hYGD169LD9eurDW20QExNDq1atPOcUFBTYe2F15K12uOKKKzzn\nHz9+nI4dO9p3UXXkrTYAmD17Nk8++aSt11Nf3mwHU4dRmmYVOhfzIOj5XlNUVHTec0tLSwkICAAg\nICCA0tJSb15Gg3mrHZoSO9pgxYoVDB8+3AvVNx5vtsOjjz7KNddcw6pVq/j1r3/txatoGG+1QWpq\nKm63m379+nn5ChqHN/8sJCUlERERwZQpU35w+KFZhc7FPgh6MalsjKn1/Vwul88/cNqY7dBUebsN\nFixYwCWXXMK9995br/Pt4s12WLBgAQcOHGDy5MnMmjWrzufbxRttcPLkSZ544gkef/zxep3vBG/9\nWYiPjycvL49PP/2Uzp07M2fOnAu+vllNmQ4KCqoxoJmfn4/b7b7gawoKCnC73Zw+ffqc40FBQYDV\nuykpKSEwMJDi4mI6derk5StpmMZsh9rObQq82QYrV65k/fr1bNq0yYtX0Djs+LNw7733+nSPzxtt\nkJuby759+4iIiPC8/vrrr2f79u0++/ngrT8LZ1/vL37xC0aOHHnhQho2NOVbTp8+bbp162by8vJM\neXn5Dw6UbdmyxTNQdqFz586d61nFYOHChT4/eOytdjgjKirKfPLJJ/ZcTD15qw02bNhgwsPDzcGD\nB+29oHryVjvs3bvXc35iYqK57777bLqiuvP23wdjTJOYSOCtdigqKvKcv3jxYjN+/PgL1tGsQscY\nY9avX2969OhhQkJCzBNPPGGMMea5554zzz33nOc1Dz/8sAkJCTH9+vWrMQurtnONMebQoUMmOjra\nhIaGmpiYGHP48GH7LqievNEO77zzjnG73aZt27YmICDADB061L4LqgdvtEH37t3NNddcY/r372/6\n9+9v4uPj7bugevJGO4wZM8b06dPHREREmNGjR5vS0lL7LqgevNEGZ7vuuut8PnSM8U47TJgwwfTt\n29f069fP3HHHHaakpOSCNejhUBERsU2zmkggIiK+TaEjIiK2UeiIiIhtFDoiImIbhY6IiNhGoSMi\nIrZR6IiIiG0UOiIiYhuFjogPyc7OJjIykgkTJnDw4EEAsrKy6N27N+vXr3e4OpGGa1YLfoo0deHh\n4YwYMYJrr72Wq6++GrBWB37zzTcJDw93uDqRhlNPR8THuN3uGiv67t69W4EjzYZCR8THuN1uz46k\nmzZtIjo62uGKRBqPQkfEx5zp6VRVVfHNN98QGBjodEkijUahI+JjzvR0UlNTGTVqlNPliDQqhY6I\nj2nfvj1lZWW0atWKyy67zOlyRBqVQkfEB/30pz9VL0eaJW3iJiIitlFPR0REbKPQERER2yh0RETE\nNgodERGxjUJHRERso9ARERHbKHRERMQ2Ch0REbHN/wfqctZlL8VHLAAAAABJRU5ErkJggg==\n",
       "text": [
        "<matplotlib.figure.Figure at 0x5fd7eb0>"
       ]
      },
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The time required to recover the filtrate is 264.61 s\n",
        "The values slope of plot of t/v2 vs V is more accurate than book the code utilises built in function\n",
        "for regression, which gives better results than from graphical slope and intercept estimates; Hence\n",
        "time required to recover 3.37 m3 is different than given in book\n"
       ]
      }
     ],
     "prompt_number": 6
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 14.2-3, Page number 813"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Rate of Washing and Total Filter Cycle time\n",
      "#Variable declaration\n",
      "Kp = 37.93                 #Slope of the line multiplied by 2 (s/m6) \n",
      "B = 16.10                  #Determined Intercept from data plotted (s/m3)\n",
      "Vf = 3.37                  #Volume of the Flitrate (m3)\n",
      "Vw = 0.337                 #Volume of wash water (m3)\n",
      "Tc = 20.                   #Filter cleaning time (min)\n",
      "Tr = 269.7                 #Filtrate recovry time (s)\n",
      "#Calculation\n",
      "#(dV/dt) = (1/4)*(1/(Kp*Vf + B))\n",
      "R = (1./4.)*(1./((Kp*Vf) + B))\n",
      "#Tw = (Volume of wash water)/(Rate of washing)\n",
      "#Tw = Vw/(R)\n",
      "Tw = Vw/(R)\n",
      "#Total filtration cycle = Filtrate recovry time + Time of washing + Filter cleaning time\n",
      "#Tt = Tr/60 + Tw/60 + Tc\n",
      "Tt = Tr/60. + Tw/60. + 20.\n",
      "#Result\n",
      "print \"The time of washing is\",round(Tw,1),\"s\"\n",
      "print \"The total filtration cycle is\",round(Tt,2),\"min\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The time of washing is 194.0 s\n",
