1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
|
{
"metadata": {
"name": "",
"signature": "sha256:f28b10e862601fa7c238c02abbd33f9e5034b01e48fba8ea70e2e847c96ba3bd"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Chapter 9: Drying of Process Material"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 9.3-1 Page Number 526"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Humidity from Vapor-pressure Data\n",
"\n",
"#Variable declaration\n",
"Pas = 3.5 #Vapor pressure of water at 26.7 deg C (kPa)\n",
"Pa = 2.76 #Partial pressure of water vapor (kPa)\n",
"P = 101.3 #Pressure at room temperature (kPa)\n",
"\n",
"#Calculation\n",
" #Calculation for part (a)\n",
"H = 18.02*Pa/(28.97*(P - Pa))\n",
" #Calculation for part (b)\n",
"Hs = 18.02*Pas/(28.97*(P - Pas))\n",
"Hp = 100.*H/Hs \n",
" #Calculation for part (c)\n",
"Hr = 100.*Pa/Pas\n",
"#Result\n",
"print \"(a) The Humidity is\",round(H,5),\"kg H2O/(kg dry air)\"\n",
"print \"(b) The saturation humidity is\",round(Hs,5),\"kg H2O/(kg dry air)\"\n",
"print \"(b) The percentage humidity is\",round(Hp,1),\"%\"\n",
"print \"(c) The precentage relative humidity is\",round(Hr,1),\"%\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"(a) The Humidity is 0.01742 kg H2O/(kg dry air)\n",
"(b) The saturation humidity is 0.02226 kg H2O/(kg dry air)\n",
"(b) The percentage humidity is 78.3 %\n",
"(c) The precentage relative humidity is 78.9 %\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 9.3-2 Page Number 528"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Use of Humidity Chart\n",
"\n",
"#Variable declaration\n",
"T = 60. #Dry bulb temperature of air (deg C)\n",
"T_F = 140. #Temperature in FPS units (deg F)\n",
"Td = 26.7 #Dew point of air (deg C)\n",
"\n",
"#Calculation\n",
"H = 0.0225 #Actual humid heat (Value determined from the Psychrometric chart)\n",
"\n",
"Cs_SI = 1.005 + 1.88*H\n",
"Cs_Eng = 0.24 + 0.45*H\n",
"Vh_SI = (2.83e-3 + 4.56e-3*H)*(T + 273.)\n",
"Vh_Eng = (0.0252 + 0.0405*H)*(T_F + 460.)\n",
"\n",
"#Result\n",
"print 'Actual humidity determine using Humidity chart= %5.4f kgH2O/kgdry air'%H\n",
"print \"The calculated Humid Heat in SI units is\",round(Cs_SI,3),\"kJ/(kg dry air.K)\"\n",
"print \"The calculated Humid Heat in English units is\",round(Cs_Eng,3),\"btu/(lbm dry air.\u00b0C)\"\n",
"print \"The calculated Humid Volume in SI units is \",round(Vh_SI,3),\"m3/kg dry air\"\n",
"print \"The calculated Humid Volume in English units is\",round(Vh_Eng,2),\"ft3/lbm dry air\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Actual humidity determine using Humidity chart= 0.0225 kgH2O/kgdry air\n",
"The calculated Humid Heat in SI units is 1.047 kJ/(kg dry air.K)\n",
"The calculated Humid Heat in English units is 0.25 btu/(lbm dry air.\u00b0C)\n",
"The calculated Humid Volume in SI units is 0.977 m3/kg dry air\n",
"The calculated Humid Volume in English units is 15.67 ft3/lbm dry air\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 9.3-3 Page Number 531 "
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Adiabatic Saturation of Air\n",
"\n",
"#Variable declaration\n",
"Ha = 0.030 #Humidity of dry air (kg H2O/kg dry air)\n",
"\n",
"#Calculation\n",
" #Calculation for (a)\n",
"Hb = 0.0500 #Value determined from Humidity chart for 90 % saturation (kg H2O/kg dry air)\n",
"T = 42.5 #Value determined from Humidity chart for 90 % saturation (deg C)\n",
" #Calculation for (b)\n",
"Hb = 0.0505 #Value determined from Humidity chart for 100 % saturation (kg H2O/kg dry air)\n",
"Tb = 40.5 #Value determined from Humidity chart for 90 % saturation (deg C)\n",
"#Result\n",
"print \"(a) The value of humidity at 90 % saturation is \",Ha,\"(kg H2O/kg dry air)\"\n",
"print \" The value of temperature at 90 % saturation is \",T,\"deg C\"\n",
"print \"(b) The value of humidity at 100 % saturation is \",Hb,\"(kg H2O/kg dry air)\"\n",
"print \" The value of temperature at 100 % saturation is \",Tb,\"deg C\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"(a) The value of humidity at 90 % saturation is 0.03 (kg H2O/kg dry air)\n",
" The value of temperature at 90 % saturation is 42.5 deg C\n",
"(b) The value of humidity at 100 % saturation is 0.0505 (kg H2O/kg dry air)\n",
" The value of temperature at 100 % saturation is 40.5 deg C\n"
]
}
],
"prompt_number": 10
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 9.3-4 Page Number 532 "
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Wet Bulb Temperature and Humidity\n",
"\n",
"#Variable declaration\n",
"T = 60. #Dry bulb temperature of vapor-air mixture (deg C)\n",
"Tw = 29.5 #Obtained wet bulb temperature (deg C)\n",
"\n",
"#Calculation\n",
"H = 0.0135 #Humidity obtained from the adiabatic saturation curve (kg H2O/kg dry air)\n",
"\n",
"#Result\n",
"print \"The humidity obtained from the adiabatic curve is\",H,\"(kg H2O/kg dry air)\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The humidity obtained from the adiabatic curve is 0.0135 (kg H2O/kg dry air)\n"
]
}
],
"prompt_number": 11
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 9.6-1 Page Number 541"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Time of Drying from Drying Curve\n",
"\n",
"#Variable declaration\n",
"X1 = 0.38 #Initial Moisture content (kg H2O/kg dry solid)\n",
"X2 = 0.25 #Final Moisture content (kg H2O/kg dry solid)\n",
"t1 = 1.28 #Time required for drying solid (h) (Value determined from fig. 9.5-1A)\n",
"t2 = 3.08 #Time required for drying solid (h) (Value determined from fig. 9.5-1A)\n",
"\n",
"#Calculation\n",
"t = t2 - t1 \n",
"#Result\n",
"print \"The time required is \",t,\"h\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The time required is 1.8 h\n"
]
}
],
"prompt_number": 12
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 9.6-2 Page Number 541"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Time of Drying from Drying Curve\n",
"\n",
"#Variable declaration\n",
"X1 = 0.38 #Initial Moisture content (kg H2O/kg dry solid)\n",
"X2 = 0.25 #Final Moisture content (kg H2O/kg dry solid)\n",
"LsbyA = 21.5 #From Fig.9.5-1b\n",
"Rc = 1.51 #From Fig.9.5-1b\n",
"#Calculation\n",
"t = LsbyA*(X1 - X2)/Rc\n",
"#Result\n",
"print \"The time required is \",round(t,2),\"h\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The time required is 1.85 h\n"
]
}
],
"prompt_number": 13
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 9.6-3 Page Number 543 "
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Prediction of Constant-Rate Drying\n",
"\n",
"#Varialbe declaration\n",
"A_eng = 1.5*1.5 #Area of pan (ft2)\n",
"H = 0.01 #Humidity of air stream (kg H2O/kg dry air) or (lbm H2O/lbm dry air)\n",
"Hw = 0.026 #Saturated Humidity (kg H2O/kg dry air) or (lbm H2O/lbm dry air)\n",
"\n",
"#Variable declaration SI units\n",
"A = 0.457*0.457 #Area of pan (m2)\n",
"T = 65.6 #Dry bulb temperature (deg C)\n",
"Tw = 28.9 #Wet bulb temperature (deg C) \n",
"v = 6.1 #Velocity of air stream flowing parallel to the surface (m/s)\n",
"lambdaw = 2433. #Value determined from steam table (kJ/kg)\n",
"lambdaw_eng = 1046. #Value determined from steam table (btu/lbm) \n",
"\n",
"#Calculation\n",
"Vh = (2.83e-3 + 4.56e-3*H)*(T + 273.)\n",
"Rho = (1. + H)/0.974\n",
"G = v*3600.*Rho\n",
"h = 0.0204*G**0.8\n",
"Tw = 28.9\n",
"Rc_SI = (h/(lambdaw*1000.))*(T - Tw)*3600.\n",
"R = Rc_SI*A\n",
"\n",
"print \"Results in SI units\"\n",
"print \"The calculated total rate of evaporation in SI Units \",round(R,3),\"kg H2O/h\"\n",
"\n",
"#Variable declaration English units\n",
"T_eng = 150. #Dry bulb temperature (F)\n",
"Tw = 28.9 #Wet bulb temperature (deg C) \n",
"v_eng = 20. #Velocity of air stream flowing parallel to the surface (ft/s)\n",
"lambdaw_eng = 1046. #Value determined from steam table (btu/lbm) \n",
"Tw_eng = 84.\n",
"\n",
"#Calculation\n",
"Vh_eng = (0.0252 + 0.0405*H)\n",
"Rho_eng = 0.0647\n",
"G_eng = v_eng*3600.*Rho_eng\n",
"h_eng = 0.0128*G_eng**0.8\n",
"Rc_Eng = h_eng*(T_eng - Tw_eng)/lambdaw_eng\n",
"R_eng = Rc_Eng*A_eng\n",
"\n",
"#Result\n",
"print \"Results in English units\"\n",
"print \"The calculated total rate of evaporation in English Units\",round(R_eng,3),\"lbm H2O/h\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Results in SI units\n",
"The calculated total rate of evaporation in SI Units 0.708 kg H2O/h\n",
"Results in English units\n",
"The calculated total rate of evaporation in English Units 1.563 lbm H2O/h\n"
]
}
],
"prompt_number": 14
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 9.7-1 Page Number 545"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Graphical Integration in Falling-Rate Drying Period\n",
"import numpy as np\n",
"from scipy.interpolate import interp1d\n",
"import scipy.integrate as integrate\n",
"from matplotlib.pylab import plot,fill_between\n",
"\n",
"#Variable declaration\n",
"X1 = 0.38 #Free moisture content (kg H2O/kg dry soild)\n",
"X2 = 0.04 #Dry solid (kg H2O/kg dry soild)\n",
"Ls = 399. #Weight of dry solid (kg)\n",
"A = 18.58 #Area of top drying surface (m2)\n",
"\n",
"Xc = 0.195 #Critical free moisture content (kg H2O/kg dry soild)\n",
"Rc = 1.51 \n",
"#Calculation\n",
"LsbyA = Ls/A\n",
"tc = LsbyA*(X1 - Xc)/Rc #Time required for drying under constant rate period\n",
"\n",
"X = np.array([0.195,0.150,0.1,0.065,0.05,0.04])\n",
"R = np.array([1.51,1.21,0.9,0.71,0.37,0.27])\n",
"InvR = 1/R\n",
"plot(X,InvR,'ro-')\n",
"f = interp1d(X,InvR)\n",
"AUC = -integrate.simps(InvR,X) #Time required for drying under falling rate period\n",
"tf = AUC*LsbyA\n",
"\n",
"tfs = str(round(tf,2))\n",
"plot([Xc,Xc],[0.,InvR[0]])\n",
"plot([X2,X2],[0.,InvR[len(X)-1]])\n",
"xlabel(\"Moisture content, Kg H2O/kg Dry solid\")\n",
"ylabel(\"Drying Rate, kg H2O/(h.m2)\")\n",
"fill_between(X,InvR,0,color='0.8')\n",
"#Result\n",
"print \"Total drying time:\", round(tc+tf,3), \"h\"\n",
"title('Area under curve in falling rate period')\n",
"text(0.1,0.5,'Area='+tfs)\n",
"\n",
"print 'Because of numerical integration answer is different than graphical'"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Total drying time: 6.536 h\n"
]
},
{
"metadata": {},
"output_type": "pyout",
"prompt_number": 15,
"text": [
"<matplotlib.text.Text at 0x63fdd70>"
]
},
{
"metadata": {},
"output_type": "display_data",
