1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
|
{
"metadata": {
"name": "",
"signature": "sha256:fc87d6d9b6be61c481eaede8b73c8cf240680807ed293ac553e78b065098e01d"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Chapter 8: Evaporation"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 8.4-1, Page number 498"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Heat Transfer Area in a Single-Effect Evaporator\n",
"\n",
"#Variable declaration\n",
"F = 9072. #Feed rate to the evaporator, kg/hr\n",
"xF = 1. #weight percent of salt, kg/kg\n",
"TF = 311.0 #Temperature of feed, K\n",
"xL = 1.5 #Weight percentage of concentrated product, kg/kg \n",
"P = 101.325 #Pressure of vapor space, kPa\n",
"Ps = 143.3 #Pressure of saturated steam used for heating, kPa\n",
"U = 1704. #Overall heat transfer coefficient, W/m2K\n",
"cpF = 4.140 #Specific heat of Feed to the evaporator, kJ/(kg.K)\n",
"Hv373 = 2257. #Latent heat of evaporation of water at 373.2 K\n",
"Hv143 = 2230. #Latent heat of evaporation of saturated water at 143.3 kPa\n",
"Ts = 383.2 #Temperature of Saturated steam at 143.3 kPa\n",
"TL = 373.2 #Temperature of concentrated Liquid enthalpy calculation, K\n",
"Tref = 373.2 #Reference temperature for enthalpy calculation, K\n",
"\n",
"#Calculation \n",
"L = F*xF/xL\n",
"V = F-L\n",
" #Energy Balance\n",
"hF = F*cpF*(TF-Tref)\n",
"hL = L*cpF*(TL-Tref)\n",
"hV = Hv373*V\n",
"#hF + q = hL + hV\n",
"q = (hL+hV-hF)\n",
"S = q/(Hv143)\n",
"qsi = q*1000/3600\n",
"A = qsi/(U*(Ts-TL))\n",
"\n",
"#Result\n",
"print 'Concetrated liquid Rate: %5.1f kg/h'%L\n",
"print 'Vapor rate from evaporator: %5.1f kg/h'%V\n",
"print 'Heat Transfer area required: %4.1f m2'%(A)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Concetrated liquid Rate: 6048.0 kg/h\n",
"Vapor rate from evaporator: 3024.0 kg/h\n",
"Heat Transfer area required: 149.3 m2\n"
]
}
],
"prompt_number": 3
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 8.4-2, Page Number 499"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Use of Duhring Chart for Boiling point rise\n",
"\n",
"#Variable declaration\n",
"P = 25.6 #Pressure in the evaporator, kPa\n",
"C = 30 #Weight % of NaOH in solution, K\n",
"Tb256 = 65.6 #Boiling point of water at 25.6 kPa, \u00b0C or 150 \u00b0C\n",
"\n",
"#Calculation\n",
"#From Fig. 8.4-2 for 30% wt of NaoOH and boiling point of water 150 \u00b0F\n",
"Ts = 175 #Boiling point of solution \u00b0F\n",
"TsC = 79.5 #Boiling point of solution \u00b0C\n",
"BPR = TsC-Tb256\n",
"#Result\n",
"\n",
"print \"Boiling point rise: \",BPR,\"\u00b0C\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Boiling point rise: 13.9 \u00b0C\n"
]
}
],
"prompt_number": 4
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 8.4-3, Page number 501"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Evaporation of NaOH Solution\n",
"\n",
"# Variable declaration\n",
"F = 4536. #Feed rate to the evaporator, kg/hr\n",
"xF = 0.2 #weight percent of NaOH, kg/kg\n",
"TF = 60.0 #Temperature of feed, \u00b0C\n",
"xL = 0.5 #Weight percentage of concentrated product, kg/kg \n",
"P = 11.7 #Pressure of vapor space, kPa\n",
"Ps = 172.4 #Pressure of saturated steam used for heating, kPa\n",
"U = 1560. #Overall heat transfer coefficient, W/m2K\n",
"cpS = 1.884 #Specific heat of steam 11.7 kPa , kJ/(kg.K)\n",
"Hv895 = 2667. #Enthalpy of steam at 11.7 kPa and 89.5\u00b0C\n",
"Hv489 = 2590. #Enthalp of steam at 11.7 kPa and 49.5\u00b0C\n",
"LambdaV1724 = 2214 #Latent heat of evaporation of water at 172.4 kPa and at 115.6\u00b0C\n",