        "The total filtration cycle is 27.73 min\n"
       ]
      }
     ],
     "prompt_number": 7
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 14.2-4, Page number 814 "
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Filtration in a continuous Rotary drumn\n",
      "#Variable declaration\n",
      "Rho = 996.9                 #Density of water (kg/m3)\n",
      "Cx = 0.191                  #Solids concentration in slurry (kg)\n",
      "m = 2.\n",
      "P = -67.e3                  #Pressure drop in Filter (Pa)\n",
      "M = 0.778                   #Mass of slurry (kg)\n",
      "tc = 250.                   #Filter cycle time (s)\n",
      "mu = 0.8937e-3              #Viscosity of slurry (Pa.s)\n",
      "f = 0.33                    #Fraction of drum submerged\n",
      "#Calculation\n",
      "#Cs = (Rho*Cx)/(1-m*Cx)\n",
      "Cs = (Rho*Cx)/(1-m*Cx)\n",
      "alpha = (4.37e9)*(-P)**0.3\n",
      "\n",
      "R = M*Cx/Cs\n",
      "\n",
      "A = R*((tc*mu*alpha*Cs)/(2*f*(-P)))**0.5\n",
      "#Result\n",
      "\n",
      "print \"The Filter Area needed to filter the slurry is \",round(A,2),\"m2\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The Filter Area needed to filter the slurry is  6.66 m2\n"
       ]
      }
     ],
     "prompt_number": 8
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 14.3-1, Page number 818  "
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Filtration in a continuous Rotary drumn\n",
      "#Variable declaration\n",
      "Dp = 2.0e-5                     #Diameter of the oil droplet (m)\n",
      "rhooil = 900.                   #Density of oil (kg/m3)\n",
      "rhoair = 1.137                  #Density of air (kg/m3)\n",
      "muair = 1.9e-5                  #Viscosity of air (Pa.s)\n",
      "vt = 0.305                      #Assumed terminal settling velocity (m/s)\n",
      "\n",
      "#Calculation\n",
      "eR = 1.\n",
      "i = 0\n",
      "while eR>=0.00001:\n",
      "    i= i+1\n",
      "    Nre = Dp*vt*rhoair/muair\n",
      "    Cd = 24./Nre\n",
      "    vtnew = sqrt(4.*(rhooil-rhoair)*9.81*Dp/(3*Cd*rhoair))\n",
      "    eR = abs((vt-vtnew)/vt)\n",
      "    vt = vtnew\n",
      "#Result\n",
      "print 'Reynolds number %4.3f'%Nre\n",
      "print \"The calculated terminal settling velocity is\",round(vt,4),\"m/s\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Reynolds number 0.012\n",
        "The calculated terminal settling velocity is 0.0103 m/s\n"
       ]
      }
     ],
     "prompt_number": 11
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 14.3-2, Page number 820"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Hindered Settling of Spheres\n",
      "\n",
      "#Variable declaration\n",
      "D = 1.554e-4                   #Diameter of the glass sphere (m)\n",
      "rhoglass = 2467.               #Density of glass (kg/m3)\n",
      "rhowater = 998.                #Density of water (kg/m3)\n",
      "muwater = 1.005e-3             #Viscosity of water (Pa.s)\n",
      "P_w = 40.                      #Percentage of water in mixture  \n",
      "P_s = 60.                      #Percentage of solids in mixture \n",
      "g = 9.807                      #Gravitational acceleration (m/s2)\n",
      "#Calculation\n",