"png": "iVBORw0KGgoAAAANSUhEUgAAAYkAAAEZCAYAAABiu9n+AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3XdYk1f7B/DvAwkgWxSQKQiKLNniQnDVBZaqVaRVcKJv\nnX39tbW2RV+tHW6lWrUV6vtWW6u2xQpqW40dilSL4N5hKooKskPC+f2BpAQIOwO4P9fFJUme55w7\nweTOGc85HGOMgRBCCKmHhqoDIIQQor4oSRBCCJGLkgQhhBC5KEkQQgiRi5IEIYQQuShJEEIIkYuS\nBGm1yMhIvP/++6oOQ6E++ugjzJ07t0XnlpaWIiQkBMbGxpg6dWqjx9vZ2eHUqVMAgFWrVmH69OkA\ngIyMDBgYGIBmrdfVmtdGIBDAxsZGAVF1DDxVB9DZBQUFIS0tDQ8fPoSWlpaqw2kRjuPAcZyqw1Co\nFStWtPjcQ4cO4dGjR3j69Ck0NBr/Xlbztaz5u62tLQoLC1scR1sSCoXo1asXxGJxk56ToqnTa9PR\nqP6v24kJhUIkJyfDzMwM8fHxDR5bWVmppKhapiXf4MRisQIiUXzZzZWeno4+ffq06MNUVa2Gpv5/\nU4dWjTr9rTsiShIqtG/fPowcORLTp0/HV199JfNYZGQkFixYgHHjxkFfXx8CgQA5OTmYNGkSzMzM\n0KtXL2zfvl16fHJyMgYOHIiuXbvC0tISixYtQkVFRb311te8rt3FMWXKFERERMDQ0BBubm64ePGi\n9NiUlBR4e3vD0NAQYWFhKCsrkynrp59+gqenJ7p27YrBgwfj8uXLMvV8+umn6NevHwwMDOr9MLp6\n9SpGjRqFbt26oUePHvj444+lr0nNbq3az6Nm2fr6+vj000/x6quvypS9ZMkSLFmyBABQUFCA2bNn\nw9LSEtbW1nj//fflfjjW7PYRCoXQ0NDAvn370LNnT5iammLdunX1nhcdHY01a9bg22+/hYGBAWJj\nY3Hv3j0MHz4c3bt3h6mpKV5//XUUFBTUe35N1fVWxxgUFIQPPvgAQ4YMgaGhIUaPHo0nT55Ij6+O\nr3v37li7di3s7Ozw66+/1lt2ff/fjh07Bi8vLxgZGcHW1harV6+WHj906FAAgLGxMQwMDHD+/HkA\nwN69e+Hi4gITExOMGTMGGRkZDT6XPXv2wMrKCpaWlti4caP0ccYYPv74Yzg6OqJ79+6YOnUqnj17\nJnPu3r170bNnT4wcORLp6ekyr01OTg4mTJiAbt26oXfv3vjiiy+kZZeWliIyMhImJiZwdXXFX3/9\n1ehr36kxojIODg7sf//7H7t16xbj8/ksNzdX+lhERAQzMjJiZ8+eZYwxVlJSwry9vdmaNWtYRUUF\nu3fvHuvVqxc7ceIEY4yxixcvsvPnzzOJRMKEQiFzdnZmW7Zsqbfe06dPM2tra5n77Ozs2K+//soY\nYyw6Oprp6OiwxMREVllZyVasWMEGDBjAGGOsvLyc2drasi1btjCxWMwOHTrE+Hw+e//99xljjP39\n99/MzMyMJScns8rKSvbVV18xOzs7JhKJGGOM9ezZk3l5ebGsrCxWVlZWJ7bnz5+zHj16sE2bNrHy\n8nJWWFjIkpOTGWOMRUZGSuup73nULjs9PZ3p6uqywsJCxhhjYrGYWVhYsPPnzzPGGAsNDWXz589n\nJSUl7NGjR6x///5s165d9b5mq1atYq+//jpjjLH79+8zjuPYvHnzWFlZGUtNTWXa2trs+vXrcs+d\nPn269PadO3fYL7/8wkQiEXv8+DEbOnQoW7p0qdy/Re16JRIJY4yxwMBA5ujoyG7fvs1KS0tZUFAQ\ne+eddxhjjF29epXp6+uzP//8k4lEIrZ8+XLG5/Ol5dZW+/9bWVkZEwgE7MqVK4wxxtLS0pi5uTn7\n4YcfGGOMCYVCmVgYY+yHH35gjo6O7MaNG0wikbC1a9eyQYMG1Vtf9XMJDw9nJSUl7PLly8zU1JT9\n8ssvjDHGtmzZwgYOHMiys7OZSCRiUVFRbNq0aTLnRkREsJKSElZWVlbntQkICGBvvPEGKy8vZ5cu\nXWKmpqbs1KlTjDHG3n77bTZ06FD27NkzlpmZyVxdXZmNjU29cRLGKEmoyO+//850dHTY8+fPGWOM\neXh4sM2bN0sfj4yMZBEREdLbSUlJzNbWVqaMdevWsZkzZ9Zb/ubNm9krr7xS72NNSRKjRo2SPnb1\n6lXWpUsXxhhjZ86cYZaWljLnDho0SPrhPX/+fJkPcsYYc3JyYr/99pu0ntjY2HrjYoyx/fv3M29v\n73ofi4yMZO+9957c51Ff2UOGDGH79u1jjDF28uRJ5uDgwBhj7OHDh0xbW5uVlpbK1D1s2LB6667v\nwzo7O1v6eP/+/dk333zT6Ln1+f7775mXl5fM82hKkggKCmIffvih9LwdO3awMWPGMMYYW716NQsP\nD5c+VlJSwrS0tOQmidr/3+qzZMkStmzZsnpjYYyxMWPGsC+//FJ6WyKRMF1dXZaRkVGnrOrzb968\nKb3vrbfeYrNnz2aMMda3b1+ZWHNychifz2cSiUR67v379+uUJ5FIWEZGBtPU1GRFRUXSx1esWMEi\nIyMZY0zmyxVjjO3evbvO+4H8g7qbVOSrr77CSy+9BAMDAwDAq6++WqfLydraWvp7eno6cnJy0LVr\nV+nPRx99hEePHgEAbt26heDgYFhYWMDIyAgrV66U6XpoLnNzc+nvurq6KCsrQ2VlJXJycmBlZSVz\nbM+ePWXi3Lhxo0ycWVlZyMnJkR7T0EySzMxM9OrVq8Vx1y47PDwcBw4cAADs378fr732mjTOiooK\nWFhYSOOcP38+Hj9+3OS6evToIf1dV1cXxcXFTTovNzcXYWFhsLa2hpGREaZPn97iv1XNGLp06YKi\noiIAVd0tNf//dOnSBd26dWuwrNqv3fnz5zFs2DCYmZnB2NgYu3btajDO9PR0LFmyRPp6VteXnZ3d\npDptbW2l/0/S09PxyiuvSMtycXEBj8dDbm6u3Hir5eTkwMTEBHp6evWWnZOTU6deIh8lCRUoLS3F\nwYMHcerUKVhYWMDCwgIbN25Eamoq0tLSpMfVntlib2+PZ8+eSX+eP3+On376CQCwYMECuLi44M6d\nOygoKMCHH34ot39dT08PJSUl0tsSiaTJH44WFhZ13vTp6ekyca5cuVImzqKiIpmpnw3NhLK1tcW9\ne/eaFPfDhw/rHFO77MmTJ0MgECA7Oxs//PADwsPDAVR9wGhra+PJkyfSOAsKCmTGTxoqtzlqn/vu\nu+9CU1MTV65cQUFBAf773/+2+cQES0tLZGVlSW+XlpY2OxGFh4cjNDQUWVlZyM/Px/z586Vx1vd6\n2NraYvfu3TJ/++LiYgwYMEBuHTXHLDIyMqRfQGxtbXH8+HGZskpKSmBhYSE9Xt7fxNLSEk+fPpUm\nzNplW1hY1KmXyEdJQgV++OEH8Hg8XL9+HampqUhNTcX169cREBCAffv2Aag7a6R///4wMDDAp59+\nitLSUkgkEly5cgUXLlwAABQVFcHAwAC6urq4ceMGdu7cKbf+Pn36oKysDAkJCaioqMDatWtRXl7e\npNgHDhwIHo+Hbdu2oaKiAkeOHJEZ+Js7dy4+//xzJCcngzGG4uJiHDt2TOYN25Dg4GA8ePAAW7du\nRXl5OQoLC5GcnAwA8PT0REJCAp49e4aHDx9iy5YtjZZnamqKoKAgREZGolevXnBycgJQ9UHx0ksv\n4c0330RhYSEqKytx9+5d/Pbbb/WWU/vv0Zxjat9fVFQEPT09GBoaIjs7G+vXr2+07ObWOWnSJBw9\nehTnzp2DSCTCqlWrGnwO9T1WVFSErl27QktLC8nJydi/f7/0g9nU1BQaGhq4e/eu9Pj58+dj3bp1\nuHbtGoCqiQHfffddg/GvXbsWpaWluHr1KuLi4qRfJubPn493331X+gH++PHjRmcAVrOxscGgQYOw\nYsUKlJeXIy0tDXv37sXrr78OAJgyZQo++ugj5OfnIysrS2YCCKmLkoQK7Nu3D7NmzYK1tTXMzMxg\nZmYGc3NzLFy4EPv374dEIqlz7YGGhgZ++uknXLp0Cb169YKpqSnmzZuH58+fAwA2bNiA/fv3w9DQ\nEPPmzUNYWJjcb1pGRkbYsWMH5syZA2tra+jr68s0v+u77qH6tpaWFo4cOYK4uDh069YNBw8exKRJ\nk6TH+fj4YM+ePVi4cCFMTEzQu3dv7Nu3r8nfxPX19fHzzz/j6NGjsLCwQJ8+fSAQCAAA06dPh4eH\nB+zs7DBmzJgGn2NN4eHh+PXXX6WtiGr79u2DSCSSzsZ59dVX622d1Pea1FevvFhqnxsdHY2///4b\nRkZGCAkJwaRJk5p8rry/S+1jXV1dsX37doSFhcHS0hIGBgYwMzODtrZ2k+oBgB07duCDDz6AoaEh\n1qxZI9Ma1NXVxcqVKzF48GB07doVycnJCA0Nxdtvv42wsDAYGRnB3d0dJ06cqLe+aoGBgXB0dMTI\nkSPxf//3fxg5ciSAqlloEyZMwEsvvQRDQ0MMHDhQ+mWhvteh9n0HDhyAUCiEpaUlJk6ciP/85z8Y\nPnw4gKrXv2fPnrC3t8eYMWMwY8aMDn+dT2twrClfkVpBIpHA19cX1tbWOHr0aJ3HFy9ejMTEROjq\n6iIuLg5eXl6KDIeQTqm6VXDnzh2ZMSRVUbeL8Yh8Cv/rbN26FS4uLvVm6oSEBNy5cwe3b9/G7t27\nsWDBAkWHQ0incfToUZSUlKC4uBjLly9Hv3791CJBkPZFoUkiKysLCQkJmDNnTr19nvHx8YiIiAAA\n+Pv7Iz8/X2b2AiGk5eLj42FlZQUrKyvcvXsX33zzjapDkkFdPO2DQtduWrZsGdavXy/tN68tOztb\npi/c2toaWVlZMtMvCSEts2fPHuzZs0fVYdTLzs4OEolE1WGQJlBYS+Knn36CmZkZvLy8mjWrgr5d\nEEKI+lBYS+Ls2bOIj49HQkICysrK8Pz5c8yYMUM6xRMArKyskJmZKb2dlZVV50ItAHB0dJSZakcI\nIaRxDg4OuHPnTusKUcZl3QKBgAUHB9e5/9ixY2zs2LGMMcbOnTvH/P396z1fSWG2WnR0tKpDaBKK\ns+20hxgZozjbWnuJsy0+O5W2n0R1N9KuXbsAAFFRURg3bhwSEhLg6OgIPT09xMbGKiscQgghTaCU\nJBEYGIjAwEAAVcmhppiYGGWEQAghpAXoKpY2FBQUpOoQmoTibDvtIUaA4mxr7SXOtqDwK67bAsdx\narEDFiGEtCdt8dlJLQlCCCFyUZIghBAiFyUJQgghclGSIIQQIhclCUIIIXJRkiCEECIXJQlCCCFy\ntZsk8d7o0fjt2DFVh0EIIZ2K0tZuaq21J09i5YuVYIeOH6/iaAghpHNoNy0JAPjw7l38vH27qsMg\nhJBOo10lCQDQLCtTdQiEENJptLskIdHRUXUIhBDSabSrJPGugwNGLVqk6jAIIaTTaDerwK7Q08OY\nb7+lQWtCCGmitlgFtt3MblplYABJt26qDoMQQjqVdtPd9GT8eFR88YWqwyCEkE6l/SSJ4GB0+f57\nMJFI1aEQQkinodAkUVZWBn9/f3h6esLFxQUrVqyoc4xAIICRkRG8vLzg5eWFtWvX1ltWuY0Nym1t\nUXzokCJDJoQQUoNCxyR0dHRw+vRp6OrqQiwWY8iQIfjjjz8wZMgQmeMCAwMRHx/faHl5wcHoFhcH\nhIcrKGJCCCE1Kby7SVdXFwAgEokgkUhgYmJS55imjr4/GzkSXc6dQ0VOTpvGSAghpH4KTxKVlZXw\n9PSEubk5hg0bBhcXF5nHOY7D2bNn4eHhgXHjxuHatWvyy9LXx/OAAJTGxio6bEIIIVBCktDQ0MCl\nS5eQlZWF3377DQKBQOZxb29vZGZmIjU1FYsWLUJoaGiD5eUFB4P/9dcKjJgQQkg1pV0nYWRkhPHj\nx+PChQsICgqS3m9gYCD9fezYsfjXv/6Fp0+f1umW2rVrV9UvjOHVhw8x5Px5dPH3V0bohBDSLggE\ngjpfxFtLoVdc5+XlgcfjwdjYGKWlpRg9ejSio6MxYsQI6TG5ubkwMzMDx3FITk7GlClTIBQKZYPk\nOFy4cEF623LHDuhpaMBwzx5FhU4IIe2e2l9x/eDBA0RERKCyshKVlZWYPn06RowYIW0VREVF4dCh\nQ9i5cyd4PB50dXXxzTffNFruk+BgdJ87F+yzz8BpaSnyKRBCSKfWbtZuqtmSAACnOXOAt96C/rRp\nKoqKEELUW1u0JNrNFde15QUHg8XFqToMQgjp0Nptkng2ciS6nD0L8cOHqg6FEEI6rHabJCr19fF8\nyBCUfPmlqkMhhJAOq90mCYCumSCEEEVr10mi0M8Pmk+fovT8eVWHQgghHVK7ThLQ1MSTceNonwlC\nCFGQ9p0k8GKfiSNHaJ8JQghRgHafJMp79kS5jQ2KDx9WdSiEENLhtPskAVS1JthXX6k6DEII6XA6\nRJJ4OmoUuvz5J8S5uaoOhRBCOpQOkSSq95mgayYIIaRtNSlJXL9+HYmJiThx4gRu3Lih6JhaJG/8\neLpmghBC2pjcVWDv37+PzZs3IyEhAVZWVrC0tARjDA8ePEBWVhaCg4OxbNky2NnZKTFc+Qr9/KCZ\nl4eyv/6Cjp+fqsMhhJAOQe4qsFOmTMHcuXMRFBQEPp8v81hFRQVOnz6NL774AgcPHlR8kPWsAlsf\ny88+gx6PB8PduxUeEyGEqLu2WAW23S4VXh9toRBOUVHg5eTQPhOEkE5P4UuFP3/+HHfv3q1zf2pq\naqsqVZRyOzuUW1mh+MgRVYdCCCEdgtwkcfDgQfTt2xeTJk2Cq6srkpOTpY9FRkYqI7YWeUL7TBBC\nSJuRmyQ+/PBDXLx4EZcuXUJsbCxmzJiBI+3gG/qzUaOg+8cfdM0EIYS0AbmzmyQSCSwsLAAA/fv3\nx+nTpxEcHIzMzEylBdcSEgMDFAQEgPfllzB8911Vh0MIIe2a3JaEoaGhzHiEhYUFTp8+jfj4eFy9\nerXRgsvKyuDv7w9PT0+4uLhgxYoV9R63ePFi9O7dGx4eHkhJSWnBU6grLzgYvP3726QsQgjpzOQm\niR07dqCyslLmPkNDQyQmJmLv3r2NFqyjo4PTp0/j0qVLSEtLw+nTp/HHH3/IHJOQkIA7d+7g9u3b\n2L17NxYsWNDCpyGr0M8PvMePUdaEGVGEEELkk9vd5OnpKXP7+fPnEIvFAIBx48Y1qXBdXV0AgEgk\ngkQigYmJiczj8fHxiIiIAAD4+/sjPz8fubm5MDc3b/ozqM+LfSb09uyBjq9v68oihJBOrNFlOXbt\n2oUePXrA3d0dPj4+8PHxgW8TP3grKyvh6ekJc3NzDBs2DC4uLjKPZ2dnw8bGRnrb2toaWVlZzXwK\n9ZPuM1FR0SblEUJIZyS3JVFt/fr1uHLlCrp3797swjU0NHDp0iUUFBRg9OjREAgECAoKkjmm9oUe\nHMfVW9auXbukvzclUZXb2UFkYQHR999Db8qUZsdOCCHtjUAggEAgaNMyG00SvXr1QpcuXVpViZGR\nEcaPH48LFy7IJAkrKyuZ2VJZWVmwsrKqt4yoqKhm15sXHAyT2FiAkgQhpBMICgqS+YxdvXp1q8ts\nNEl8/PHHGDhwIAYOHAitF0tdcByHbdu2NXheXl4eeDwejI2NUVpaip9//hnR0dEyx0yYMAExMTEI\nCwtDUlISjI2NWz8eUcOzl16C9bZtEOfmgteG5RJCSGfRaJKYN28eRo4cCXd3d2hoaIAxJrdLqKYH\nDx4gIiIClZWVqKysxPTp0zFixAhpt1FUVBTGjRuHhIQEODo6Qk9PD7Gxsa1/RjVIDAzwfMgQ8GJj\nYfDOO21aNiGEdAaNLvDn5eXVZtcvtFRTF/irj+G5c7D6/HPoXrnSxlERQoh6U/gCfwAwduxY7Nq1\nCw8ePMDTp0+lP+3F8/79wXv0iK6ZIISQFmi0JWFnZ1dv99L9+/cVFlRtrWlJAIBlTAz0tLRgWGOG\nFCGEdHS0n0QTaQuFcJo/v2qfiVobKBFCSEellO6m+jx8+LBVlSpbuZ0dRD16oOSHH1QdCiGEtCst\nShKzZ89u6zgULi84GJVtPHuKEEI6uk7R3QQAms+fwz0kBOzePfDMzNooMkIIUV9K626SSCTIyclB\nRkaG9Ke9kRga4vngwSil1gQhhDRZoy2J7du3Y/Xq1TAzM4Ompqb0/suXLys8uGpt0ZIAAMOzZ2G1\nezd0lRg7IYSoilJmNzk4OCA5ORndunVrVUWt0VZJAhIJ3IODUZmYCB0fn9aXRwghaqwtkkSjy3LY\n2trC0NCwVZWoDU1NJLi741xoKLo4OECsrY2XFi/G0PHjVR0ZIYSoJblJYuPGjQCqVoENCgpCcHCw\nzAJ/b775pnIibEOXfv8dN65exfrcXODFvhUrX2zRSomCEELqkjtwXVhYiKKiItja2mLUqFEQiUQo\nKipCUVERCgsLlRljm7n07bdVCaKGD+/exc/bt6soIkIIUW9yWxKrVq1SYhjKoSUS1Xu/ZlmZkiMh\nhJD2QW5LYtasWfjrr7/knnj+/HnMnDlTIUEpiuhFd1ltEh0dJUdCCCHtg9yWxLJly7B+/XokJSXB\nyckJFhYWYIzh4cOHuHnzJgYNGoTly5crM9ZW85w6FcuzsrChxj7a7zo4YMyiRSqMihBC1FejU2DL\ny8uRkpKC9PR0cByHnj17wsPDAzpK/PbdZlNgUTV4nXrwILQKC6F9/TpG7tuHYeHhbVI2IYSoE4Ve\nJzFv3jyMHTsWI0eOhIGBQasqaa22TBI19Vq5EpoDBsCwA46/EEKIQpflmDVrFi5duoRx48Zh+PDh\n+OSTT5CamtqqytTNw2nToL1nD5hYrOpQCCFELTVpgb+8vDycPHkSiYmJuHz5Mry8vDB27FhMmTJF\nGTEqrCUBAH0jI4F33oHea68ppHxCCFEVpS3w1717d4SHh+O///0vUlJS8MYbb+D27duNnpeZmYlh\nw4bB1dUVbm5u2LZtW51jBAIBjIyM4OXlBS8vL6xdu7b5z6IVcsPCgHriIoQQ0siyHJcvX8b69etx\n9epVAICbmxv+/e9/w9fXF76+vo0WzufzsXnzZnh6eqKoqAg+Pj4YNWoUnJ2dZY4LDAxEfHx8K55G\nyz0bORLWW7ei9Nw5dBk4UCUxEEKIupLbkvjxxx8xceJEBAUFYe/evdi7dy8CAwMxadIk/NDEHd56\n9OgBT09PAIC+vj6cnZ2Rk5NT5ziVbmnB4+Hxq69CvGmT6mIghBA1JXdMol+/foiPj4ednZ3M/UKh\nEBMmTEBaWlqzKhIKhQgMDMTVq1ehr68vvf/MmTOYOHEirK2tYWVlhQ0bNsDFxUU2SAWOSQCAZn4+\n3F55Bez6dfCtrBRWDyGEKJNCV4EVi8V1EgQA2NnZoaKiolmVFBUVYfLkydi6datMggAAb29vZGZm\nQldXF4mJiQgNDcWtW7fqlLFr1y7p7z4+Pk3q7moqibEx8ocPh9aWLeCvX99m5RJCiDIJBAIIBII2\nLVNuS8LDwwPx8fHo2bOnzP3p6ekICQlpckuioqICwcHBGDt2LJYuXdro8fb29rh48SJMTEz+CVLB\nLQkA0LlzB30WLoRmZiY0aJkOQkgHoNDZTatXr8bIkSMRFxeHy5cv4/Lly4iNjcWoUaOwevXqJhXO\nGMPs2bPh4uIiN0Hk5uZKn0RycjIYYzIJQlnKHB1RZm+P4rg4pddNCCHqqsHrJFJTU7FhwwZcu3YN\nAODi4oLly5fDw8OjSYX/8ccfGDp0KPr16weO4wAA69atk+6RHRUVhc8++ww7d+4Ej8eDrq4uNm3a\nhAEDBsgGqYSWBAAYnTkDy7170SUtDZxGk2YHE0KI2lLK9qXqQFlJAhIJ3CZNgiQ2FrojRyq+PkII\nUSCFdjeJxWJ8/vnneP/99/Hnn3/KPKbsC96URlMTj6ZOhYSmwxJCCIAGkkRUVBR+++03mJiYYPHi\nxTLblR4+fFgpwalCXkgIuvz5J0QvtjUlhJDOTG6SSE5Oxv79+7Fs2TIkJSWhsLAQEydORFkH38Wt\nUl8fT8eNQxm1JgghRH6SqHktBJ/Px549e+Dh4YERI0agqKhIKcGpyqOpU9Fl/35UdvDnSQghjZGb\nJHx8fJCYmChzX3R0NGbOnAmhUKjouFSq3MYGJf36objGBXyEENIZ0ewmOQySk2G7cSO0b92i6bCE\nkHZJoctyHD58WFpB7Yo4jsPEiRNbVbG6K/TzA+M4lBw9Cr2XX1Z1OIQQohJyk8TRo0elF8DFx8dj\nwoQJMo939CQBjsOjqVPRbfNmgJIEIaSTalJ3k5eXF1JSUpQRT71U0d0EAFxZGdxDQlD522/QdnNT\nev2EENIaStuZrrNiOjrICw1F+caNqg6FEEJUgpJEIx5PngzdI0cgefpU1aEQQojSyR2TCAkJkf5+\n//59mdscx6lsu1FlqzA3R+GAAdDcvh2G0dGqDocQQpRK7phEQxtXcByHwMBARcVUb32qGJOopnf5\nMuzfew9aQiE4XoPbghNCiNpQ6BTYoKCgVhXckRS7u0PctSsqDh6Efni4qsMhhBCloTGJJsoNCwO3\nbZuqwyCEEKWiJNFE+SNGgH/vHkrPn1d1KIQQojSUJJqI8fl4PHkyKmg6LCGkE2l0FDYkJERm8IPj\nOBgaGsLPzw9RUVHQ0dFReJDqIm/iRJhPnIiKnBzwLS1VHQ4hhChcoy0Je3t76OvrY968eZg7dy4M\nDAxgYGCAW7duYe7cucqIUW2Iu3ZF/vDhKN26VdWhEEKIUjS6LIevr2+d6afV97m6uuLq1atyz83M\nzMSMGTPw6NEjcByHefPmYfHixXWOW7x4MRITE6Grq4u4uDh4eXnJBqniKbA1dbl9G46LF4OXkQGN\nTtSKIoS0P0pZlqO4uBjp6enS2+np6SguLgYAaGlpNXgun8/H5s2bcfXqVSQlJeGzzz7D9evXZY5J\nSEjAnTt3cPv2bezevRsLFixoyfNQmtLevVHesydK9u1TdSiEEKJwjY5JbNy4EQEBAejVqxcA4N69\ne9ixYwfF6zv7AAAgAElEQVSKi4sRERHR4Lk9evRAjx49AAD6+vpwdnZGTk4OnJ2dpcfEx8dLy/H3\n90d+fj5yc3Nhbm7e4ielaLlhYbCMiQHmzVN1KIQQolCNJokxY8bg1q1buHHjBjiOQ58+fcBxHHR0\ndLB06dImVyQUCpGSkgJ/f3+Z+7Ozs2FjYyO9bW1tjaysLLVOEgUBAbDZvBklp05Bd/hwVYdDCCEK\n02iSmD17NmJjY+Hp6QkAKCoqwoQJE3Dq1KkmV1JUVITJkydj69at0NfXr/N47T6z6n0satpVYytR\nHx8f+Pr6Nrn+NqepiUdTp8J40yaAkgQhRE0IBIIGl1RqiUaThLW1Nf71r39hx44dePbsGcaPH9+s\nWU0VFRWYNGkSXn/9dYSGhtZ53MrKCpmZmdLbWVlZsLKyqnNcVFRUk+tUhrwJE2AxYQJE9+5B60VX\nHCGEqFJQUJDMkkqrV69udZmNDlyvWbMGenp6iIqKwqhRo/Dmm29i5syZTSqcMYbZs2fDxcVFbtfU\nhAkTsO/FIHBSUhKMjY3VuqupWqW+Pp6OHYuyTZtUHQohhCiM3Cmwhw8frjrgxRSqNWvWwM/PD2PG\njGnyHtd//PEHhg4din79+km7kNatW4eMjAwA/7QOFi5ciOPHj0NPTw+xsbHw9vaWDVKNpsDWpJ2R\nAadZs6CZmQmNerrRCCFEldpiCqzcJBEZGSkzNsAYk7kdGxvbqoqbQ12TBAA4LlsGjdBQGLz5pqpD\nIYQQGQpNEupEnZOEwfnzsN20Cdq3boHToKWwCCHqg/a4VgOF/fuDASj56SdVh0IIIW2OkkRrcRwe\nhYWBbd6s6kgIIaTNUZJoA0/GjoX2pUsob2AdK0IIaY+anSR++OEHnKeNd2QwHR3khYaifMMGVYdC\nCCFtqtlJ4vz581i7di3GjBmjiHjarceTJ0P3yBFInj1TdSiEENJmaHZTG+r17rvgDRkCg/ffV3Uo\nhBCivKXC16xZI12K4/bt2/iJZvLUKzcsDFq7d4OJxaoOhRBC2kSjSWLmzJnQ0tLC2bNnAQCWlpZY\nuXKlwgNrj4rd3SE2MkLxwYOqDoUQQtpEo0ni7t27ePvtt6UbDOnp6Sk8qHbrxXRYbts2VUdCCCFt\notEkoa2tjdLSUuntu3fvQltbW6FBtWfPRo4E/949lNIMMEJIB9Bokli1ahXGjBmDrKwshIeHY/jw\n4fjkk0+UEVu7xPh8PJ40CRW0OiwhpANo0uymvLw8JCUlAajaYtTU1FThgdXUXmY3VeM9ewbXiROB\nW7fAe7F9KyGEKJtSZjeNGDEC3bt3R3BwMIKDg2FqaooRI0a0qtKOTty1K/KHD0fJli2qDoUQQlpF\nbpIoLS3FkydP8PjxYzx9+lT6IxQKkZ2drcwY26VHYWHQ2bsXTCRSdSiEENJicrcv3bVrF7Zu3Yqc\nnBz4+PhI7zcwMMDChQuVElx7Vtq7N8p79oToq6+g34ztXgkhRJ00Oiaxbds2LF68WFnx1Ku9jUlU\nMxIIYLlvH3RTU1UdCiGkE1LapkNXrlzBtWvXUFZWJr1vxowZraq4OdprkoBEAreJEyHZtw+6w4er\nOhpCSCfTFklCbndTtVWrVuHMmTO4evUqxo8fj8TERAwZMkSpSaLd0tTEoylTYLxpE0BJghDSDjU6\nu+nQoUP45ZdfYGFhgdjYWKSmpiI/P79Jhc+aNQvm5uZwd3ev93GBQAAjIyN4eXnBy8sLa9eubV70\n7UDeyy+jy++/Q3T/vqpDIYSQZms0SXTp0gWamprg8XgoKCiAmZkZMjMzm1T4zJkzcfz48QaPCQwM\nREpKClJSUvDee+81Lep2pFJfH0/HjkUZXVxHCGmHGk0Sfn5+ePbsGebOnQtfX194eXlh0KBBTSo8\nICAAXbt2bfCYdrBSeas9mjoVXb7+GpXFxaoOhRBCmqXRMYkdO3YAAObPn4/Ro0ejsLBQbvdRc3Ec\nh7Nnz8LDwwNWVlbYsGEDXFxc2qRsdVJua4sSV1do7N4Ng2XLVB0OIYQ0WaNJ4vHjx+jevTs4joO9\nvT3279+P8PBwXLlypdWVe3t7IzMzE7q6ukhMTERoaChu3bpV77G7du2S/u7j4wNfX99W169MuWFh\nsN2yBWzJEnAatLU4IaTtCQQCCASCNi1T7hTYI0eOYN68eeDz+dDU1MSOHTuwatUq2Nra4oMPPoC3\nt3eTKhAKhQgJCcHly5cbPdbe3h4XL16EiYmJbJDtdQpsTYzBZepUVG7ZAr2QEFVHQwjpBBQ6BTY6\nOhpJSUlwdHTExYsX4e/vj++//x4hbfgBl5ubCzMzM3Ach+TkZDDG6iSIDoPjcMzHBxciIqDTrx/E\n2tp4afFiDB0/XtWREUKIXHKTBI/Hg6OjI4Cq7p2+ffs2O0FMmzYNZ86cQV5eHmxsbLB69WpUVFQA\nAKKionDo0CHs3LkTPB4Purq6+Oabb1rxVNTbpd9/x/WzZ7Hh2TPgzBkAwMq7dwGAEgUhRG3J7W6y\ntrbGm2++KW2qbN68WXqb4zi8+eabyguyA3Q3xS1ciO0vlluv6f3Ro7GmkWnChBDSEgrtbpozZw4K\nCwvl3ibNoyVnNViWkoLCnTuhFRQELScnGtQmhKgVuUli1apVSgyj4xO92CO8trIuXSD+/ntoR0dD\nXFmJMm9vsIEDwQsIgM6gQdDQ1VVypIQQ8o9Gp8CStuE5dSqWZ2VhQ1aW9L5/W1vDZelS3AsIABgD\nPzcX+qmp0E9Lg/5334Hdv48SJyeI+/eHxpAh0A4KAt/WVoXPghDS2TRpFVhV6whjEkDV4HXqwYPg\nl5ejQlsbHlOmwDMgQO7xGqWl0L16tSpppKVBLy0NEgMDiHx8gEGDwBs6FDq+vuD4fCU+C0JIe6G0\npcJVraMkiVarrIR2Roa0taGXlgatR49Q5u4Oib8/NAMCoB0YCF737qqOlBCiBpSSJDZu3ChTEcdx\nMDIygo+PDzw9PVtVeZODpCQhl2ZBAfQuX5a2NnSvXUOFhQVEfn7gBg2qGhB3daUBcUI6IaUkifDw\ncFy4cAEhISFgjOHYsWNwd3dHeno6Jk+ejLfffrtVATQpSEoSTScWo8udO1WtjcuXoZeaCs3SUpR5\neaFywICqLqohQ6Chr6/qSAkhCqaUJBEQEIDExETov/hQKSoqwrhx43D8+HH4+Pjg+vXrrQqgSUFS\nkmgV/qNH0HvR0tBPS4POnTsod3SE2M8PGkOGVLU2evVSdZiEkDamlJ3pHj9+DK0a0zf5fD5yc3Oh\nq6sLHR2dVlVOlKPCzAz5I0cif+RIAABXVgbdGzeqWhv//S+0ly+HSFsb5d7e/wyI+/uDkzNtlxDS\neTSaJF577TX4+/sjNDQUjDEcPXoU4eHhKC4u7pDLencGTEcHxZ6eKPb0RC4AMAbtrCzopaZCPyUF\n+nFxqMzJQZmrKyQvpt/qBAWB16OHqkMnhChZk2Y3/fXXX/jzzz/BcRwGDx6s9GW6qbtJ+TSKiqB3\n5co/YxuXL6PC1BQVvr7AoEHgBwZC28MDnKamqkMlhMihtCmwEokEDx8+hFgsBsdxAABbJV7URUlC\nDUgk6HLvHvRSU2FQPSBeUIAyT09UDhgAzYAA6AwdCk0jI1VHSgh5QSlJYvv27Vi9ejXMzMygWeNb\nY1P2h2grlCTUE+/Jk6rpty9aG11u3IDI3h4Vvr7QGDIE/MBAaPXuTdNvCVERpSQJBwcHJCcno1u3\nbq2qqDUoSbQPnEgE3Zs3q8Y2Ll+G/qVLAMehzMcHrHr67cCB0OjSRdWhEtIpKGV2k62tLQwNDVtV\nCekcmJYWit3dUezujkcAwBi0Hjz4Z/rtt9+CCYUodnaGpH9/aAYEQCswEHxra5lyfjt2DCe3bQOv\nvJw2ZyJExRpNEvb29hg2bBjGjx8vnQqr7P0kSDvFcRBZWkJkaYlnY8YAADSKi6F37VpVa2PnTmgv\nWIByY2PpelRJGho4vXMn1r3YkAmgzZkIUaUmtSRsbW0hEokgEomkmw4R0hKVenoo9PNDoZ/fizsq\noSMUVrU2/vgDp06exEdlZTLnfHj3LlZ+8gkCxo6l8Q1ClIwW+CNqZf+8edj499917v+Ax0M0nw9R\nz54Q9+oF1qcPNJydoeniAi03N2gaG6sgWkLUm0LHJJYsWYKtW7fWu681x3GIj49vVcWE1Efe5kz5\nfn5I++gj6KSn//Nz6BA0hUJwGRmoMDCAyN4eEkdHcH37QsPZGTxXV2j16QOOR9umENJSct89M2bM\nAAD8+9//rvNYU7ubZs2ahWPHjsHMzEzulNnFixcjMTERurq6iIuLg5eXV5PKJh2TvM2ZPKZMQaW+\nPkpcXVHi6ip7UmUltHJzoV2dPK5dg05iIvhCIdjTpyi3toa4Vy9U9u4Nrm/fqtaHuzt45uZKfnaE\ntD+NdjfFx8cjODgYGi3oC/7999+hr6+PGTNm1JskEhISEBMTg4SEBJw/fx5LlixBUlJS3SCpu6lT\nae7mTA3hysqgk5EB7YwM6AiF6JKRUZVMhEIwPh8iOztIHByk3Vc8V1doOTvTNF3SISjlOonXXnsN\n586dw+TJkzFr1iz07du3WRUIhUKEhITUmyTmz5+PYcOGYerUqQCAvn374syZMzCv9Q2PkgRpc4yB\n9+RJVcvjReLokp4O7fR0aD18iApzc1TY21e1PpycoOniAp6rK/i2tjR4TtoNpVwn8fXXX6OgoAAH\nDhxAZGQkOI7DzJkzMW3aNBgYGLSq8uzsbNjY2EhvW1tbIysrq06SIKTNcRzE3bujqHt3FPn4yD5U\nUQGt7GzoCIXQyciAzp9/QufAAXBCISpFoqrB8+rWR3X3lZsbNOl6ItIBNWlEz8jICJMnT0ZpaSm2\nbNmC77//Hp9++ikWL16MxYsXtyqA2llO3njHrl27pL/7+PgofZFB0nkwPh/ldnYot7NDQa3HNJ8/\nh86LFodOejp0vvkGmunp4DIzITI2RkXNwfO+fau6rxwdafCcKIVAIIBAIGjTMhvtbvrxxx8RFxeH\n27dvY8aMGYiMjISZmRlKSkrg4uICoVDYYAWNdTcFBQUhLCwMAHU3kXZMIoHWw4f/zLzKyJAmE15+\nPsptbKpaH717g3N2Bs/FBXxXV/BMTVUdOenAlNLddOTIESxbtgxDhw6VuV9XVxdffPFFqyqfMGEC\nYmJiEBYWhqSkJBgbG1NXE2mfNDUhsrKCyMoKzwcNknlIo6SkauC8OoEcPQrNmBhw6emo0NZGhb09\nxI6OgJMTNPr2Bd/NDVp9+9KmT0QtNNiSEIvFGDlyZIubL9OmTcOZM2eQl5cHc3NzrF69GhUVFQCA\nqKgoAMDChQtx/Phx6OnpITY2Ft7e3nWDpJYE6YgYAz8vTzrbqmYLhP/oESp69EBFram7fDc38Cwt\nafCcNIlSZjeNGDEChw8fhrEKr2ilJEE6G04kgnZWlrTLqkuNcRBIJBDZ2UHs4ADUuPJc280NGnp6\nqg6dqBGldDfp6enB3d0do0aNgt6L/4Acx2Hbtm2tqpgQIh/T0kJZr14o69WrzmOa+fmyV55fuABN\noRDIzoaoWzeI7O1RWePKc76bG/j29rSLIGmRRlsScXFxdU/iOERERCgqpnrro5YEIY0Qi6sGz2t1\nXWkLhdAsKpJZ94pzcqqaeeXuDs2uXVUdOVEQpW1f+ujRI3AcB1MVzcSgJEFI62gUFUEnM1PaZVXd\nfaWdno5Kff2qda8cHMA5OYGrHjx3cgLH59cpi/b7aD8U2t3EGMPq1asRExMDiUQCANDU1MSiRYsQ\nHR3dqkoJIcpVqa+PEmdnlDg713qgEvzHj//purp5EzonTwLp6WB5eSi3skJFr15VU3ednHCusBCC\nL7/EuvR0aRG030fHJrclsWnTJiQmJmL37t2wt7cHANy7dw/z58/HmDFjlLrpELUkCFE+rqxMOnhe\n3X21XiDAx0VFdY59p2dPrFy4EJylJTStraFpbQ2+tTVN41UxhXY3eXp64ueff67TxfT48WOMGjUK\nly5dalXFzUFJghD1IG+/jxU9euDfAwaAn5cn/eE9ewaxoSHE3btDYmaGSnNzwMICnIUFOEtLaFhZ\nVSUTW1to6Our4Nl0fArtbhKLxfWOQZiamkIsFreqUkJI+yRvv49ie3ukv/ee7J0SCXjPnoH/5IlM\n8uCnpUHr1Cnw8vKgmZcH5OVBwuejwtQUElNTVJqZgfXoAVhagrOwkCYTno0NNLt1o2tElExukuDX\nM2DVlMcIIR1XQ/t91KGpCXH37hB3745SJyf5hTIGzcLCusnk3j3w//oL/BfJhHv8GEwshqhbN0hM\nTSExNwczMwNnaQm8SCYaVlbg2diAZ2FB62W1EbndTZqamtDV1a33pNLSUqW2Jqi7iRD10Zb7fTQX\nV1Ymm0jy8sB/8gRaL/7lP35c1UIpLITE2BhiU9OGu7psbDr03iFKmwKrapQkCCHNIhZXJY3arZNa\nt3lPnqBST6+qxVOdTHr0AGdpWZVMXgzE82xs2uU+6pQkCCGkNSorwSsokCaM6uShVTOhvGidVO9B\nIjYzk46bcJaWQHUyedHVpWlmpjbjJpQkCCFEGRiDRnFxva0RrRe3eS9ua5SWQtytm7Sri5mbSwfh\nZaYIW1nVe7GiPC25iFEpazcRQkinx3Go1NdHub4+yu3sGj60vPyfRFIzody+Df6TJ9B4MQiP/HxU\nGBnJJBNWs6urxhThP06fxoklS/DhiwsXAeVdxEgtCUIIUYXqKcK1BuK1aiQW3otE855EgnUvVr6o\n6f3Ro7Hm+HG5VVBLghBC2quaU4QbOo4xiGbPBtLSAAAcGBiqtnnWLCtTeJjqMbpCSAMEAgH8/Pwa\n3Sq3Le3cuRPTpk1DeHg4FixYgIcPH9Z73IEDBzB16lRMmTIFBw4ckN7/yy+/YMqUKejfvz9u3Lih\nrLBJR8RxKJdzOYJER0fh1VOSIGrvxIkTGDJkCE6cOFHnMUVdrzNjxgwcOHAA+/fvR2BgIPbs2VPn\nmDt37uCHH37Avn37cODAAfz+++/IenGRmaOjI9avXw8vLy+FxEc6F8+pU7Hc2lrmvncdHDBq0SKF\n103dTUStlZSU4MqVK9izZw8WLlyIqKgoXLhwAZ9//jkMDQ2Rnp6O7777Dtu3b8fFixdRUVGBV199\nFRMnTkRJSQmWL1+O58+fQywWY8GCBQgMDGxSvXo1dngrLS2td2dGoVAINzc3aGtrAwC8vb1x6tQp\nzJgxA3aNDG4S0hzVFysuPngQOFc1FjFm0SKlrLyr8CRx/PhxLF26FBKJBHPmzMHbb78t87hAIMDL\nL7+MXi924Jo0aRLeq70GDOm0zpw5g4EDB6JHjx7o2rWrtOvm5s2bOHjwICwsLHDkyBHo6+tj3759\nEIlEmDNnDgYMGABzc3OsX78eenp6yM/Px8yZM6VJYu7cuSguLq5T37Jly+Dn5wcA+Oyzz5CQkAAd\nHZ16N99ydHTEjh07UFBQAG1tbfz5559wdXVV3ItBOjXPgAB4BgRguy8aHKxuawpNEhKJBAsXLsQv\nv/wCKysr+Pn5YcKECXCutaZ9YGAg4uPjFRkKaadOnDiB8PBwAFX7rVd3Pbm6usLCwgIAkJSUhDt3\n7uDXX38FABQXFyMzMxNmZmaIiYnBpUuXwHEcHj9+jKdPn8LExKTe7qPa3njjDbzxxhuIi4vDpk2b\n6uyjYmdnh4iICCxcuBBdunSBk5MTOI5r41eAENVSaJJITk6Go6OjtOkdFhaGH3/8sU6SaAezcIkK\nFBQU4MKFC7h79y44joNEIgHHcRg8eDC61Fpv56233sKAAQNk7jt69Cjy8/Pxv//9D5qampgwYQJE\nIhEAYM6cOSgpKalT59KlS9G/f3+Z+8aMGYPFixfXG+PLL7+Ml19+GUBVy8Pc3LzFz5cQdaTQJJGd\nnQ0bGxvpbWtra5w/f17mGI7jcPbsWXh4eMDKygobNmyAi4uLIsMi7cSvv/6K8ePHY8WKFdL75s2b\nh5SUFJnjBg4ciEOHDsHX1xc8Hg/p6ekwNzdHcXExTExMoKmpiQsXLuDBgwfSc7744osG687IyICt\nrS2Aqi5RJzmrmFa3TB4+fIjTp0/X2y1FX4JIe6bQJNGUpre3tzcyMzOhq6uLxMREhIaG4tatW4oM\ni7QTJ0+eRGRkpMx9w4cPx+HDh2FdY6ZHaGgocnJy8Prrr4MxBhMTE2zYsEG6g2JYWBicnZ2lOyw2\nRUxMDNLT06GpqQkrKytponr8+DHWrl2LrVu3AgDefvttFBQUgMfj4Z133oH+i81zTp8+jQ0bNiA/\nPx9Lly6Fk5MTtm3b1spXhBDlU+gV10lJSVi1ahWOvxhk+eijj6ChoVFn8Lome3t7XLx4ESYmJv8E\nyXGYO3eu9LaPjw98fX0VFTYhhKgtX18fyPvUFggEEAgE0turV69W7wX+xGIxnJyc8Ouvv8LS0hL9\n+/fHgQMHZMYkcnNzYWZmBo7jkJycjClTptS5aIqW5SCEkCoNJYna1H5ZDh6Ph5iYGIwePRoSiQSz\nZ8+Gs7Mzdu3aBQCIiorCoUOHsHPnTvB4POjq6uKbb75RZEiEEEKagRb4I4SQdkTZLQlaloMQQohc\nlCQIIYTIRUmCEEKIXJQkCCGEyEVJghBCiFyUJAghhMhFSYIQQohclCQIIYTIRUmCEEKIXJQkCCGE\nyEVJghBCiFyUJAghhMhFSYIQQohclCQIIYTIRUmCEEKIXJQkCCGEyEVJghBCiFyUJAghhMhFSYIQ\nQohcCk0Sx48fR9++fdG7d2988skn9R6zePFi9O7dGx4eHkhJSVFkOIQQQppJYUlCIpFg4cKFOH78\nOK5du4YDBw7g+vXrMsckJCTgzp07uH37Nnbv3o0FCxYoKhyluHDhgqpDaBKKs+20hxgBirOttZc4\n24LCkkRycjIcHR1hZ2cHPp+PsLAw/PjjjzLHxMfHIyIiAgDg7++P/Px85ObmKiokhbt48aKqQ2gS\nirPttIcYAYqzrbWXONuCwpJEdnY2bGxspLetra2RnZ3d6DFZWVmKCokQQkgz8RRVMMdxTTqOMdak\n8zQ01H+MneM4irMNtYc420OMAMXZ1tpLnG2CKci5c+fY6NGjpbfXrVvHPv74Y5ljoqKi2IEDB6S3\nnZyc2MOHD+uU5eDgwADQD/3QD/3QTzN+HBwcWv1ZrrCWhK+vL27fvg2hUAhLS0t8++23OHDggMwx\nEyZMQExMDMLCwpCUlARjY2OYm5vXKevOnTuKCpMQQkgDFJYkeDweYmJiMHr0aEgkEsyePRvOzs7Y\ntWsXACAqKgrjxo1DQkICHB0doaenh9jYWEWFQwghpAU4xmoNChBCCCEvqHTkpbUX20kkEnh5eSEk\nJERt48zPz8fkyZPh7OwMFxcXJCUlqWWcH330EVxdXeHu7o7w8HCUl5erLM4bN25g4MCB0NHRwcaN\nG5t1rjrEmZmZiWHDhsHV1RVubm7Ytm2bWsZZTV3eRw3Fqaz3UWtiVKf30Ndffw0PDw/069cPgwcP\nRlpaWpPPraPVoxotJBaLmYODA7t//z4TiUTMw8ODXbt2TeaYY8eOsbFjxzLGGEtKSmL+/v4yj2/c\nuJGFh4ezkJAQtY1zxowZ7Msvv2SMMVZRUcHy8/PVLs779+8ze3t7VlZWxhhjbMqUKSwuLk5lcT56\n9Ij99ddfbOXKlWzDhg3NOlcd4nzw4AFLSUlhjDFWWFjI+vTpo5ZxVlOX91FDcSrjfdSaGNXtPXT2\n7Fnpa5SYmCh9r7fkPaSylkRrL7bLyspCQkIC5syZU2carbrEWVBQgN9//x2zZs0CUDVOY2RkpHZx\nGhoags/no6SkBGKxGCUlJbCyslJZnKampvD19QWfz2/2ueoQZ48ePeDp6QkA0NfXh7OzM3JyctQu\nTkC93kfy4lTW+6g1Marbe2jgwIHS18jf3196/VlL3kMqSxItvdiu+phly5Zh/fr1Cp+r3JqLAu/f\nvw9TU1PMnDkT3t7emDt3LkpKStQqzuzsbJiYmODf//43bG1tYWlpCWNjY4wcOVJlcSri3OZqq7qE\nQiFSUlLg7+/fluFJtTZOdXofyaOs91FrYlTn99CXX36JcePGtehcQIVJoqUX2zHG8NNPP8HMzAxe\nXl4K/fYDtO6iQLFYjL///hv/+te/8Pfff0NPTw8ff/yxIsJscZwAcPfuXWzZsgVCoRA5OTkoKirC\n119/3dYhAmh6nG19rirqKioqwuTJk7F161bo6+u3QVR1tSZOdXwf1UdZ76PWxKiu76HTp09j7969\n0rGHljxHlSUJKysrZGZmSm9nZmbC2tq6wWOysrJgZWWFs2fPIj4+Hvb29pg2bRpOnTqFGTNmqF2c\n1tbWsLa2hp+fHwBg8uTJ+Pvvv9UuzgsXLmDQoEHo1q0beDweJk6ciLNnz6osTkWc21ytrauiogKT\nJk3C66+/jtDQUEWECKB1carb+0geZb2PWhOjOr6H0tLSMHfuXMTHx6Nr167NOldG2w6pNF1FRQXr\n1asXu3//PisvL290oPXcuXN1Bq4ZY0wgELDg4GC1jTMgIIDdvHmTMcZYdHQ0e+utt9QuzpSUFObq\n6spKSkpYZWUlmzFjBouJiVFZnNWio6NlBgebc64q46ysrGTTp09nS5cuVUhsbRVnTerwPmooTmW8\nj1oT46VLl9TqPZSens4cHBzYuXPnmn1ubSpLEowxlpCQwPr06cMcHBzYunXrGGOMff755+zzzz+X\nHvPGG28wBwcH1q9fP3bx4sU6ZQgEAoXOymhtnJcuXWK+vr6sX79+7JVXXlHY7KbWxvnJJ58wFxcX\n5ubmxmbMmMFEIpHK4nzw4AGztrZmhoaGzNjYmNnY2LDCwkK556pbnL///jvjOI55eHgwT09P5unp\nyRITE9UuzprU4X3UUJzKeh+1JkZ1eg/Nnj2bmZiYSP//+fn5NXhuQ+hiOkIIIXJ1kmUMCSGEtAQl\nCUgbhC8AAAsCSURBVEIIIXJRkiCEECIXJQlCCCFyUZIghBAiFyUJQgghclGS6CA0NDQwffp06W2x\nWAxTU9NGl38+evRog8sFp6amIjExsc3iVISCggLs3LmzVWV89dVXePDgQaPHrVq1SrpEdFlZGUaN\nGoX//Oc/Ta6n5vnV7Ozs8PTp00aXGF+7di369OkDJycnDB8+HNeuXZN5/OOPP8b+/fsxc+ZMHD58\nuMkx1SQQCGBkZARvb2/07dsXgYGBOHbsWIvKagmhUAh3d3cAVVcxL1mypN7jql8zoniUJDoIPT09\nXL16FWVlZQCAn3/+GdbW1o2u1RISEoK3335b7uMpKSlISEhoViys6iLNZp3TGs+ePcOOHTtaVUZc\nXFyTVmrlOA4cx0EkEmHSpEnw8/PDBx980OR6qs+vfR8A8Pl8bN68GVevXkVSUhI+++wzXL9+HQAQ\nExODpKQkpKWl4ebNm1ixYgUmTJggs2fByZMn8dJLLzU5FnmGDh2Kv//+Gzdu3MC2bduwcOFCnDp1\nqs5xEomk1XU1xNfXF1u3bq33MWWu49XZUZLoQMaNGyf91nfgwAFMmzZN+mH99OlThIaGwsPDAwMH\nDsTly5cBVH04Llq0CADw3Xffwd3dHZ6enggKCkJFRQU++OADfPvtt/Dy8sLBgwfrfBN2c3NDRkYG\nhEIhnJycEBERAXd3d2RmZmL9+vXo378/PDw8sGrVqnpjPn78OHx8fODp6SldNVNerKtWrcKsWbMw\nbNgwODg4YPv27QCAd955B3fv3oWXl5c04dVXt1AohLOzM+bNmwc3NzeMHj0aZWVlOHToEC5cuIDX\nXnsN3t7e0kQrT0VFBcLCwuDk5IR169ZJ71+zZg369u2LgIAAhIeH17vBD1D/IotAw0uMf/rpp4iJ\niYGOjg4AYNSoURg0aJB0Ebnnz59DJBKhe/fuAP75EH3//fcxc+ZMVFZWIiEhAc7OzvD19cXixYub\ntMmQh4cHPvjgA8TExAAAIiMjMX/+fAwYMABvvfUW+vTpg7y8PABAZWUlevfujSdPnsiUcebMGXh5\necHLywve3t4oLi4GYwz/93//B3d3d/Tr1w8HDx6sU7dAIJDG+OTJE7z00ktwc3PD3LlzlfolpNNr\n24vFiaro6+uztLQ0NnnyZFZWVsY8PT1l1uNZuHAh+89//sMYY+zUqVPM09OTMcZYbGwsW7RoEWOM\nMXd3d5aTk8MYY6ygoIAxxlhcXJz0ccYYW7VqlcyaNW5ubiw9PZ3dv3+faWhosPPnzzPGGDtx4gSb\nN28eY4wxiUTCgoOD2W+//SYT86NHj5iNjQ0TCoWMMcaePXvWYKzR0dFs8ODBTCQSsby8PNatWzcm\nFouZUChkbm5u0nLl1X3//n3G4/FYamoqY6xqY5j//e9/jDHGgoKC6l32pbbo6GhmYmLCwsLCZO5P\nTk5mnp6erLy8nBUWFrLevXuzjRs31nu+lZWVdLkET09PpqWlxZ48eSJz3P3795mtrS0rLCxkBQUF\nzMTEpE5ZW7duZW+++SZjjLHDhw+z6OhoxhhjkZGR7NChQ2z58uVswYIFjDHGSktLZV7radOm1bsM\nx+nTp+us4ZSSksKcnZ0ZY4xFRESwkJAQVllZyRhjbPXq1WzLli2MsarXffLkyXXKDAkJYWfPnmWM\nMVZcXMzEYjE7dOgQGzVqFKusrGS5ubnM1taWPXz4kN2/f1/6t6wZy6JFi9iaNWsYY1VrkHEcV+c1\nI4pBLYkOxN3dHUKhEAcOHMD48eNlHvvzzz+lYxbDhg3DkydPUFhYCOCfb7aDBw9GREQEvvjiC4jF\nYuljrInf2nr27In+/fsDqOr6OHnyJLy8vODj44ObN2/+f3v3FhLFFwdw/HtaL+C0Esju0o2oBwt1\nV1Q2yU2XIGpXcQulIPMhrYfAii5m2UtFEkYPFUJFkqCJ4VsRpUKUKbtFZkF0scwy6iHxYcnULg+7\nPcgObjtj6/+vFHE+IOycPWfmNwOe38w5szO8efMmrP6DBw9wOp0sWbIEgHnz5k0ZqxCCgoICYmNj\nSUpKwmw2MzQ0FBHfVNteunQpNpsNgKysLAYHB9V20eynEILVq1fj8/no7+9Xy71eLxs3biQuLo65\nc+dSWFiouT4hBPv37+fJkyfq34IFC8LqRPuI8WAwqF4xtLe343a71fITJ04wMjKiDsP19fWxbNky\n9VhPvsr8ncn1hBBs2rRJ3W55eTlNTU0ANDQ0UFZWFtHe4XCwb98+6urq8Pv9GAwGvF4vJSUlCCEw\nm804nU4ePnyoG0N3dzelpaXAxBVz6Kmm0uyTSeIf4/F4qKys1OwEfl3+dVz3woUL1NTU8OHDB7Ky\nsjQnBmNiYggEAury5KEZRVHC6lZXV6sd4evXryM6ECGEbkelVx4XF6d+NhgMajL7ld624+Pjw9pP\nHlePdpw7Ly+PM2fO4Ha7+fTpk+a+TNUBT/Wd1iPGExMTURSFd+/ehdXt7e0lNTUVgJ6eHjVBCyGw\n2+309vbi9/s19y3aBAET81IpKSnqckJCgvp50aJFWCwW7ty5Q09Pj5qoJjt06BCXL1/m69evOBwO\nXr16pRnD747/dGKWZo5MEv+Y8vJyjh07pnYeIbm5uer4dWdnJyaTKeIsdWBggJUrV3L8+HFMJhMf\nP34kMTFRveKAibtKQs/yf/z4cUTHFbJ+/XoaGhoYGxsDJt6INTw8HFYnOzubrq4u9Ww+lJS0YjUa\njbqdhNFoDIsxmm2HhNZpNBoZGRlRy6urq7l27ZpmG4CioiIqKytxuVx8/vwZh8PBjRs3+P79O6Oj\no9y8eXPak6vBYJDt27eTkpLC3r17w747ePAge/bsUZPy7du38fl8lJSU8Pz5c1asWBG2PZfLxeHD\nhykoKGB0dJTk5GTevn3L+/fvAWhtbY0qvqdPn1JTU0NFRYVunR07dlBaWsrmzZs11zkwMEBqaipV\nVVXY7Xb6+vrIzc2ltbWVQCDA8PAwXV1dapLTkpeXR0tLCwBtbW1q8pNmX8yfDkCaGaF/zoULF7Jr\n1y61LFQemvRNT09HURQaGxsj6lRVVdHf308wGGTt2rXYbDYWL15MbW0tGRkZHDlyhOLiYpqamkhL\nSyM7O5vly5dHxAATE6svX75k1apVwEQn3NzcjMlkUuuYTCYuXbpEUVERgUAAi8VCR0dHVLFOlpSU\nhMPhwGq1kp+fz6lTpzS3PdWdRaEJ2YSEBHw+H8+ePdN9WVCozc6dOxkaGmLDhg10dHTg8Xiw2WxY\nLBasVqvue5j1YvB6vTQ3N2Oz2cjIyADg5MmTuN1udu/ejd/vx2q1YjAYmD9/PtevXyc+Pp62traI\nM3ghBMXFxXz58gWPx8OtW7c4f/48LpcLRVGw2+2ax1IIQXd3N5mZmYyPj2M2m6mrq2PNmjW68RcW\nFlJWVqY51ARw7tw57t69y5w5c0hLSyM/P5/Y2Fju379Peno6QghOnz6N2WxmcHAwbP2hz0ePHmXL\nli1cvXqVnJwcddhMmn3yUeGSpMHlctHe3j6tNmNjYyiKwvj4OE6nk/r6evVupdm0bt06rly5gsVi\niSo+gIqKCpKTk3V/hzAdjx494sCBA9y7d+9/r0v6+8gkIUkzZOvWrbx48YJv376xbdu2KX9/8iec\nPXuWxsZGfvz4QWZmJvX19eottf9VbW0tFy9epKWlhZycnBmKVPqbyCQhSZIk6ZIT15IkSZIumSQk\nSZIkXTJJSJIkSbpkkpAkSZJ0ySQhSZIk6ZJJQpIkSdL1E9UEsYAnRvNfAAAAAElFTkSuQmCC\n",
"text": [
"<matplotlib.figure.Figure at 0x6370f70>"
]
}
],
"prompt_number": 15
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 9.7-2 Page Number 547 "
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Approximation of Straight Line for Falling-Rate Period\n",
"\n",
"#Variable declaration\n",
"Rc = 1.51\n",
"Xc = 0.195 #Critical free moisture content (kg H2O/kg dry soild)\n",
"X2 = 0.040 #Dry solid (kg H2O/kg dry soild)\n",
"Ls = 399. #Weight of dry solid (kg)\n",
"A = 18.58 #Area of top drying surface (m2)\n",
"LsbyA = Ls/A\n",
"\n",
"#Calculation\n",
"t = LsbyA*Xc*log(Xc/X2)/(Rc)\n",
"#Result\n",
"print \"The falling rate period is\",round(t,2),\"h\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The falling rate period is 4.39 h\n"
]
}
],
"prompt_number": 16
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 9.8-1 Page Number 550"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Constant-Rate Drying When Radiation and Convention are Present \n",
"import numpy as np\n",
"from scipy.interpolate import interp1d\n",
"from scipy.optimize import root\n",
"\n",
"#Variable declaration\n",
"t2 = np.array([293,298,303,308,313,318,323])\n",
"Hs = np.array([14.8,20.2,27.6,36.,49.,65.,87.])\n",
"\n",
"t1 = np.array([280,285,290,295,300,305,310,315,320,325,330,335,340])\n",
"lambds = np.array([2485.4,2473.9,2462.2,2450.3,2438.4,2426.3,2414.3,2402.0,2389.8,2377.6,2365.3,2353.0,2340.5])\n",
"\n",
"T = 65.6 #Temperature of the bottom metal surface (deg C)\n",
"Zs = 0.0254 #Depth of the pan (m)\n",
"Km = 43.3 #Thermal conductivity of pan (W/m.K)\n",
"Ks = 0.865 #Thermal conductivity of material (W/m.K)\n",
"Zm = 0.00061 #Thickness of the metal pan (m)\n",
"e = 0.92 #Emissivity of the solid \n",
"H = 0.010 #Humidity of dry air (kg H2O/kg dry air)\n",
"Tw = 28.9 #Wet bulb temperature (deg C)\n",
"Ts = 32.2\n",
"Tr = 93.3 #Temperature of the surface (deg C)\n",
"lams = 2424. #Value determined from steam table (kJ/kg)\n",
"tsg = 32.2\n",
"u = 6.1 #m/s\n",
"\n",
"#Calculation\n",
"fHs = interp1d(t2,Hs)\n",
"flambd = interp1d(t1,lambds)\n",
"T1 = Tr + 273.2\n",
"T2 = Ts + 273.2\n",
"cs = (1.005 + 1.88*H)*1e3\n",
"Rho = (1. + H)/0.974\n",
"G = u*3600.*Rho\n",
"hc = 0.0204*G**0.8\n",
"UK = 1/(1/hc+Zm/Km+Zs/Ks)\n",
"er = 1.02\n",
"Tsg = 303.5\n",
"while er >= 0.1:\n",
" print \"Watch function value displyed to fall near to zero\"\n",
" Tsg = float(raw_input(\"Enter the guess temperature \")) + 273.2\n",
" hr = e*5.676*((T1/100)**4-((Tsg)/100)**4)/(T1-(Tsg))\n",
" Hs = fHs(Tsg)*1e-3\n",
" lambdas = flambd(Tsg)*1e3\n",
" k1 = (Hs-0.01)*lambdas/cs\n",
" k2 = 1+UK/hc\n",
" k3 = hr/hc\n",
" f = lambda tsc: -k1 + k2*(T-tsc) + k3*(Tr-tsc)\n",
" sol = root(f,T)\n",
" tsc = sol.x[0]\n",
" er = abs(Tsg-(tsc+273.2))\n",
" print er\n",
" if er <= 0.01: break\n",
" Tsg = tsc+273.2\n",
"\n",
"Rc = ((hc+UK)*(T-tsc)+hr*(Tr-tsc))*3600./lambdas\n",
"#Result\n",
"\n",
"print \"Rate of constant drying to \", round(Rc,2),\"kg/(h.m2)\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Watch function value displyed to fall near to zero\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"stream": "stdout",
"text": [
"Enter the guess temperature 34.4\n"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"6.79133441651\n",
"Watch function value displyed to fall near to zero\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"stream": "stdout",
"text": [
"Enter the guess temperature 32.5\n"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"0.0923167102895\n",
"Rate of constant drying to 4.86 kg/(h.m2)\n"
]
}
],
"prompt_number": 17
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 9.9-1 Page Number 553"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Drying slabs of wood when Diffusion of Moisture Controls\n",
"\n",
"#Variable declaration\n",
"Dl = 2.97e-6 #Experimental average diffusion cofficient (m2/h)\n",
"X_ = 0.04 #Moisture content of wood (kg H2O/kg dry wood)\n",
"Xt1 = 0.29 #Initial average moisture content \n",
"Xt = 0.09 #Final average moisture content \n",
"d = 25.4 #Thickness of the wooden plank (mm)\n",
"#Calculation\n",
"X1 = Xt1 - X_ #The free moisture content \n",
"X = Xt - X_\n",
"x1 = d/(2*1000.)\n",
"t = 4*(x1**2)*log(8*X1/((pi**2)*X))/((pi**2)*Dl)\n",
"Ea = X/X1\n",
"Dltbyx12 = 0.56\n",
"t_g = x1**2*Dltbyx12/Dl\n",
"#Result\n",
"print \"The time needed for drying by calculation is\",round(t,1),\"h\"\n",
"print \"The time needed for drying by graph is\",round(t_g,1),\"h\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The time needed for drying by calculation is 30.8 h\n",
"The time needed for drying by graph is 30.4 h\n"
]
}
],
"prompt_number": 18
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 9.9-2 Page Number 555"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Diffusion Coefficient in the Tapoica Root\n",
"import numpy as np\n",
"import matplotlib.pyplot as plt\n",
"from scipy.interpolate import interp1d\n",
"from scipy.optimize import root\n",
"#Variable declaration\n",
"XbyXc = np.array([1.,0.8,0.63,0.55,0.4,0.3,0.23,0.18])\n",
"t = np.array([0.,0.15,0.27,0.40,0.6,0.8,0.94,1.07])\n",
"xbyxc = 0.2\n",
"\n",
"#Calculation\n",
"x1 = 3./2.\n",
"plt.gca().set_yscale('log')\n",
"f = interp1d(t,XbyXc)\n",
"f1 = lambda tt: f(tt)-xbyxc\n",
"sol = root(f1,.97)\n",
"txbyxc = sol.x[0]\n",
"\n",
"plot(t,XbyXc,'bo-')\n",
"plot([0.0,txbyxc,txbyxc],[0.2,0.2,0.1],'k')\n",
"#plot([txbyxc,txbyxc],[0.2,0.1],'k')\n",
"xlabel('$Time, h$')\n",
"ylabel('$X/X_c$')\n",
"# for xbyxc = 0.2 from fig 9.9-1 Dl*t/x**2 = 0.56\n",
"absc = 0.56\n",
"DL =absc*x1**2/(txbyxc*3600)\n",
"#Result\n",
"print \"Time required for drying to\", xbyxc,\"is \", round(txbyxc,2),\"hr\"\n",
"print 'Average moisture diffusivity %6.2e' %(DL),'m2/s'"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Time required for drying to 0.2 is 1.02 hr\n",
"Average moisture diffusivity 3.44e-04 m2/s\n"
]
},
{
"metadata": {},
"output_type": "display_data",
"png": "iVBORw0KGgoAAAANSUhEUgAAAZIAAAEWCAYAAABMoxE0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAHvJJREFUeJzt3Xt0VOWh/vFnTEKCiBpABBJOxUm4BEKggggIhJYwSJRz\nQEtAwRYQtNbkyLG1COEQL1i89FiI9ogXOApKqQUFjQSwizEUgQSQpHI3RcW4FBAVBZKQZP/+2D/i\nBAJMZiez5/L9rMVqnclMnnfZ7od3v3u/22EYhiEAAHx0id0BAADBjSIBAFhCkQAALKFIAACWUCQA\nAEsoEgCAJRQJAMASigQAYEmk3QEa6sSJE7r33nsVHR2t1NRU3X777XZHAoCwFnQzkpUrV2rs2LF6\n4YUXtHr1arvjAEDYC4gimTx5sq6++molJyfXeT0/P19du3ZVYmKinnjiCUlSWVmZOnbsKEmKiIjw\ne1YAQF0BUSSTJk1Sfn5+ndeqq6t13333KT8/X7t379ayZcu0Z88excfH69ChQ5KkmpoaO+ICADwE\nRJEMGjRIsbGxdV4rLCxUQkKCrrnmGkVFRWncuHFatWqVxowZoxUrVujee+/VqFGjbEoMADgjYBfb\nPU9hSVJ8fLy2bt2qSy+9VIsWLbIxGQDAU8AWicPhsPDZBEmljRcGAMKA0+nUxx9/3ODPBcSprfrE\nxcXVroVI0qFDhxQfH+/lp0slGZIMtWiRrYEDDW3YYMgwQuPPnDlzbM/A+BhfuI0tHMZXWurbX8AD\ntkj69OmjAwcO6JNPPlFlZaWWL1/e4DURp3OmXn89TffcI911l5SWJm3Z0kSBASBMBUSRjB8/XgMG\nDND+/fvVsWNHLV68WJGRkXr22WflcrmUlJSkjIwMdevWzevvdLlma/78ERo1arAmTJD27JHGjjX/\n3HKLtHNnEw4IAMKIwzCMkHvUrsPh0PmGVV4uvfCC9Ic/SIMGSQ8/LDWgnwKC2+1Wamqq3TGaDOML\nXqE8Nin0x3ehY+cFPxduRXLGiRPSc89JTz8tjRghzZkjOZ1+CggAAcjXIgmIU1t2aNFCevBB6cAB\ns0D69ZPuvlvyWN8HAHghbIvkjCuuMGcj+/ZJrVpJvXpJ998vffWV3ckAIDiEfZGc0bq1uW6ya5f5\nz0lJ0owZ0tdf25sLAAIdRXKWdu2kP/3JvKrrm2+kLl3MBfnjx+1OBgCBKWSLJCcnR2632+fPd+wo\nLVwobd0qlZZKCQnSE0+Yi/QAEErcbrdycnJ8/nzYXrXVULt3Szk50saN0kMPSdOmSTExjforAMBW\nXLXVxJKSpL/+VVqzRlq/Xurc2bwf5fRpu5MBgL0okgbq1Ut6+22zVN54Q+raVVqyRKqutjsZANiD\nU1sWud1SdrZ07Jj0yCPSmDHSJdQzgCDEne0e/FkkkmQY0tq1ZqFUV0uPPiqlp0sWdsIHAL+jSDz4\nu0jOMAzprbek2bOlli2lxx6TfvYzCgVAcKBIPNhVJGdUV5trKHPmSHFxZqEMHGhbHADwCkXiwe4i\nOaOqSnr1VXPtJCnJPOV13XVSXl6BFixYp4qKSEVHVykra7jS0wfbHRdAmPP12Bmwj9oNBZGR0uTJ\n0h13SC+9JI0aJf3kJwX6/PO1OnRobu3PlZbOkiTKBEBQYkbiRydPSr17Z2v//sfOec/lmq38/Edt\nSAUAJm5IPIvVLVKawqWXSu3b1z8JLC+P8HMaADCxRUo9AnVGIkkuV7bWrTt3RpKaOlsbNjAjAWAf\nZiRBIitruJzOWXVei42dqQ8/TNMbb9gUCgAsYEZig7y8AuXmrld5eYRiYqqVmZmmq64arIkTpb59\npdxcKTbW7pQAwg2X/3oI9CI5n5Mnpd//Xlq1Slq0SBo2zO5EAMIJReIhWIvkjHXrpClTpNGjpXnz\nzEV6AGhqrJGEkOHDpeJi6cgR8wbGbdvsTgQA50eRBKhWraRly8xtVkaONO+Or6qyOxUAnItTW0Gg\nrMy8Q/7bb81nn3TubHciAKGIU1shLC5Oys+X7rzT3PzxuefMnYYBIBAwIwky+/aZhXLlleaVXXFx\ndicCECqYkYSJLl2kTZvMmclPfyr95S92JwIQ7piRBLFt26SJE83nyD/3nLlADwC+YkZylkDctLGx\n9ekj7dghtW0rpaSY958AQEOxaWM9wmVG4um998wru0aNkp58kpsYATQcM5IwN2yYeRPjt99KvXtL\nhYV2JwIQLpiRhKA33pDuu0+65x4pO1uKirI7EYBgwF5bHsK9SCTpiy/M/bqOHjVvYuza1e5EAAId\np7ZQR4cO0rvvmmVy443SggVSTY3dqQCEImYkYeDAAfMy4ZYtpcWLpfh4uxMBCETMSHBeiYnSP/4h\nDRli3sT4+uvmFit5eQVyubKVmpojlytbeXkFdkcFEISYkYSZ7dvN2Unr1gUqK1urgwfn1r7ndM7S\n/PkupacPtjEhALuw2O6BIrmwU6ekrl2z9dlnj53znss1W/n5j9qQCoDdOLUFrzVvLnXqFFnve+Xl\nEX5OAyDYUSRhKjq6/qdkffRRtZYskX74wc+BAAQtiiRMZWUNl9M5q85rnTrN1JQpaVq+3Lyya+JE\nc/+u6mqbQgIICqyRhLG8vALl5q5XeXmEYmKqlZmZVrvQfviwuUX9kiXmExpvv90slpQUm0MDaDIs\ntnugSBrXnj3S0qXmnyuukCZMkO64g4dqAaGGxfazhMM28v7SrZs0d6508KCUmyvt3y8lJ5sbRb7y\nivT993YnBGAF28jXgxlJ0zt1Snr7bfPU18aNUnq6eepr2DApsv4LwgAEOE5teaBI/OvIkR/XUw4d\nksaP//HJjQ6H3ekAeIsi8UCR2Gffvh/XU1q0MAvljjvY3wsIBhSJB4rEfjU10qZN5ixlxQpzdjJx\nojRmjHT55XanA1AfisQDRRJYysuld94xS8XtlkaONEtl+HDWU4BAQpF4oEgC19Gj0vLlZql88ok0\nbpxZKj/9qfTuuwVasGCdKioiFR1dpays4WwgCfgRReKBIgkO+/dLr71mlsrp0wU6eXKtjh1jN2LA\nLhSJB4okuBiGdMMN2SosZDdiwE7ckIig5XBIzZvXv1jy/ffsRgwEOooEAeF8uxEXFVXrj3+UKir8\nHAiA1ygSBIT6diN2Omdq/vw0vf++uU3LX/5ingYDEFhYI0HAuNBuxG639NvfShER0tNPS4MG2ZsV\nCEUstnugSEJTTY20bJk0c6Z5ufATT0idO9udCggdLLYj5F1yibndyr59Uv/+0oABUmamudcXAPtQ\nJAg6MTHSgw9Ke/eaV3x16ybNm2fuSAzA/ygSBK02baQFC6TNm6WiIqlLF/Pmxpoau5MB4YU1EoSM\nTZukBx6QKivNBfmf/czuREBwYY3kLDwhMfwMHGjOTh56SJo6Vbr5Zmn3brtTAYGPJyTWgxkJKiqk\nP/9Z+sMfpNGjpYcfltq1szsVENiYkQAeoqOl6dPNK7xatpS6d5ceeUQ6ccLuZEDooUgQ0mJjzfWS\nbdukPXvM+05eflmqrrY7GRA6OLWFsLJ1q3mH/HffSU89JblcdicCAgd3tnugSHAhhiGtWmXei9Kp\nk1koPXvanQqwH2skgJccDuk//kPatUu65RYpLU2aPFkqK7M7GRCcKBKErago6b77zCc1Xn21OSuZ\nPVv6/nu7kwHBhSJB2LviCvMy4Q8/lD791FyQf/55qar+R6QAOAtrJMBZduwwF+S//FJ68kkpPd08\nHQaEOhbbPVAksMowpHffNRfk27Y1LyG+7jq7UwFNi8V2oBE5HOZMpLhYGj/e3G5lwgTz1BeAuigS\n4AIiI6Vp08wF+WuvNR+oNWOGeR8KABNFAnihZUtzi5WSEvNBWp07S7m55k7DQLijSIAGiIszt1hZ\nv17KyzP38Fq50lxTAcIVi+2ABevWSb/7nTljefpp6YYb7E4E+I7FdsAGw4eblwtPmSLddpuUkSH9\n6192pwL8iyIBLIqIkCZNMresT06W+vaV/uu/pGPH7E4G+AdFAjSSFi2k7GzzqYynTpnPkP/jH82H\nbElSXl6BXK5spabmyOXKVl5egb2BgUbCGgnQRHbvln7/e3NzyNtuK9DKlWtVWjq39n2nc5bmz3cp\nPX2wjSmBH3FnuweKBIFkwwbp3/89W99//9g577lcs5Wf/6gNqYBzsdh+lpycHLndbrtjABo6VOrd\nO7Le98rLI/ycBjiX2+1WTk6Oz59nRgL4gcuVrXXrzp2R9Os3W1u2MCNBYGBGAgSwrKzhcjpn1Xmt\nTZuZKi1N0003SVu22BQMaAT1z7cBNKozC+q5ubNVXh6hmJhqZWaO0LBhg7V4sTR2rHmX/Jw53NSI\n4MOpLSAAVFRIixdLjz9OocA+nNoCglh0tHTPPdKBA+bz5DMyxCkvBA2KBAgg0dHS3Xeb29ZTKAgW\nFAkQgOorlBEjpM2b7U4GnIsiAQKYZ6GMHi2NG0ehIPBQJEAQoFAQyCgSIIhQKAhEFAkQhM4UyoED\nFArsZ7lIXnzxRUnSFi4rAfyuWTMKBfazXCSXX365DMNQVFRUY+QB4AMKBXbyqki2b99+3vf69++v\nrKwsFRcXN1ooAL7xLJQxYygU+IdXW6SMGTNGK1eurPe9srIyxcXFNXowK9giBTBVVkr/93/S3LlS\n165STo7Uv7/dqRComnSLlJYtW+rFF19UVVVVnde/++47zZw5s8G/FIB/NGsmTZtmzlBuvdWcobhc\nzFDQuLzetPHkyZN65ZVXNHLkSG3btk2vvfaatm/frpiYGO3bt6+pczYIMxKgfsxQcCFNOiNZunSp\ntm7dqqKiIqWkpOiZZ57RtGnTVFpaqjfffLPBvxSAPZihoCl4NSNp1qyZ0tLSNGHCBI0aNUp79+7V\nZ599ptGjR/sjY4MxIwG8c/YMZc4cacAAu1PBLr4eO70qkgULFigrK6vOa4cPH9aqVatkGIamTZvW\n4F/clCgSoGEoFEhNXCTnU15erkGDBqmoqMjXr2gSFAngGwolvNnyYKuYmBhlZ2db+QoAAeTsNZTx\n4801lA8+sDsZAtlFZyT79u3TJZdcosTERH9lsowZCdA4PGcoXbqYV3kxQwldTXZqq6qqSm63u7ZQ\n+vbtqz59+vgc1B8oEqBxVVZKr7xiFkrnzhRKqPLbGklhYaG2b9+umpoadenSRampqYqMjGzwL25K\nFAnQNM5XKHl5BVqwYJ0qKiIVHV2lrKzhSk8fbHdcNJAti+379u2T2+1WZWWl4uLi5HK51KJFC1+/\nrtFQJEDT8iyU2NgCHTmyVmVlc2vfdzpnaf58F2USZJq0SLZv367rrrvugj/zxRdfaOPGjcrIyGhw\niMZGkQD+UVkp9e6drd27HzvnPZdrtvLzH7UhFXzVpFdtzZ0797zvlZWVSZI6dOgQECVyRk5Ojtxu\nt90xgJDWrJl01VX1n9ouL4/wcxr4yu12Kycnx+fPh+ymjTk5OUpNTbU7BhDyoqOr6n39hx+q/ZwE\nvkpNTbVUJGzaCMCSvLwC/ed/rlVp6Y9nLtq3n6mqqhFKTx+s//kfKTbWxoDwmq/HTq8ut1q6dKni\n4uJUVFSkhx56SD169FB2draGDRum/fv3N/iXAggdZxbUc3Nnq7w8QjEx1crMHKHBgwdrxgwpOVn6\n3/+VbrnF5qBoMmzaCKBJud3SXXdJ/fpJCxZIrVvbnQjnw6aNHigSILCcOCFlZ0vLl0u5ueb2Kwg8\nbNrogSIBAtOmTdLkyVJKivTss1LbtnYngic2bQQQ8AYOlHbulDp1knr2lJYtk/g7X/CzNCMJVMxI\ngMBXWChNmiQlJpqL8e3b250ItsxIAMBX118v7dgh9ehhnup69VVmJ8GKGQkA2334oTk7iYuTFi6U\n4uPtThSemJEACFq9e5unuvr1M//7Sy8xOwkmzEgABJR//tOcnbRqJb34ovSTn9idKHwwIwEQEpKT\npS1bpKFDpT59zIX4mhq7U+FCmJEACFh79pj3ncTEmKe7nE67E4U2ZiQAQk63btI//iHdfLO5fjJ/\nPrOTQMSMBEBQ2L9fmjLFXIRftMh81C8aFzMSACGtc2fp/feljAzzOfFPPy1V88iTgMCMBEDQ+de/\nzB2FT5yQFi+WkpLsThQamJEACBvXXiu99555mfCQIdLjj0unT9udKnwxIwEQ1D77TJo6VTp61Jyd\n9Oxpd6LgxYwEQFj6t3+T8vOl3/xGGjZMysmRKivtThVeKBIAQc/hMO83+fBDads2qW9faft2u1OF\nD05tAQgphiG99pr0wAPm5cJz5kjvvVegBQvWqaIiUtHRVcrKGl77rHn8yNdjZ2QTZAEA2zgc0oQJ\n5mmue++VEhIKZBhrVVY2t/ZnSktnSRJl0kg4tQUgJLVrJ61YIbVqta5OiUhSaelc5eautylZ6KFI\nAIQsh0OKja3/xEt5eYSf04QuigRASIuOrqr39agobotvLBQJgJCWlTVcTuesOq+1bDlTxcVpWs/Z\nrUbBVVsAQl5eXoFyc9ervDxCMTHVysxMU2TkYE2bJqWlmft2XXml3Snt5+uxkyIBELaOH5dmzJDe\nflv685+lW26xO5G9KBIPFAmAhnj/ffOekzPPPGnTxu5E9mCLFADw0ZAhUkmJeclwcrL017+aNzbC\nO8xIAMDDli3mditdu5qnu9q1szuR/zAjAYBGcMMN5p5dSUlSSor06qvMTi6GGQkAnMeHH5rPPGnf\nXlq40NxpOJQxIwGARta7t1RUJN14o3TddWaZ1NTYnSrwMCMBAC/s2mWunVx6qfTSS5LTaXeixseM\nBACaUPfu0gcfmPea9Osn/elPUjW7rEhiRgIADXbggHTXXeZz4l9+WerWze5EjYPnkZzF4XDYHQFA\nGOjePVZz5x7Tb38rRUXZncY3brdbbrfb588zIwEACxwOh4YPN3TkiLRokdSrl92JfMcaCQDYJD9f\nysyUhg+X/vu/pYoKuxP5F0UCABY5HOb9Jjt3SsXF5qXChYV2p/IfigQAGkmHDtJbb0nZ2dKoUdLv\nfiedOmV3qqZHkQBAI3I4pHHjpH/+U/r8c3OblY0b7U7VtFhsBwALLna8eest6Te/kUaPlubNky67\nzI/hGojnkXigSAD4izfHm2++kR54QNqwQXrhBamyskALFqxTRUWkoqOrlJU1XOnpg/2U+Py4jwQA\nAlRsrHlp8Nq10h13FKi8fK2+/35u7fulpeYz5QOhTHzBGgkA+InLJSUnr6tTIpJUWjpXubnrbUpl\nHUUCAH5UXV3/iaDy8gg/J2k8FAkA+FF0dFW9r8fEBO8OkBQJAPhRVtZwOZ2z6rzmdM5UZmaaTYms\n46otALDAl+NNXl6BcnPXq7w8QjEx1crMTAuIhXYu//VAkQDwl1A63rBpIwDAFhQJAMASigQAYAlF\nAgCwhCIBAFhCkQAALKFIAACWUCQAAEsoEgCAJRQJAMASigQAYAlFAgCwhCIBAFhCkQAALKFIAACW\nUCQAAEsoEgCAJRQJAMASigQAYAlFAgCwhCIBAFhCkQAALKFIAACWUCQAAEsoEgCAJRQJAMASigQA\nYAlFAgCwhCIBAFhCkQAALKFIAACWUCQAAEsoEgCAJRQJAMASigQAYAlFAgCwhCIBAFhCkQAALKFI\nAACWUCQAAEsoEgCAJRQJAMASigQAYAlFAgCwhCIBAFhCkQAALAm6Ijl48KDuuusu/eIXv7A7CgBA\nQVgknTp10ksvvWR3DADA/2dbkUyePFlXX321kpOT67yen5+vrl27KjExUU888YRN6QKb2+22O0KT\nYnzBK5THJoX++HxlW5FMmjRJ+fn5dV6rrq7Wfffdp/z8fO3evVvLli3Tnj17tGTJEk2fPl1ffPGF\nTWkDS6j/j5nxBa9QHpsU+uPzlW1FMmjQIMXGxtZ5rbCwUAkJCbrmmmsUFRWlcePGadWqVZo4caKe\neeYZdejQQceOHdM999yjnTt3MmMBgAAQaXcAT2VlZerYsWPtP8fHx2vr1q11fqZVq1Z6/vnn/R0N\nAHAeAVUkDoejUb7H6XQ22ncFqocfftjuCE2K8QWvUB6bVP/4QuV443Q6ffpcQBVJXFycDh06VPvP\nhw4dUnx8fIO/5+OPP27MWACACwioy3/79OmjAwcO6JNPPlFlZaWWL1+uUaNG2R0LAHABthXJ+PHj\nNWDAAO3fv18dO3bU4sWLFRkZqWeffVYul0tJSUnKyMhQt27d7IoIAPCGEcTWrFljdOnSxUhISDDm\nzZtX789kZmYaCQkJRs+ePY0dO3b4OaE1Fxvf0qVLjZ49exrJycnGgAEDjOLiYhtS+sabf3eGYRiF\nhYVGRESEsWLFCj+ms86b8W3YsMHo1auX0b17d2PIkCH+DWjRxcZ35MgRw+VyGSkpKUb37t2NxYsX\n+z+kjyZNmmS0bdvW6NGjx3l/JpiPKxcbny/HlaAtkqqqKsPpdBoHDx40KisrjZSUFGP37t11fiYv\nL8+46aabDMMwjC1bthj9+vWzI6pPvBnfBx98YHz77beGYZj/xw6W8XkztjM/N3ToUCM9Pd3429/+\nZkNS33gzvm+++cZISkoyDh06ZBiGeeANFt6Mb86cOcaMGTMMwzDH1qpVK+P06dN2xG2wgoICY8eO\nHec90AbzccUwLj4+X44rAbVG0hDnu+fE0+rVq/XLX/5SktSvXz99++23+uqrr+yI22DejK9///66\n4oorJJnj+/zzz+2I2mDejE2ScnNzddttt+mqq66yIaXvvBnf66+/rltvvbX2YpI2bdrYEdUn3oyv\nffv2On78uCTp+PHjat26tSIjA+ranvOq7x43T8F8XJEuPj5fjitBWyT13XNSVlZ20Z8JloOtN+Pz\n9PLLL2vkyJH+iGaZt//uVq1apV//+teSguvySm/Gd+DAAR07dkxDhw5Vnz59tGTJEn/H9Jk345s6\ndap27dqlDh06KCUlRfPnz/d3zCYTzMeVhvL2uBIcf0Woh7cHFsMwfPqc3RqSc8OGDVq0aJE2bdrU\nhIkajzdju//++zVv3jw5HA4Z5ilYPyRrHN6M7/Tp09qxY4f+/ve/6+TJk+rfv79uuOEGJSYm+iGh\nNd6M7/HHH1evXr3kdrtVWlqqtLQ0FRcXq2XLln5I2PSC9bjSEA05rgRtkXhzz8nZP/P5558rLi7O\nbxmt8PaempKSEk2dOlX5+fkXnK4GEm/Gtn37do0bN06SdPToUa1Zs0ZRUVFBcTm4N+Pr2LGj2rRp\no+bNm6t58+YaPHiwiouLg6JIvBnfBx98oFmzZkkyb3Lr1KmT9u3bpz59+vg1a1MI5uOKtxp8XGm0\nFRw/O336tHHttdcaBw8eNCoqKi662L558+agWhTzZnyffvqp4XQ6jc2bN9uU0jfejM3Tr371q6C6\nasub8e3Zs8f4+c9/blRVVRknTpwwevToYezatcumxA3jzfimT59u5OTkGIZhGF9++aURFxdnfP31\n13bE9cnBgwe9WmwPtuPKGRcany/HlaCdkXjec1JdXa0pU6aoW7duWrhwoSTp7rvv1siRI/Xuu+8q\nISFBLVq00OLFi21O7T1vxvfII4/om2++qV1HiIqKUmFhoZ2xveLN2IKZN+Pr2rWrRowYoZ49e+qS\nSy7R1KlTlZSUZHNy73gzvpkzZ2rSpElKSUlRTU2NnnzySbVq1crm5N4ZP3683n//fR09elQdO3bU\nww8/rNOnT0sK/uOKdPHx+XJccRhGEJ18BgAEnKC9agsAEBgoEgCAJRQJAMASigQAYAlFAgCwhCIB\nAFhCkQAALKFIAACWUCRAA+3fv1833XSTFi5cqGHDhmnKlClauHChevfurbFjxzba71m9erUGDhzY\naN8HNJWg3SIFsMvOnTu1evVqRUVF6c0339SDDz6oLl266Morr1RGRkaj/Z7ExERdf/31jfZ9QFNh\nRgI0UGJioqKioiSZs5MuXbpIUu1/NpbNmzeHxG65CH3MSIAG6t27tyTz4VROp1OSVFpaqoKCAn38\n8ce67bbbtHHjRq1YsUJDhgyRYRhyu90aMWKEjh49Kkm68847JUlr1qzR3r171axZM916661q165d\n7e/ZsmWLEhIStHz5clVXV+v222/380gB7zAjAXxUWFiofv36SZK++uortW7dWpWVlZJ+fNBRfHy8\nxowZo5KSEg0ePFg333yzduzYIUn69NNP9fjjj2v69Onq1q2bfvjhhzrfv3fvXk2ePFlpaWlBsasz\nwhdFAvioqKiotkgGDBigVatW1T5468Ybb1Rpaan69u2rkydPqnXr1rrsssu0ZcsW9erVS5L01ltv\nKTExUe+8844cDocSEhJqv/uHH35Qq1at1KZNmzqfAQIRRQL4qKioSH379pUkHT9+XA6HQyUlJZKk\nU6dOKSYmRpK0bdu22kXz1atXa9CgQSopKVHz5s01atQo3XzzzRo0aJAOHz6sgwcP1n53//79az8z\nYMCA2pkMEGgoEqCBiouL9dRTT6mkpERvvvmmDh8+rOrqarVt21YVFRWSpF27dmnIkCGSpI8++khD\nhw6VJLVv315bt25VcnKyMjIyVFJSory8PC1fvlxVVVUaNmyYJPO01pnPXHXVVSoqKlLPnj1tGC1w\ncTzYCgggbrdbqampdscAGoQZCRBAzsxogGDCjAQAYAkzEgCAJRQJAMASigQAYAlFAgCwhCIBAFhC\nkQAALKFIAACWUCQAAEv+H0HymmNUDGStAAAAAElFTkSuQmCC\n",