      "e = (P_w/rhowater)/(P_w/rhowater + P_s/rhoglass)\n",
      "rho_m = e*rhowater + (1 - e)*rhoglass\n",
      "fi = 1/10**(1.82*(1-e))\n",
      "vt = (g*D**2*(rhoglass - rhowater)*e**2*fi)/(18.*muwater)\n",
      "N_re = (D*vt*rho_m*fi)/(muwater*e)\n",
      "#Result\n",
      "print 'The terminal velocity of the glass ball is %6.3e'%(vt),\"m/s\"\n",
      "print \"The Reynolds number is\",round(N_re,3)\n",
      "if N_re <= 1.:\n",
      "    print 'Hence, the settling is in laminar range'"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The terminal velocity of the glass ball is 1.530e-03 m/s\n",
        "The Reynolds number is 0.121\n",
        "Hence, the settling is in laminar range\n"
       ]
      }
     ],
     "prompt_number": 12
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 14.3-3, Page number 824"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Separation of a Mixture of Silica and Galena\n",
      "\n",
      "#Variable declaration\n",
      "Dpl = 5.21e-6              #Size of the smallest particle (m)\n",
      "Dpb = 2.50e-5              #Size of the largest particle  (m)       \n",
      "rhoA = 7500.               #Density of Galena (kg/m3)\n",
      "rhoB = 2650.               #Densiy of Silica (kg/m3)\n",
      "rhol = 998.                #Density of Water (kg/m3)\n",
      "mu = 1.005e-3              #Viscosity of Water (Pa.s)\n",
      "g = 9.807                  #Gravitational accelertion (m/s2)\n",
      "#Calculation\n",
      "vtA =g*Dpb**2*(rhoA-rhol)/(18*mu)\n",
      "Nre = Dpb*vtA*rhol/mu\n",
      "DpA3 = Dpb*((rhoB-rhol)/(rhoA-rhol))**0.5\n",
      "DpB2 = Dpl/((rhoB-rhol)/(rhoA-rhol))**0.5\n",
      "\n",
      "print 'The size range for first fraction of pure A Galena is as follows:\\n%5.3e to %5.3e' %(DpA3,Dpb)\n",
      "print 'The size range for first fraction of pure B Silica is as follows:\\n%5.3e to %5.3e' %(Dpl,DpB2)\n",
      "print 'The mixed fraction ranges is as follows:\\n%5.3e to %5.3e and \\n%5.3e to %5.3e' %(DpB2,Dpb,Dpl,DpA3) "
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The size range for first fraction of pure A Galena is as follows:\n",
        "1.260e-05 to 2.500e-05\n",
        "The size range for first fraction of pure B Silica is as follows:\n",
        "5.210e-06 to 1.034e-05\n",
        "The mixed fraction ranges is as follows:\n",
        "1.034e-05 to 2.500e-05 and \n",
        "5.210e-06 to 1.260e-05\n"
       ]
      }
     ],
     "prompt_number": 12
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 14.4-1, Page number 831"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Force in a centrifuge\n",
      "\n",
      "#Variable declaration\n",
      "r1 = 0.1016              #Radius of the bowl in case A (m)\n",
      "r2 = 0.2032              #Radius of the bowl in case B (m)\n",
      "N = 1000.                #Revolution per minute  \n",
      "g = 9.807                #Gravitational acceleration (m/s2)\n",
      "\n",
      "#Calculation\n",
      "FcbyFg1 = r1*(2*pi*N/60)**2/g\n",
      "FcbyFg2 = r2*(2*pi*N/60)**2/g\n",
      "print \"Centrifugal force developed in case A:\", round(FcbyFg1,1),\"g's\"\n",
      "print \"Centrifugal force developed in case B:\", round(FcbyFg2,1),\"g's\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Centrifugal force developed in case A: 113.6 g's\n",
        "Centrifugal force developed in case B: 227.2 g's\n"
       ]
      }
     ],
     "prompt_number": 14
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 14.4-2, Page number 833"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Settling in a centrifuge\n",
      "\n",
      "#Variable declaration\n",
      "rhop = 1461.                  #Density of the viscous solution (kg/m3)\n",
      "rhol = 801.                   #Density of the solution (kg/m3)\n",
      "mu = 100e-3                   #Viscosity of the solution (Pa.s)\n",
      "r1 = 0.00716                  #Inner radius of the bowl (m)\n",
      "r2 = 0.02225                  #Outer radius of the bowl (m)\n",
      "b = 0.1970                    #Height of the bowl (m)\n",
      "N = 23000                     #Revolutions per minute\n",
      "qc = 0.002832                 #Flowrate of the particles (m3/h)\n",
      "\n",
      "#Calculations\n",
      "omegha = 2*pi*N/60\n",
      "V = pi*b*(r2**2-r1**2)\n",
      "qc = qc/3600\n",
      "Dpc = sqrt(qc*18*mu*log(2*r2/(r1+r2))/(V*omegha**2*(rhop-rhol)))\n",
      "vt = omegha**2*r2*Dpc**2*(rhop-rhol)/(18*mu)\n",
      "Nre = Dpc*vt*rhol/mu\n",
      "tT = V/qc\n",
      "print \"The critical particle diameter of the largest particle in the exit stream is %5.3e m or %4.4f um\"%(Dpc,Dpc*1e6)"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The critical particle diameter of the largest particle in the exit stream is 7.468e-07 m or 0.7468 um\n"
       ]
      }
     ],
     "prompt_number": 4
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 14.4-3, Page number 836"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Location of interface in a centriguge\n",
      "\n",
      "#Variable declaration\n",
      "rhooil = 919.5               #Density of oil phase (kg/m3)\n",
      "rhoaqe = 980.1               #Density of aqueous phase (kg/m3)\n",
      "r1 = 10.160                  #Radius for the overflow Light liquid (mm)\n",
      "bh = 10.414                  #Radius for the overflow Heavy liquid (mm)\n",
      "\n",
      "#Calculations\n",
      "r2 = sqrt((rhoaqe*bh**2-rhooil*r1**2)/(rhoaqe-rhooil))\n",
      "\n",
      "#Results\n",
      "print \"Location of interface:\", round(r2,3),\"mm\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Location of interface: 13.702 mm\n"
       ]
      }
     ],
     "prompt_number": 2
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 14.5-1 Page No. 842"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Power to Crust Iron Ore by Bond's Theory\n",
      "\n",
      "#Variable Declaration\n",
      "T = 10.              #Feed Rate of Ore, ton/hr\n",
      "Df = 3.              #Size of Feed , in\n",
      "Dp = 1./8           #Size of product, in \n",
      "\n",
      "#Calculations\n",
      "Ei = 12.68          #Work index for Iron Ore\n",
      "T = T/60\n",
      "Dp = Dp/12\n",
      "Df = Df/12\n",
      "\n",
      "P= 1.46*T*Ei*(1./sqrt(Dp) - 1./sqrt(Df))\n",
      "\n",
      "#Result\n",
      "print 'Power required %3.1f hp'%(P)"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Power required 24.1 hp\n"
       ]
      }
     ],
     "prompt_number": 19
    }
   ],
   "metadata": {}
  }
 ]
}