"text": [
"<matplotlib.figure.Figure at 0x6406150>"
]
}
],
"prompt_number": 19
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 9.10-1 Page Number 559"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Through Circulation Drying in a Bed\n",
"import numpy as np\n",
"from scipy.interpolate import interp1d\n",
"\n",
"#Variable declaration\n",
"Xt1 = 1. #Initial total moisture content (kg H2O/kg dry air)\n",
"Xs = 0.01 #The equilibrium moisture content (kg H2O/kg dry air)\n",
"Rho = 1602. #Density of dry solid (kg/m3)\n",
"Rhos = 641. #Density of dry solid (kg/m3)\n",
"H1 = 0.04 #Inlet air humidity (kg H2O/kg dry air)\n",
"T1 = 121.1 #Temperature of air (deg C)\n",
"v = 0.811 #Gas superficial velocity (m/s)\n",
"Xtc = 0.5 #The total critical moisture content \n",
"Xt = 0.1 #Final total moisture content (kg H2O/kg dry air) \n",
"x1 = 0.0508 #Depth of packed cylinders\n",
"mu = 2.15e-5 #Viscosity of air, kg/(m.s) \n",
"\n",
"T = np.array([280,285,290,295,300,305,310,315,320,325,330,335,340])\n",
"lambds = np.array([2485.4,2473.9,2462.2,2450.3,2438.4,2426.3,2414.3,2402.0,2389.8,2377.6,2365.3,2353.0,2340.5])\n",
"\n",
"#Calculation\n",
"\n",
"flambd = interp1d(T,lambds)\n",
"lambdaw = flambd(320.2)\n",
"X1 = Xt1 - Xs\n",
"Xc = Xtc - Xs\n",
"X = Xt - Xs\n",
"Vh = (2.83e-3 + 4.56e-3*H1)*(T1 + 273.)\n",
"RhoH = (1. + H1)/Vh\n",
"Ga = v*RhoH*3600.*(1./(1.+ H1))\n",
"H = 0.05 #Approximate average \n",
"Gt = (2459. + 2459.*H)/3600.\n",
"e = 1 - Rhos/Rho #Void fraction (m3)\n",
"h = 0.0254 #The length of solid cylinder (m)\n",
"Dc = 0.00635 #Diameter \n",
"a = 4*(1 - e)*(h + 0.5*Dc)/(Dc*h)\n",
"Dp = (Dc*h + 0.5*Dc**2)**0.5\n",
"Nre = Dp*Gt/mu\n",
"h = 0.151*(Gt*3600)**0.59/Dp**0.41\n",
"Tw = 47.2\n",
"Cs = (1.005 + 1.88*H)*1000.\n",
"G = Ga/3600.\n",
"tc = Rhos*lambdaw*1000.*x1*(X1 - Xc)/(G*Cs*(T1 - Tw)*(1 - exp(-h*a*x1/(G*Cs))))\n",
"tf = Rhos*lambdaw*1000.*x1*Xc*log(Xc/X)/(G*Cs*(T1 - Tw)*(1 - exp(-h*a*x1/(G*Cs))))\n",
"t = tc+tf\n",
"\n",
"#Result\n",
"print \"Total drying time\", round(t/3600,3),\"h or\", round(t),\"s\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Total drying time 0.628 h or 2260.0 s\n"
]
}
],
"prompt_number": 20
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 9.10-2 Page Number 562"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Heat Balance on a Dryer\n",
"from scipy.optimize import root\n",
"\n",
"#Variable declaration\n",
"Ls = 453.6 #Feed rate,kg of dry solids/h\n",
"X1 = 0.04 #moisture content in feed,kg of moisture/kg dry solids\n",
"X2 = 0.002 #moisture content in feed,kg of moisture/kg dry solids\n",
"cpA = 4.187 #Specific Heat of moisture, kJ/(kg water.K)\n",
"cpS = 1.465 #Specific Heat of solid, kJ/(kg dry solid.K)\n",
"Ts1 = 26.7 #Temperature of feed at inlet, \u00b0C \n",
"Ts2 = 62.8 #Temperature of product at outlet, \u00b0C\n",
"Tg2 = 93.3 #Temperature of air at inlet, \u00b0C \n",
"Tg1 = 37.8 #Temperature of air at outlet, \u00b0C\n",
"H2 = 0.01 #Humidity of incomming air, kg water/kg dry air\n",
"Tref = 0.0 #Reference Temperature, \u00b0C\n",
"\n",
"#Calculation\n",
"#Enthalpy of Entering Air, \n",
"#Latent heat of water from steam table = 2501 kJ/kg @93.3\u00b0C \n",
"lambda0 = 2501.\n",
"cs2 = 1.005 + 1.88*H2\n",
"Hg2 = cs2*(Tg2-Tref) + lambda0*H2 \n",
"Hs1 = cpS*(Ts1-Tref)+X1*cpA*(Ts1-Tref)\n",
"Hs2 = cpS*(Ts2-Tref)+X2*cpA*(Ts2-Tref)\n",
"We = Ls*(X2-X1) #Water Transfered to air\n",
"delHs = Ls*(Hs1-Hs2) #Enthalpy change of solid\n",
"a = 37.99 #Constants in simplified relation for Humidity dependence of Enthalpy of leaving gas\n",
"b = 2572.\n",
"er = 5.\n",
"h = 0.011\n",
"while er>=0.001:\n",
" g = We/(H2-h)\n",
" hc = ((g*Hg2+delHs)/g-a)/b\n",
" gc = We/(H2-hc) \n",
" er = (abs(h-hc)+abs(g-gc))/2 \n",
" h = hc\n",
" g = gc\n",
"\n",
"#Results\n",
"print \"Air flow rate\",round(g,2), \"kg Dry Air/h\"\n",
"print \"Humidity of air leaving\",round(h,4), \"kg of Water/kg Dry Air\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Air flow rate 1170.92 kg Dry Air/h\n",
"Humidity of air leaving 0.0247 kg of Water/kg Dry Air\n"
]
}
],
"prompt_number": 23
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 9.12-1 Page Number 573"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Sterlization of Cans\n",
"\n",
"#Variable declaration\n",
"t1 = 20.\n",
"t2 = 40. - 20.\n",
"t3 = 73. - 40.\n",
"T1 = 160.\n",
"T2 = 210.\n",
"T3 = 230.\n",
"T1_C = 71.1\n",
"T2_C = 98.9\n",
"T3_C = 110.\n",
"z = 18.\n",
"z_SI = 10.\n",
"#Calculation\n",
"t0_eng = t1*10.**((T1 - 250.)/z) + t2*10.**((T2 - 250.)/z) + t3*10.**((T3 - 250.)/z)\n",
"t0_SI = t1*10.**((T1_C - 121.1)/z_SI) + t2*10.**((T2_C - 121.1)/z_SI) + t3*10.**((T3_C - 121.1)/z_SI)\n",
"\n",
"#Result\n",
"print \"The calculated time of sterlization in English units is \",round(t0_eng,2),\"min\"\n",
"print \"The calculated time of sterlization in SI units is \",round(t0_SI,2),\"min\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The calculated time of sterlization in English units is 2.68 min\n",
"The calculated time of sterlization in SI units is 2.68 min\n"
]
}
],
"prompt_number": 24
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 9.12-2 Page Number 574"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Thermal Process Evaluation by Graphical Integration\n",
"import numpy as np\n",
"from scipy.integrate import quad\n",
"from scipy.interpolate import interp1d\n",
"import matplotlib.pyplot as plt\n",
"\n",
"#Variable declaration\n",
"t = np.array([0.,15.,25.,30.,40.,50.,64.])\n",
"T = np.array([80.,165.,201.,212.5,225.,230.5,235.])\n",
"F0 = 2.45\n",
"z = 18\n",
"#Calculation\n",
"y = 10**((T-250.)/z)\n",
"f = interp1d(t,y,'cubic')\n",
"plt.plot(t,y)\n",
"plt.fill_between(t,y,0,color='0.8')\n",
"xlabel('$Time, min$')\n",
"ylabel('$10^(T-250)/z$')\n",
"I = quad(f,0,64)\n",
"title('Figure showing area by integration')\n",
"txt = 'Area='+str(round(I[0],1))+' m2'\n",
"text(45,0.02,txt)\n",
"#Result\n",
"\n",
"print \"The process time required is \",round(I[0],1),\"is greater than\", F0,\"hence sterilization is adequet\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The process time required is 2.5 is greater than 2.45 hence sterilization is adequet\n"
]
},
{
"metadata": {},
"output_type": "display_data",
"png": "iVBORw0KGgoAAAANSUhEUgAAAZMAAAEdCAYAAADJporJAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XdcFNf6P/DPLruKFAERQVkMyiLFSgSRxLKxYQMLqBgV\ng41YohiNRlPEJBrrNSgmFyxYL/GaRMEEMUGzxm8MolFDIiJFUIogKmWpC7vn94c/94KgsrRhl+f9\nevGSmTln5plhnWfPnJk5PMYYAyGEENIIfK4DIIQQovkomRBCCGk0SiaEEEIajZIJIYSQRqNkQggh\npNEomRBCCGk0SiZtlKGhIdLT07kO46X4fD7u3r3bbOu/dOkS7O3tm239XJFIJDhw4ECj13P//n0Y\nGhpCU58e0PT4NQ0lEy1nbW0NPT09GBoawtDQEB07dkROTg5kMhmsra25Do9TQ4cORWJiItdhNDke\njwcej9fo9XTv3h0ymaxe60pPTwefz4dSqWz0dhvK2toaFy5cUE2rEz9pPEomWo7H4+HHH3+ETCaD\nTCZDUVERLCwsmm17CoWi2datraqqqrgOock0VyugPp8rHo9HrRAOUTJpo6pfQnr8+DE8PDxgZGSE\nQYMG4eOPP8bQoUMB1P2Ns/pllEOHDuHNN9/E+++/j86dO2Pjxo2Qy+VYvXo1XnvtNVhYWGDx4sUo\nLy+vM46UlBQMHz4cxsbGMDMzg4+PT43lv/zyC3r16gUTExMsW7ZMNZ8xhi+++ALW1tYwNzfH3Llz\nUVRUBACYO3cu/vWvfwEAsrKywOfz8fXXXwMAUlNTYWpqCgCQSqWwsrJSrdPa2ho7d+5E//79YWxs\nDB8fH1RUVKiWb9u2Dd26dYNIJML+/ftfehkuLCwMjo6O6NixI2xsbBAaGqpaJpVKIRKJsG3bNnTt\n2hXz588HYwxbtmyBWCxG586dMWPGDOTn56vqTJs2DV27doWxsTGGDx+OhISEOrdb/bi6urrCyMgI\nkydPVq1rwoQJCA4OrlG2X79+iIiIqLWO5//2EokEn376KYYMGYKOHTvC3d0djx8/BgAMGzYMAGBs\nbAxDQ0NcuXIFAHDw4EE4OjqiU6dOGDt2LO7fv69a/88//ww7OzsYGxtj6dKlGD58+Es/V3fv3sWI\nESPQuXNnmJmZYfbs2SgsLAQAzJkzB/fv34eHhwcMDQ2xY8eOWvFnZ2fD09MTpqamsLW1xf79+1Wx\nBAYGYvr06Zg7dy46duyIPn364M8//3zpMSbPYUSrWVtbs5iYmFrzeTweS01NZYwxNmPGDDZz5kxW\nVlbGEhISmJWVFRs6dChjjLG0tDTG4/GYQqFQ1ZVIJOzAgQOMMcbCwsKYQCBgwcHBTKFQsLKyMhYQ\nEMAmTZrE8vPzmUwmYx4eHmzdunV1xufj48M2b97MGGOsoqKC/f777zVi9PDwYIWFhez+/fvMzMyM\nRUdHM8YYO3DgABOLxSwtLY0VFxezqVOnsjlz5jDGGDt48CDz8PBgjDF2/PhxZmNjw2bMmKGqN3ny\nZMYYY7/++isTiUQ1jpWrqyt78OABe/LkCXNwcGD//ve/GWOMnT17lllYWLCEhARWWlrKZs2axfh8\nvuoYPu+nn35id+/eZYwxdvHiRaanp8euX7+u2q5AIGAffvghk8vlrKysjH311VfMzc2NZWVlMblc\nzvz9/dnMmTNV6wsLC2PFxcVMLpezgIAANmDAgDq3yxhjw4cPZ5aWluzWrVuspKSEeXl5sdmzZzPG\nGPvvf//LXF1dVWVv3rzJTE1NWWVlZa31PP+3Hz58OBOLxSw5OZmVlZUxiUTCPvzwQ8YYY+np6bU+\nJ6dPn2ZisZglJiYyhULBvvjiC/bGG28wxhjLy8tjHTt2ZKdOnWIKhYIFBQUxoVD40s9VSkoKi4mJ\nYXK5nOXl5bFhw4axgICAGn+/8+fPvzD+oUOHsqVLl7KKigp28+ZNZmZmxi5cuMAYY2zDhg1MV1eX\nnT17limVSrZu3To2ePDgFx5jUhslEy332muvMQMDA2ZsbMyMjY3ZlClTGGP/SyZVVVVMKBSypKQk\nVZ2PP/6YDRkyhDFWv2TSvXt31TKlUsn09fVrnGQvX77MevToUWd8vr6+bNGiRSwzM7PWMh6PVyO5\nTJ8+nW3dupUxxtiIESPYN998o1p2584dJhQKmUKhYCkpKczExIQplUr27rvvspCQEFXS8PX1Zbt2\n7WKM1Z1Mjh8/rppes2YNe/fddxljjPn5+bH169erlqWkpNRIyK8yefJkFhQUpNpuu3btWEVFhWq5\ng4NDjRNhdna2an+el5+fz3g8HisqKqpzWxKJpEbyTkhIYO3atWNKpZKVlZUxExMTlpKSwhhjbNWq\nVWzp0qV1ruf5v71EImGbNm1SLf/666/Z2LFj6yzLGGNjx45VfU4YY0yhUDA9PT127949dvjwYVVi\necbKyuqFn6u6nDp1ijk5OammX5ZM7t+/z3R0dFhxcbFq+bp169g777zDGHuaTEaPHq1aduvWLdah\nQ4eXbp/URJe5tByPx0NERATy8/ORn5+PH374ocbyvLw8VFVV1bjcIxKJ1NpG9bp5eXkoLS3FwIED\nYWJiAhMTE4wbNw6PHj2qs+62bdvAGMOgQYPQp08fhIWF1VhevX9HT08PxcXFAIAHDx7gtddeUy3r\n3r07qqqqkJubCxsbG+jr6+PmzZu4dOkSJk6ciG7duiEpKQm//fYbhg8f/sJ9qb69Dh06oKSkRLU9\ndY7R2bNnMXjwYJiamsLExARRUVGqS0IAYGZmhnbt2qmm09PTMWXKFNUxc3R0hEAgQG5uLhQKBT78\n8EOIxWIYGRmhR48e4PF4LzymQM2/Sffu3VFZWYlHjx5BV1cX06dPx9GjR8EYw7fffos5c+a8dF9e\ndnye/T3qcu/ePaxYsUK1T88uL2ZlZeHBgwe1juHz09X3AQByc3Ph4+MDkUgEIyMjzJkzp8YxfZns\n7Gx06tQJ+vr6qnndu3dHVlaWatrc3Fz1u56eHsrLyzm9oUDTUDJp48zMzCAQCJCRkaGaV/33Z//5\nSktLVfNycnJqrKP63TKdO3dGhw4dkJCQoEpgBQUFqv6M55mbmyM0NBRZWVkICQnBkiVL6nU7cLdu\n3Wrc2nz//n0IBALVCWH48OE4efIkKisr0a1bNwwfPhyHDh1Cfn4+BgwY8Mr1P69r164vPEbPq6io\ngJeXF9asWYOHDx8iPz8f48ePr9E5/PwdRt27d0d0dLTqmOXn56O0tBRdu3bFf/7zH0RGRuL8+fMo\nLCxEWloa2NOrCi+MoXrfxP379yEUCtG5c2cAT/uUjh8/jpiYGOjp6cHV1VXt4/G8uu6Y6t69O0JD\nQ2vsU0lJCdzc3NC1a1dkZmaqyjLGakzXtc7169dDR0cH//zzDwoLC3H06NEaJ/uX3bXVrVs3PHny\npEbyu3//vtpfnMiLUTJp43R0dDB16lQEBgairKwMiYmJOHr0qOo/ppmZGSwtLXH06FEoFAocPHgQ\nqampL1wfn8/HwoULERAQgLy8PABPv4n+/PPPdZY/efKk6iRibGwMHo8HPr/uj2X1E+jMmTOxa9cu\npKeno7i4GOvXr4ePj4+q7vDhwxEcHKzqGJZIJAgODsbQoUPVulX02famT5+OsLAwJCYmorS0FJ9/\n/vkL68jlcsjlcnTu3Bl8Ph9nz5594f4/8+6772L9+vWqJJCXl4fIyEgAQHFxMdq3b49OnTqhpKQE\n69evf2XMx44dw+3bt1FaWopPP/0U06ZNU+23m5sbeDweVq9eDV9f33ofi2frrouZmRn4fH6Nz8a7\n776LzZs3q24WKCwsxMmTJwEA48ePx99//42IiAhUVVVh7969tb6kPK+4uBj6+vro2LEjsrKysH37\n9hrLzc3NX/jZtLKywhtvvIF169ahoqIC8fHxOHjwIGbPnl3vfScvR8mkjap+Qg0ODkZhYSEsLCww\nd+5czJw5s8YlmH379mH79u3o3LkzEhIS8Oabb9ZYz/Mn561bt0IsFmPw4MEwMjLC6NGjkZSUVGcc\n165dw+DBg2FoaIhJkyZh9+7dqudfnl9v9W3NmzcPc+bMwbBhw9CzZ0/o6elhz549qrLDhg1DcXGx\nKpm8+eabKCsrU03XdRzqOkbPlo8dOxbLly/HW2+9hV69esHNzQ0A0L59+1r1DA0NsXv3bkyfPh2d\nOnVCeHg4Jk2a9NLtrlixAp6enhgzZgw6duwINzc3xMXFAQB8fX3x2muvwdLSEn369FElg5fF7evr\ni3feeQddu3aFXC7H7t27a5Tx9fXF33///cqTaV1/g7qOj56eHj766CO8+eabMDExQVxcHCZPnoy1\na9fCx8cHRkZG6Nu3L86dOwfgaQv25MmTWLNmDTp37ozbt2/D2dlZdTzr+lxt2LAB169fh5GRETw8\nPODl5VWjzLp16/DFF1/AxMREdTdf9eXh4eFIT09Ht27dMHXqVHz22WcYMWLEC7dHz6eoiaO+GpWz\nZ88yOzs7JhaL2ZYtW2otv337Nhs8eDBr374927FjR41l+fn5zMvLi9nb2zMHBwf2xx9/tFTYWm3N\nmjWqjklSt4SEBKajo1NnB7kmOHLkiOqOvdZAoVCwbt26MalUynUopIE4bZkoFAosW7YM0dHRSEhI\nQHh4OG7fvl2jjKmpKfbs2YPVq1fXqr9ixQqMHz8et2/fRnx8PBwcHFoqdK1y584dxMfHgzGGuLg4\nHDx4EFOmTOE6rFbn1KlTqKioQH5+PtauXQtPT88XXpJrzUpLS7F3714sWrSI0zh+/vlnFBQUoKKi\nAps3bwYADB48mNOYSMNx+j8hLi4OYrEY1tbWEAqF8PHxqfXwlJmZGZydnSEUCmvMLywsxKVLlzBv\n3jwAgEAggJGRUYvFrk1kMhm8vLxgYGAAHx8frF69Gp6enlyH1eqEhobC3NwcYrEYQqEQ33zzDdch\nqe3cuXPo0qULunbtirfffpvTWP744w+IxWKYmZnhp59+wunTp+u8bEg0g4DLjWdlZdW63fLZk7Ov\nkpaWBjMzM/j5+eGvv/7CwIEDERQUBD09veYKV2s5OzsjOTmZ6zBavbNnz3IdQqO5u7u/9HbelrRh\nwwZs2LCB6zBIE+G0ZdKYDq6qqipcv34dS5YswfXr16Gvr48tW7Y0YXSEEELqi9OWiaWlZa179+t7\n37dIJIJIJIKLiwsAwNvbu85kIhaLX3orKyGEkNpsbGyQkpJS7/KctkyeXV5JT0+HXC7HiRMnXnit\nnj13f7uFhQWsrKxUt5zGxMSgd+/eteqlpqaqnk/QxJ8NGzZwHgPFz30cbS12ip/7H3W/hHPaMhEI\nBAgODoa7uzsUCgXmz58PBwcHhISEAAD8/f2Rk5MDFxcXFBUVgc/nIygoCAkJCTAwMMCePXswa9Ys\nyOVy2NjY1HoVByGEkJbBaTIBgHHjxmHcuHE15vn7+6t+t7CweOGrK/r374+rV682a3yEEEJeTfNu\nkm9jJBIJ1yE0CsXPHU2OHaD4NQ2PMabVQ5PR6GuEEKI+dc+d1DIhhBDSaJRMCCGENBolE0IIIY1G\nyYQQQkijUTIhhBDSaJRMCCGENBolE0IIIY1GyYQQQkijUTIhhBDSaJRMCCGENBolE0IIIY1GyYQQ\nQlqx1NRKHDtWwXUYr0TJhBBCWim5nMHLqxLx8UVch/JKlEwIIaSVWr5cBgODSsybl891KK/E+eBY\nhBBCajtxohinT+vi+PEE8Pl6XIfzSpRMCCGklUlNlWPp0vbYujUVxsYKrsOpF0omhBDSisjlDNOm\nVWHmzCcYMKCE63DqjfM+k+joaNjb28PW1hZbt26ttTwxMRFubm7Q1dXFzp07ay1XKBRwcnKCh4dH\nS4RLCCHNauVKGTp0qISvby7XoaiF05aJQqHAsmXLEBMTA0tLS7i4uMDT0xMODg6qMqamptizZw9O\nnz5d5zqCgoLg6OgImUzWUmETQkizOHmyGN9/r4tjx26Dz/lXffVwGm5cXBzEYjGsra0hFArh4+OD\niIiIGmXMzMzg7OwMoVBYq35mZiaioqKwYMECGuedEKLR0tLkWLy4PT7/PA0mJlVch6M2TpNJVlYW\nrKysVNMikQhZWVn1rr9y5Ups374dfE1L4YQQUk1lJcO0aZWYPv0hXn+9mOtwGoTTszCPx2tw3R9/\n/BFdunSBk5MTtUoIIRrt/fdlEAgU8PPL4TqUBuO0z8TS0hIZGRmq6YyMDIhEonrVvXz5MiIjIxEV\nFYXy8nIUFRXB19cXR44cqVU2MDBQ9btEIoFEImls6IQQ0iROnSrBf//LfT+JVCqFVCptcH0e4/Br\nfVVVFezs7HD+/Hl069YNgwYNQnh4eI0O+GcCAwNhaGiIVatW1Vp28eJF7NixA2fOnKm1jMfjUcuF\nENIqpafL4eLCwxdf3IWz84svbxkaGqJXr14tGJn6505OWyYCgQDBwcFwd3eHQqHA/Pnz4eDggJCQ\nEACAv78/cnJy4OLigqKiIvD5fAQFBSEhIQEGBgY11tWYS2aEENLSKisZpk+vhJdX4UsTiabgtGXS\nEqhlQghpjQICivDHHzzs2ZMEHZ2Xl6WWCSGEkFoiIkrwn/887Sd5VSLRFJRMCCGkBWVkVGLBgnb4\n7LM0mJpq3vMkL0LJhBBCWkhVFcO0aXJMmVKIQYO0660dlEwIIaSFrF0rg0LBw4IFD7gOpclRMiGE\nkBbw00+lOHJEu/pJqqP3kBBCSDPLzKyEn58AgYHp6NxZe/pJqqOWCSGENKOqKobp0+Xw9CzC4MHa\n1U9SHSUTQghpRuvXy1BRwcPChdlch9KsKJkQQkgzOXu2FAcPdsDRo7ch0PKzLfWZEEJIM8jKqsQ7\n7zztJ+nSpZLrcJqdludKQghpeQoFw4wZFZgwQQY3tyKuw2kR1DIhhJAm9vHHMpSUAP7+2t1PUh21\nTAghpAmdO1eKffs64MgR7e8nqY5aJoQQ0kRycqowd64An3ySDnNz7e8nqa4N5U1CCGk+T/tJyuHu\nXowhQ9pGP0l11DIhhJAmsGGDDIWFwJIlWVyHwglqmRBCSCPFxJTim2/aXj9JddQyIYSQRsjNrcKc\nOQJ8/PE9WFi0rX6S6tpoDiWEkMZTKhlmzizHqFHFGDaskOtwOMV5yyQ6Ohr29vawtbXF1q1bay1P\nTEyEm5sbdHV1sXPnTtX8jIwMvPXWW+jduzf69OmD3bt3t2TYhBCCjRtlyMvjYdmyttlPUh2PqTNi\nfBNTKBSws7NDTEwMLC0t4eLigvDwcDg4OKjK5OXl4d69ezh9+jRMTEywatUqAEBOTg5ycnIwYMAA\nFBcXY+DAgTh9+nSNugDA4/HA4S4SQrTUhQulmDZNiMOHE9G1q7xZt2VoaIhevXo16zaep+65k9OW\nSVxcHMRiMaytrSEUCuHj44OIiIgaZczMzODs7AyhUFhjvoWFBQYMGAAAMDAwgIODA7Kz287TpoQQ\n7jx8WIXZswVYv/5esycSTcFpMsnKyoKVlZVqWiQSIStL/eZieno6bty4AVdX16YMjxBCannWT/LW\nW/mQSNp2P0l1nHbA83i8Rq+juLgY3t7eCAoKgoGBQZ1lAgMDVb9LJBJIJJJGb5cQ0jZ98YUMubk6\n2LRJu/pJpFIppFJpg+tzmkwsLS2RkZGhms7IyIBIJKp3/crKSnh5eWH27NmYPHnyC8tVTyaEENJQ\nFy+W4auvOuDQoUQIhdrVF/v8F+2NGzeqVZ/Ty1zOzs5ITk5Geno65HI5Tpw4AU9PzzrLPt8RxBjD\n/Pnz4ejoiICAgJYIlxDShj16VIW33+Zj/fr7sLSkfpLncXo3FwCcPXsWAQEBUCgUmD9/PtatW4eQ\nkBAAgL+/P3JycuDi4oKioiLw+XwYGhoiISEBN2/exLBhw9CvXz/V5bIvv/wSY8eOrbF+upuLENJY\nSiXD2LEl6NSpFB98kPHqCk1ME+7m4jyZNDdKJoSQxtq0qQjHjwtw4EAi2rVr+fOJJiQTegKeEEJe\n4tKlMuzc2QFhYdwkEk3B+RPwhBDSWj15osDbb/Oxdu19iETUT/Iy1DIhhJA6KJUMs2aVws2tHKNG\nFXAdTqtHyYQQQuqwbVsx0tN1cOBAy3e4ayJKJoQQ8pzffy/Dtm26OHjwDtq3p36S+qA+E0IIqSY/\n/2k/yQcfZMDKqoLrcDQGtUwIIeT/UyoZ5swphYtLOcaMyec6HI1CyYQQQv6/nTtlSE4WICyM+knU\nRcmEEEIA/PFHGTZv7oADB6ifpCGoz4QQ0uYVFCjg48PH6tUZeO016idpCGqZEELatGf9JAMHVmDs\nWOonaShKJoSQNu2rr4qRmCjAoUPJXIei0SiZEELarCtXyvD557rYv/8OdHWpn6QxqM+EENImFRYq\n4OPDw/vvZ8LamvpJGotaJoSQNkepZJg7txT9+1dg/PgnXIejFSiZEELanD17ivHPPwIcPkz9JE2F\nkgkhpE25dq0cgYG6CA1Non6SJkR9JoSQNqOoSIEZM4CAgEz07FnOdThahVomhJA2w8+vFI6Ockyc\nSP0kTY3zlkl0dDTs7e1ha2uLrVu31lqemJgINzc36OrqYufOnWrVJYSQZ4KDZbhxQ4C1a+9zHYpW\n4jF1RoxvYgqFAnZ2doiJiYGlpSVcXFwQHh4OBwcHVZm8vDzcu3cPp0+fhomJCVatWlXvugDA4/HA\n4S4SQlqB69fLMXKkDv797ySIxZp3ecvQ0BC9evVq0W2qe+7ktGUSFxcHsVgMa2trCIVC+Pj4ICIi\nokYZMzMzODs7QygUql2XEEKKi5WYPh14770sjUwkmoLTZJKVlQUrKyvVtEgkQlZWVrPXJYS0HfPm\nFcPOrgSeno+5DkWrcdoBz+PxWqRuYGCg6neJRAKJRNLg7RJCNMfXX8tw9Wo7HDmSikacbtoEqVQK\nqVTa4PoNTib79+/HO++8A4FAgKSkJPTs2RMCgXqrs7S0REbG/wahycjIgEgkavK61ZMJIaRt+Ouv\nCnz0kS6++SYZenpKrsNp9Z7/or1x40a16jf4MldycjK8vb2Rm5sLCwsLLFiwQO11ODs7Izk5Genp\n6ZDL5Thx4gQ8PT3rLPt8R5A6dQkhbUtJiRLTpimxdGk2bG3LuA6nTWhwy+Svv/5CaGgo5s2bhz17\n9kBfX1/9jQsECA4Ohru7OxQKBebPnw8HBweEhIQAAPz9/ZGTkwMXFxcUFRWBz+cjKCgICQkJMDAw\nqLMuIYQsWFCMnj2rMHnyI65DaTMafGvw3r17sXTpUjx58gRLly7FZ599Bltb26aOr9Ho1mBC2paQ\nEBk2bxbi6NHb0NfXjstbmnBrcJM8Z8IYQ1RUFCZMmNDYVTU5SiaEtB1//12BYcP4+PrrZPTqpT2X\nt7Qqmdy5cwd8Pr9Vtj5ehpIJIW1DaakSr79egSlTHsLbW7sub2lCMql3n4mNjQ2kUil+/vln8Pl8\nuLi4wNnZuUFBEkJIU1u0qBjduyvg5aVdiURTNPgyV1xcHP78808olUrY2dlBIpGofWtwS6CWCSHa\nb/9+GT777Gk/iYGBdvSTVKcJLZMm6TO5c+cOpFIp5HI5LC0t4e7u3qC7u5oDJRNCtNutWxUYOpSP\nPXuSYW+vPf0k1bWZZFJddnY2Ll26hBkzZjTlahuMkgkh2qu0VAln5wp4eORh+vQ8rsNpNm0ymbQ2\nlEwI0V6+vkXIzlZgy5a7Wv26FE1IJmp3cpSVlSE8PBx///03qqqqUFpaCj6fD0NDQ7i6umLatGng\n8zkfJoUQouUOHZLh11/b49ixBK1OJJpCrZZJTEwMEhISMGHCBNjY2NRYxhhDfHw8zp8/j5EjR6J/\n//5NHmxDUMuEEO2TkFCBIUP4CApKgaNjKdfhNDtNaJnUO5mUl5cjMzMTYrH4lWVv3bqF3r171zuI\n5kTJhBDtUlb2tJ9k/Pg8+Phobz9JdVqVTJ65dOkSLly4gJycHOjo6MDMzAxubm4YM2aM2sG2BEom\nhGgXP78i3LunxLZtbee18pqQTNTqM9m8eTMqKyvh5OQEfX19KBQKFBUV4fz587hw4QK2bNmidsCE\nEFJfhw/L8Msv7XHs2O02k0g0hVrJpE+fPnW+5t3b2xvfffddkwVFCCHPS0yswMqVuti1KwWGhgqu\nwyHPUSuZ/PXXX7h58yZef/116OnpQUdHByUlJYiPj0deXh68vb2bK05CSBtWXq7EtGkK+Pk9RJ8+\n2t/hronU7jOJiYnB5cuX8fDhQyiVSpibm2PIkCEYMWJEo4bhbS7UZ0KI5ps/vwipqUrs2NF2+kmq\n07o+k9zcXIwaNQqjRo0CAJw7dw7x8fHg8XitMpEQQjTf8ePFOHuW+klaO7WeLvz++++xb98+AMDO\nnTuRkpICU1NTSKVShIaGNkuAhJC2KympAsuXt8fmzWkwMqJ+ktZMrZbJggUL0KNHDyxcuBC9e/fG\n2LFjVcvCwsKaPDhCSNv1rJ/E1/ch+vYt4Toc8gpqtUzWrl2L8vJyHD9+HFevXgUA7N+/Hw8ePEBh\nYWGzBEgIaZuWLy+GkVElZs16yHUopB7USia7du3C48ePMWvWLHzyyScAAB0dHVy7dg0rVqxoUADR\n0dGwt7eHra0ttm7dWmeZ5cuXw9bWFv3798eNGzdU87/88kv07t0bffv2xdtvv42KiooGxUAIaV2O\nHSvGmTPtsWFDGvWTaAi138h45coV/PDDD8jKygIA+Pn5QU9PDwkJCWpvXKFQYNmyZYiOjkZCQgLC\nw8Nx+/btGmWioqKQkpKC5ORkhIaGYvHixQCA9PR07Nu3D9evX8fff/8NhUKBb7/9Vu0YCCGty9Wr\n5XjvvfbYuvUujI2pn0RTqNVn8sknnyAxMRE9e/ZEaGgoRowYgTVr1mD48OEwNzfH48eP1dp4XFwc\nxGIxrK2tAQA+Pj6IiIiAg4ODqkxkZCTmzp0LAHB1dUVBQQFyc3PRsWNHCIVClJaWQkdHB6WlpbC0\ntFRr+4SQ1iU7uxJTpvCwenUGevem50k0iVotE2NjY5w8eRJbt25FdHQ0Bg0ahE2bNoHP5zfotfNZ\nWVmwsrLAmxsBAAAgAElEQVRSTYtEIlWL51VlOnXqhFWrVqF79+7o1q0bjI2NVbcsE0I0T3m5EpMm\nyTFmzBOMHZvPdThETWq1THR1dfHkyROcOHECc+fOhUQiQd++fbF3715UVlaqvfH6PptS14Mzqamp\n+Oqrr5Ceng4jIyNMmzYNx48fx6xZs2qVDQwMVP0ukUggkUjUjpUQ0nyUSob580ugp6fA4sXZXIfT\nJkmlUkil0gbXVyuZLFq0CN999x1yc3NVLRFTU1MsW7YMAoHa42zB0tISGRkZqumMjAyIRKKXlsnM\nzISlpSWkUineeOMNmJqaAgCmTp2Ky5cvvzKZEEJan+3bi3HligAHDqSAxtbjxvNftDdu3KhWfbX+\nbEKhEDNnzkRgYCB0dXVV83k8nqpjXB3Ozs5ITk5Geno65HI5Tpw4UetFkp6enjhy5AgAIDY2FsbG\nxjA3N4ednR1iY2NRVlYGxhhiYmLg6OiodgyEEG6dOVOC7dt1sXNnCgwMlFyHQxqo0d8BGvO2YIFA\ngODgYLi7u8PR0REzZsyAg4MDQkJCEBISAgAYP348evbsCbFYDH9/f3z99dcAgAEDBsDX1xfOzs7o\n168fgKctJ0KI5khIqMA777TDpk13IRLJuQ6HNILaL3p83uHDh1V3W7VG9KJHQlqn/HwFXFwq4e39\nENOmtY0RExtK6170SAghTaGqisHLqwwDBpRRItES1NVFCGlxK1bIUFTE8MEH97kOhTQRapkQQlpU\nSIgMERHtcfjwbTTgJlDSSqn1p1QqlbUeTqRxTAgh9fXbb2VYt04X33yTRK9K0TJqXeZycXHBt99+\ni5s3b6rm0VC9hJD6SE+XY/p0HXz00T2IxeVch0OamNoPLfr4+NSYp6en16QBEUK0T0mJEp6eVZg6\nNR8SCQ1XoY3UapnExcXhzp07dS57+JDGHCCE1KZUMsyaVYKuXcsxb14O1+GQZqJWy+TevXtYsWIF\nkpKSYGNjg0GDBmHw4MFwcXHBqVOnGvQUPCFEu336qQxJSQLs25dMY5NoMbUeWgwJCYG/vz8AIDk5\nGXFxcbh69SquXr2K+Ph4yGSyZgu0oeihRUK4c+JEMd57rx0OHUqEubn6L4MlT2nCQ4tqJZNx48Yh\nMjISQqGw1rLt27fjgw8+qPeGWwolE0K4cf16OUaN0sG//pVKY7g3kiYkE7X6TIKCgnDq1KkaQ+c+\nM2bMGHVWRQjRYg8fVmHyZB5WrMikRNJGNPrdXK0dtUwIaVlyOcPw4aUQi2UICMh6dQXySprQMqHn\nTwkhTcrfXwY+n+G99yiRtCX1usxVVlZW5/zycnrwiBDyP//6lwxSaTts2pQGHR2uoyEtqV4tk4cP\nH+L27dtwdHSEpaUlioqKcOPGDRgYGGDQoEHNHSMhRANER5di0yZd7Nt3B4aG9KqUtqbefSZKpRJX\nrlxBeno6TExMMGTIEBgYGDR3fI1GfSaENL+kpAq8+SYfgYFpGDy49T0ioOk0oc9E7Q74S5cu4cKF\nC8jJyYGOjg7MzMzg5ubWau/momRCSPMqLFRg0CA5PDweYeZMehNGc9C6ZLJ582ZUVlbCyckJ+vr6\nUCgUKCoqwtWrV8Hj8bBly5YGBd2cKJkQ0nwUCoZx40qgp1eOjz++R0+4NxNNSCZq3c3Vp08feHp6\n1prv7e3dqLHgCSGaafVqGfLy+Pj66/uUSNo4tZLJX3/9hZs3b+L111+Hnp4edHR0UFJSgvj4eOTl\n5TXodfTR0dEICAiAQqHAggULsHbt2lplli9fjrNnz0JPTw+HDh2Ck5MTAKCgoAALFizArVu3wOPx\ncPDgQQwePFjtGAgh6gsLk+HEifY4dCgR7dpR67+tU7vPJCYmBpcvX8bDhw+hVCphbm6OIUOGYMSI\nEWoPlKVQKGBnZ4eYmBhYWlrCxcUF4eHhcHBwUJWJiopCcHAwoqKicOXKFaxYsQKxsbEAgLlz52L4\n8OGYN28eqqqqUFJSAiMjo5o7SJe5CGlyly+XYcIEAfbuTYadXd2PDpCmo3WXuQBg1KhRGDVqVK35\nJSUl0NfXV2tdcXFxEIvFsLa2BgD4+PggIiKiRjKJjIzE3LlzAQCurq4oKChAbm4udHV1cenSJRw+\nfPjpjggEtRIJIaTpZWZWwttbBx9+eJ8SCVFR691cL7Nv3z6162RlZcHKyko1LRKJkJWV9coymZmZ\nSEtLg5mZGfz8/PD6669j4cKFKC0tbfgOEEJeqaxMCQ+PSkyc+AijRhVwHQ5pRdRqmbz//vu4ePEi\nOnbsWGvZ7du3ERAQoNbG63tZ7PmmFo/HQ1VVFa5fv47g4GC4uLggICAAW7ZswWeffVarfmBgoOp3\niUQCiUSiVpyEkKeDXPn6lsDUtAoLFz7gOhzSxKRSKaRSaYPrq5VMduzYga+++grvv/9+rWW7du1S\ne+OWlpbIyMhQTWdkZEAkEr20TGZmJiwtLcEYg0gkgouLC4Cnd5S96Nbk6smEENIwX3whQ3y8AAcO\npIDfZNc0SGvx/BftjRs3qlVfrY8En8+Hn59fncsWLVqk1oYBwNnZGcnJyUhPT4dcLseJEydq3Xrs\n6emJI0eOAABiY2NhbGwMc3NzWFhYwMrKCklJSQCe3hjQu3dvtWMghLzaqVMl2L27A3buTEWHDkqu\nwyGtkNod8CYmJnXOV7fzHXjaaR4cHAx3d3coFArMnz8fDg4OCAkJAQD4+/tj/PjxiIqKglgshr6+\nPsLCwlT19+zZg1mzZkEul8PGxqbGMkJI0/j77wosWNAO27alomtXOdfhkFaKxjMhhLzQo0dVcHGp\nwuzZOZg8+THX4bRZWnlrMCGkbaiqYpg6tRyDB5dSIiGvRMmEEFKnJUtkkMuBgICMVxcmbR4lE0JI\nLcHBMkRHt8OhQ4kQ0FmC1AN9TAghNZw/X4pPP9VFaGgSjIxokCtSP3S3OCFEJTVVjpkzBdiwIR09\netCw3KT+qGVCCAEAFBcr4eGhwMyZjzFkSBHX4RANQ8mEEAKlksHHpwQ9e8oxZ04u1+EQDUTJhBCC\ndetkuHdPByEhNFoiaRhKJoS0cceOFePwYV0cPnwb7dvTA76kYSiZENKGXb1ajuXL2yMoKAWdO1dx\nHQ7RYHQ3FyFtVHZ2JaZM4WHVqgw4OtJYQKRxqGVCSBtUXq7EpElyjBlThLFj87kOh2gBSiaEtDFK\nJcO8ecXQ01Ni8eJsrsMhWoKSCSFtzLZtMsTFCXHwYCINckWaDCUTQtqQM2dKsGNHBxw4kAh9fRrk\nijQd+l5CSBuRkFABP7922LTpLkQiGuSKNC1KJoS0Afn5Cnh6MixcmA1n52KuwyFaiC5zEaLlqqoY\nvLzKMGBAGby9H3EdDtFS1DIhRMutWCGDTMbwwQf3uQ6FaDHOk0l0dDTs7e1ha2uLrVu31llm+fLl\nsLW1Rf/+/XHjxo0ayxQKBZycnODh4dES4RKiUUJCZIiIaI8tW1JpkCvSrDhNJgqFAsuWLUN0dDQS\nEhIQHh6O27dv1ygTFRWFlJQUJCcnIzQ0FIsXL66xPCgoCI6OjuDR2+kIqeG338qwbp0udu5MgbEx\nDXJFmhenySQuLg5isRjW1tYQCoXw8fFBREREjTKRkZGYO3cuAMDV1RUFBQXIzX36iuzMzExERUVh\nwYIFYIxeUEfIM4mJFZg+XQcffXQPYjENckWaH6fJJCsrC1ZWVqppkUiErKysepdZuXIltm/fDj49\neUWIyo0b5ZBIePDzewCJpJDrcEgbwelV1Ppemnq+1cEYw48//oguXbrAyckJUqn0pfUDAwNVv0sk\nEkgkEjUjJUQz/PFHGTw9BVi2LBMTJz7hOhyiQaRS6SvPpS/DaTKxtLRERkaGajojIwMikeilZTIz\nM2FpaYnvv/8ekZGRiIqKQnl5OYqKiuDr64sjR47U2k71ZEKItrpwoRTTpgmxdu19jBxZwHU4RMM8\n/0V748aNatXn9PqQs7MzkpOTkZ6eDrlcjhMnTsDT07NGGU9PT1WCiI2NhbGxMSwsLLB582ZkZGQg\nLS0N3377LUaMGFFnIiGkLThzpgTe3kJs2JBOiYRwgtOWiUAgQHBwMNzd3aFQKDB//nw4ODggJCQE\nAODv74/x48cjKioKYrEY+vr6CAsLq3NddDcXaatOnCjG4sXt8eWXd+npdsIZHtPy26B4PB7d6UW0\nVliYDKtX6+Jf/0pBnz40wJW2MjQ0RK9evVp0m+qeO+k2KEI01O7dMqxZ0x7BwcmUSAjn6JlYQjTQ\n5s1F2L1bF//+dxKsrSu4DocQSiaEaJr164tw9Gg77Nt3B9260avkSetAyYQQDaFUMqxYIUNUlBD7\n9iXBzKyS65AIUaFkQogGUCgYFiyQITZWgNDQO/SuLdLqUDIhpJWrqmJ4+20ZkpL4+OabJBgaUiIh\nrQ8lE0JaMbmcYerUYuTlAXv2JENPj8ZtJ60TJRNCWqnSUiUmTiyFQqHArl130b49PS9FWi96zoSQ\nVqiwUIGRI8sgFMqxbVsqJRLS6lEyIaSVefSoChJJBczNy/D552k0QiLRCJRMCGlFsrMrMWxYJezt\ni/HRR/ego8N1RITUDyUTQlqJ9HQ5hg5VwM2tAKtWZYDGfCOahD6uhLQCd+5UYOhQhvHjH2HJkmzQ\nS7CJpqFkQgjH/vqrAhIJD2+/nYt33snlOhxCGoSSCSEcio0tw6hRfPj7Z2P69DyuwyGkweg+EUI4\nIpWWwctLgDVr7mPUKM0dHVEqleKDDz7AyZMnYW1t3WLbDQoKwqVLlyAUCiESibBhwwYYGBjUKufh\n4QF9fX3w+XwIBIIGj8haXl6OtWvXIisrC3w+H8OGDcOyZcsauxtagwbHIoQDUVGlmD376TC7Q4YU\ncR1Oo6xbtw7l5eWwt7eHv79/reVVVVUQNMP9zbGxsRg0aBD4fD727NkDAHjvvfdqlfP09MTRo0dh\nZGTUqO2Vl5fj1q1bGDhwIKqqqrB48WL4+fnhjTfeaNR660MTBseilgkhLey//y2Gv397bNmi+cPs\nlpaW4p9//sG+ffuwbNkyVTK5du0a/v3vf6Njx464d+8eTp48iT179uDPP/9EZWUlpk2bhqlTp6K0\ntBSrV69GUVGR6gQ9fPjwem178ODBqt/79OmDCxcuvLDsq06KgYGB0NXVxZ07d/DkyRN88sknOHPm\nDBISEtCnTx9s2LABurq6GDhwIICnQ47b29vj4cOH9Yq1LeA8mURHRyMgIAAKhQILFizA2rVra5VZ\nvnw5zp49Cz09PRw6dAhOTk7IyMiAr68vHj58CB6Ph0WLFmH58uUc7AEh9XfokAyrVuli165U9O1b\nwnU4jXbx4kW4ubnBwsICJiYmSExMhL29PQDgzp07+O9//4uuXbvihx9+gIGBAY4cOQK5XI4FCxZg\n8ODBMDc3x/bt26Gvr4+CggL4+fmpksnChQtRUlL7GK1cuRIuLi415kVGRsLd3b3OGHk8HpYsWQId\nHR1MnToVU6ZMqbOMTCZDWFgYLl68iFWrVuHgwYPo2bMnfH19kZSUVKNlIJPJ8Ntvv2HmzJkNPnba\nhtNkolAosGzZMsTExMDS0hIuLi7w9PSEg4ODqkxUVBRSUlKQnJyMK1euYPHixYiNjYVQKMSuXbsw\nYMAAFBcXY+DAgRg9enSNuoS0JsHBMgQG6mLPnmTY2ZVxHU6TOHfuHN5++20AwMiRI3Hu3DlVMund\nuze6du0K4OklqZSUFJw/fx4AUFJSgoyMDHTp0gXBwcG4efMmeDwe8vLy8OTJE3Tq1An79u2rVwwH\nDhyAQCDA2LFjX7i8c+fOyM/Px9KlS2FtbQ0nJ6da5YYOHQoAsLGxgampKWxsbAAAPXv2RHZ2tiqZ\nVFVV4aOPPsLMmTPRrVu3+h4qrcdpMomLi4NYLFZ12vn4+CAiIqJGQoiMjMTcuXMBAK6urigoKEBu\nbi4sLCxgYWEBADAwMICDgwOys7MpmZBWacuWInz1lS5CQu5ozTC7hYWFuHbtGlJTU8Hj8aBQKMDj\n8bBixQoAQIcOHWqUX7NmTY1LUwBw5swZFBQU4NixY9DR0YGnpyfk8qejRy5YsAClpbXHtg8ICMCg\nQYNU9X///Xd88803L4yzc+fOAAATExNIJBLcunWrzmQiFAoBAHw+X/X7s2mF4n+v/d+0aRNee+01\n+Pj4vPjgtEGcJpOsrCxYWVmppkUiEa5cufLKMpmZmTA3N1fNS09Px40bN+Dq6tr8QROipo8/LsLh\nw+0RGnoHlpbaM8zu+fPnMWHCBKxbt041b9GiRbhx40atsm5ubvjuu+/g7OwMgUCAe/fuwdzcHCUl\nJejUqRN0dHRw7do1PHjwQFVn//79L93+5cuXcfToUYSGhqJ9+/Z1likvL4dCoYC+vj7KysoQGxuL\nRYsWNXCPga+//holJSX49NNPG7wObcVpMuHV8zHf5zvPqtcrLi6Gt7c3goKC6rwtkBCuKJUMK1fK\nEBnZDqGhd9Cli3YNs/vzzz/jnXfeqTFvxIgROHfuHEaPHl1j/uTJk5GdnY3Zs2eDMYZOnTphx44d\nGDt2LN5//334+PjAwcEBPXr0qPf2t2/fjsrKSixZsgQA0K9fP3z44YfIy8vDF198gaCgIDx69Ahr\n1qwB8PTy1Lhx42q1jp6pfl55/tzE4/Hw8OFDhIWFoUePHpg1axYAYMaMGZg0aVK9Y9ZmnN4aHBsb\ni8DAQERHRwMAvvzyS/D5/Bqd8O+++y4kEomqSWlvb4+LFy/C3NwclZWVmDhxIsaNG4eAgIA6t8Hj\n8bBhwwbVtEQigUQiab6dIgRPE8nChTL8/rsAe/Yko1OnKq5DIhqsJW4NlkqlkEqlqumNGzeqdWsw\np8mkqqoKdnZ2OH/+PLp164ZBgwYhPDy8Vgd8cHAwoqKiEBsbi4CAAMTGxoIxhrlz58LU1BS7du16\n4TboORPS0qqqGGbPLkZCAg+7d6fQMLuk0eg5k1dtXCBAcHAw3N3doVAoMH/+fDg4OCAkJAQA4O/v\nj/HjxyMqKgpisRj6+voICwsDAPz+++84duwY+vXrp+pM+/LLL194RwchLUEuZ/DyKkZODrB3Lw2z\nS9oOegKekCZSWqqEh0cp5HIFtmxJha4ufe5I09CElgm96JGQJlBUpMCoUWXg8yuxfTslEtL2UDIh\npJGePFFAIqlA587l2LTpLoRCSiSk7aFkQkgj5ORUYcgQOXr1KsYnn6TTMLukzeL83VyEaKr79ysx\nYoQCw4YV0OiIpM2jlgkhDZCUVIEhQ5Rwd3+MpUspkRBCyYQQNf3999NhdmfMyMW8eTlch0NIq0DJ\nhBA1XLlShpEjeViwIBs+PjTMLiHPUDIhpJ4uXizD+PECrFyZiUmTHnMdDiGtCiUTQuohOroUU6YI\n8PHH9zBmTD7X4RDS6lAyIeQVvvuuGG+/LcSmTWkYNqyQ63AIaZUomRDyEocPy7BoUXvs2JGKQYNk\nXIdDSKtFyYSQOiiVDHv2PB2vfc+eZPTvr/njtRPSnOihRUKquXOnAvv3V+DEifYQCgX45psk9OxZ\nznVYhLR6lExIm1dQoMDRo6U4doyPO3faY8yYCnz+eRZ69y6lhxEJqSdKJqRNUigYfvqpFGFhSsTE\ndMDrryvh5fUQQ4cWol07elEjIeqiZELalPj4CuzbV4HvvtOFkREPEyYU4Icf7tKwuoQ0EiUTovXy\n8qoQFlaG//xHB5mZQowdW4ZduzJha1vGdWiEaA1KJkQryeUMP/xQgsOHGS5d0sMbb1TBzy8HgwcX\nQUCfekKaHP23IlolNrYM+/dX4vTpDrC0BMaPf4I1a1LRsaOC69AI0WqcP2cSHR0Ne3t72NraYuvW\nrXWWWb58OWxtbdG/f3/cuHFDrbpE+2VmVmLjxiLY25dh8mQdMFaC0NA7OHjwDry9H1EiIaQFcJpM\nFAoFli1bhujoaCQkJCA8PBy3b9+uUSYqKgopKSlITk5GaGgoFi9eXO+62kAqlXIdQqM0RfyVlQx5\neVVISqrA1avl+OWXUnz3XQn27JHhrbeK4eDAw9WrlQgIyMCZM39jyZJsvPZaReODB3Dt2rUmWQ8X\nNDl2gOLXNJxe5oqLi4NYLIa1tTUAwMfHBxEREXBwcFCViYyMxNy5cwEArq6uKCgoQE5ODtLS0l5Z\nVxtIpVJIJBKuw2iQsjIlzpw5jy5d3FBQoERhIVP9W1QEFBVB9btMxoNMBshkfBQX81BcrIOSEj6K\ni/mQy/nQ0wMMDHjQ11dCX18JAwMlDAwUkEgK8NlnBdDTUzbLPvz5559wdnZulnU3N02OHaD4NQ2n\nySQrKwtWVlaqaZFIhCtXrryyTFZWFrKzs19Zl6hPqWQoLWXIz1egoECp+nl64leisBAoKmIoLARk\nMqCoiIeiIt7/TwB81U9JiQ6USh4EAh5OnAD09dn/TwQKGBgooK+vgJ7e03+7dFGgR4+ny579PC3z\ndF6HDkp6eJCQVo7TZMKr5xmCscY9RDZ0aEE9tlHfWBoVitrrzMgox88/F6q1bXX2paKCj5KSpyf/\nZz8CAWBgUDMB/O/f/yUDS0slevWqngCUqh99fQXatWMICcnFu+8m1C/wF+LuaiyPxwOfz3nXYoNo\ncuwAxf/8ulo7TpOJpaUlMjIyVNMZGRkQiUQvLZOZmQmRSITKyspX1gUAGxsb/N//mTRD9C0nM7Nl\nby5QKICKCuBxE43/FBoa2jQr4ogmx6/JsQMUP5dsbGzUKs9pMnF2dkZycjLS09PRrVs3nDhxAuHh\n4TXKeHp6Ijg4GD4+PoiNjYWxsTHMzc1hamr6yroAkJKS0lK7QwghbRanyUQgECA4OBju7u5QKBSY\nP38+HBwcEBISAgDw9/fH+PHjERUVBbFYDH19fYSFhb20LiGEkJbHY43tkCCEENLmaW7vVj1o0kON\n8+bNg7m5Ofr27aua9+TJE4wePRq9evXCmDFjUFDw6hsJuJKRkYG33noLvXv3Rp8+fbB7924AmrMP\n5eXlcHV1xYABA+Do6Ih169YB0Jz4n1EoFHBycoKHhwcAzYrf2toa/fr1g5OTEwYNGgRAc+IvKCiA\nt7c3HBwc4OjoiCtXrmhM7Hfu3IGTk5Pqx8jICLt371Y7fq1NJpr2UKOfnx+io6NrzNuyZQtGjx6N\npKQkjBw5Elu2bOEoulcTCoXYtWsXbt26hdjYWOzduxe3b9/WmH3Q1dXFr7/+ips3byI+Ph6//vor\n/u///k9j4n8mKCgIjo6Oqrt/NCl+Ho8HqVSKGzduIC4uDoDmxL9ixQqMHz8et2/fRnx8POzt7TUm\ndjs7O9y4cQM3btzAn3/+CT09PUyZMkX9+JmWunz5MnN3d1dNf/nll+zLL7/kMKJXS0tLY3369FFN\n29nZsZycHMYYYw8ePGB2dnZchaa2SZMmsV9++UUj96GkpIQ5Ozuzf/75R6Piz8jIYCNHjmQXLlxg\nEydOZIxp1mfI2tqaPXr0qMY8TYi/oKCA9ejRo9Z8TYj9eefOnWNDhgxhjKkfv9a2TF70sKMmyc3N\nhbm5OQDA3Nwcubm5HEdUP+np6bhx4wZcXV01ah+USiUGDBgAc3Nz1SU7TYp/5cqV2L59e41nGzQp\nfh6Ph1GjRsHZ2Rn79u0DoBnxp6WlwczMDH5+fnj99dexcOFClJSUaETsz/v2228xc+ZMAOofe61N\nJprwkI86eDyeRuxTcXExvLy8EBQUBENDwxrLWvs+8Pl83Lx5E5mZmfjtt9/w66+/1ljemuP/8ccf\n0aVLFzg5Ob3wId/WHD8A/P7777hx4wbOnj2LvXv34tKlSzWWt9b4q6qqcP36dSxZsgTXr1+Hvr5+\nrUtCrTX26uRyOc6cOYNp06bVWlaf+LU2mdTngcjWztzcHDk5OQCABw8eoEuXLhxH9HKVlZXw8vLC\nnDlzMHnyZACatw8AYGRkhAkTJuDPP//UmPgvX76MyMhI9OjRAzNnzsSFCxcwZ84cjYkfALp27QoA\nMDMzw5QpUxAXF6cR8YtEIohEIri4uAAAvL29cf36dVhYWLT62Ks7e/YsBg4cCDMzMwDq/9/V2mRS\n/YFIuVyOEydOwNPTk+uw1OLp6YnDhw8DAA4fPqw6QbdGjDHMnz8fjo6OCAgIUM3XlH149OiR6m6V\nsrIy/PLLL3ByctKY+Ddv3oyMjAykpaXh22+/xYgRI3D06FGNib+0tBQymQwAUFJSgp9//hl9+/bV\niPgtLCxgZWWFpKQkAEBMTAx69+4NDw+PVh97deHh4apLXEAD/u82c38Op6KiolivXr2YjY0N27x5\nM9fhvJSPjw/r2rUrEwqFTCQSsYMHD7LHjx+zkSNHMltbWzZ69GiWn5/PdZgvdOnSJcbj8Vj//v3Z\ngAED2IABA9jZs2c1Zh/i4+OZk5MT69+/P+vbty/btm0bY4xpTPzVSaVS5uHhwRjTnPjv3r3L+vfv\nz/r378969+6t+v+qKfHfvHmTOTs7s379+rEpU6awgoICjYmdMcaKi4uZqakpKyoqUs1TN356aJEQ\nQkijae1lLkIIIS2HkgkhhJBGo2RCCCGk0SiZEEIIaTRKJoQQQhqNkgkhhJBGo2RCCCGk0SiZEEII\naTRKJoTUQ1JSEsaNG4eQkBCMGjUK8+fPR0hICJycnDB9+vQWjaWysrLGay8IaQ04HQOeEE1x8+ZN\nREZGQigU4tSpU1izZg3s7OxgbGyMGTNmtGgsQqEQ4eHhLbpNQl6FWiaE1IOtrS2EQiGAp60UOzs7\nAFD9S0hbRy0TQurByckJAJCcnAwbGxsAQGpqKn777TekpKTA29sbly5dwvfff4/hw4eDMQapVIqx\nY8fi0aNHAABfX18AT1/1nZiYiHbt2sHLywsWFhYAUK/6qamp+Omnn9CtW7da2wSAW7du4eOPP27R\nY0MIQC0TQtQSFxcHV1dXAE9HojM1NYVcLgfwvwHZRCIRpk6divj4eAwbNgwTJ07E9evXAQD37t3D\n5ol5CnkAAAGaSURBVM2bsXLlSjg4OKC4uFi17vrUf9k2p0yZguTk5BY4CoTURsmEEDVcvXpVlUze\neOMNREREqMbJGTJkCFJTU+Hi4oLS0lKYmprCwMAAsbGxGDBgAADg9OnTsLW1xY8//ggejwexWKxa\nd33qv2ybhYWFEAjoYgPhBiUTQtRw9epV1Yh6RUVF4PF4iI+PB/B0UC1dXV0AwLVr1zBo0CAAQGRk\nJIYOHYr4+Hh06NABnp6emDhxIoYOHYqHDx8iLS2t3vVlMtkLtxkVFYXRo0fjjz/+aKGjQcj/UDIh\npB7++usvbN++HfHx8Th16hQePnwIhUKBLl26oKKiAsDT/opnfRf//PMP3nrrLQBPh6O9cuUK+vbt\nixkzZiA+Ph4//fQTTpw4gaqqKowaNare9auqql64TUNDQ+Tm5mrc8NREO9DgWIRwTCqVQiKRcB0G\nIY1CLRNCOPaslUGIJqOWCSGEkEajlgkhhJBGo2RCCCGk0SiZEEIIaTRKJoQQQhqNkgkhhJBGo2RC\nCCGk0SiZEEIIaTRKJoQQQhrt/wEuIli7RcUxrAAAAABJRU5ErkJggg==\n",
"text": [
"<matplotlib.figure.Figure at 0x66e1310>"
]
}
],
"prompt_number": 29
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 9.12-3 Page Number 576"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Pasteurization of Milk\n",
"#Variable declaration\n",
"F150 = 9. #Typical value (min)\n",
"D150 = 0.6\n",
"#Calculation\n",
"N0byN = 10.**(F150/D150)\n",
"#Result\n",
"print 'The reduction in number of viable cells is %10.3e'%(N0byN) "
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The reduction in number of viable cells is 1.000e+15\n"
]
}
],
"prompt_number": 30
}
],
"metadata": {}
}
]
}
|