"Ts = 115.6 #Saturation temperature of 172.4kPa in \u00b0C\n",
"\n",
"# Calculation\n",
"L = F*xF/xL\n",
"V = F - L\n",
"BPw117 = 48.9 #BP of Water From steam table, \u00b0C\n",
"BPs117 = 89.5 #BP of Soln From Duhring Chart Fig 8.4-2, \u00b0C\n",
"BPR = BPs117-BPw117\n",
"hF = 214. #Enthalpy of 20% feed at 60\u00b0C, KJ/Kg from fig 8.4-3 \n",
"hL = 505. #Enthalpy of 50% feed at 89.5\u00b0C, KJ/Kg\n",
"HV = Hv489 + cpS*BPR\n",
"S = (L*hL+V*HV-F*hF)/LambdaV1724\n",
"Q = S*LambdaV1724/3600 #Heat addition rate in kW\n",
"#Newtons law of cooling \n",
"\n",
"A = Q*1000/(U*(Ts-BPs117))\n",
"SteamEco = V/S\n",
"#Result\n",
"print \"The steam used\",round(S,1),\"kg steam/h\"\n",
"print \"The calculated steam economy is \",round(SteamEco,3)\n",
"print \"The heating surface area is \", round(A,1),\"m2\"\n",
"print 'Difference in answers is due to machin precision'"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The steam used 3253.2 kg steam/h\n",
"The calculated steam economy is 0.837\n",
"The heating surface area is 49.1 m2\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example 8.5-1, Page number 505"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Evaporation of Sugar Solution in a Triple-Effect Evaporator\n",
"import numpy as np\n",
"from scipy.interpolate import interp1d\n",
"\n",
"# Variable declaration\n",
"xF = 0.1 #wt fraction of sugar in Feed\n",
"xP = 0.5 #wt fraction of sugar in Product\n",
"Ts1 = 121.1 #Saturation temperature of the steam at 205.5kPa in \u00b0C\n",
"F = 22680. #Feed Rate kg/hr\n",
"TF = 26.7 #Temperature of the feed, \u00b0C\n",
"U1 = 3123. #Overall heat transfer coefficient for evaporator 1, W/(m2K) \n",
"U2 = 1987. #Overall heat transfer coefficient for evaporator 2, W/(m2K)\n",
"U3 = 1136. #Overall heat transfer coefficient for evaporator 3, W/(m2K)\n",
"T = np.array([50.,60.,70.,80.,90.,100.,110.,120,126.])\n",
"H = np.array([2592.2,2609.7,2626.9,2643.8,2660.1,2676.0,2691.3,2706.0,2714.4])\n",
"h = np.array([209.3,251.1,293.0,334.9,376.9,419.1,461.3,503.7,529.2])\n",
"lamb = np.array([2382.9,2358.6,2334.0,2308.8,2283.2,2256.9,2230.0,2202.2,2185.2])\n",
"cp = np.array([])\n",
"\n",
"# Calculation\n",
"def BPRDegC(xw):\n",
" return 1.78*xw+6.22*xw*xw\n",
"\n",
"def SpecHeat(xw):\n",
" return 4.19-2.35*xw\n",
"\n",
"fH = interp1d(T,H)\n",
"fh = interp1d(T,h)\n",
"flamb = interp1d(T,lamb)\n",
"\n",
"#Step 1\n",
"BPR3 = BPRDegC(xP)\n",
"Tvs3 = 51.67 #Saturation temperature of steam at 13.4 kPa for 3rd evaporator\n",
"T3 = Tvs3 + BPR3\n",
"\n",
"#Step 2\n",
"L3 = F*xF/xP #Concentrated product rate, kg/hr\n",
"V = F - L3 #Total water vaporised from three evaporators (V = V1 + v2 +v3 ), kg/hr\n",
"V1 = V/3 #Assuming V1 = V2 = V3\n",
"V2 = V1\n",
"V3 = V1\n",
"#Making liquid balance on each evaporator \n",
"L1 = F - V1 #Concentrated liquid rate from evaporator 1, kg/hr\n",
"L2 = L1 - V2 #Concentrated liquid rate from evaporator 2, kg/hr\n",
"L3 = L2 - V3\n",
"#Making Solid balance on each evaporator \n",
"x1 = F*xF/L1\n",
"x2 = L1*x1/L2\n",
"x3 = xP\n",
"\n",
"#Step 3\n",
"BPR1 = BPRDegC(x1)\n",
"BPR2 = BPRDegC(x2)\n",
"BPR3 = BPRDegC(x3)\n",
"SDelT = Ts1 - Tvs3 - (BPR1+BPR2+BPR3)\n",
"ISU13 = 1/U1+1/U2+1/U3\n",
"DelT1 = SDelT*(1/U1)/ISU13\n",
"DelT2 = SDelT*(1/U2)/ISU13\n",
"DelT3 = SDelT*(1/U3)/ISU13\n",
"T1 = Ts1 - DelT1\n",
"T2 = T1 - BPR1 - DelT2\n",
"Ts2 = T1 - BPR1\n",
"T3 = T2 -BPR2 - DelT3\n",
"Ts3 = T2 - BPR2\n",
"Ts4 = T3 - BPR3\n",
"\n",
"#Step4: \n",
"CpF = SpecHeat(xF) #Calculate Heat Capacities\n",
"Cp1 = SpecHeat(x1)\n",
"Cp2 = SpecHeat(x2)\n",
"Cp3 = SpecHeat(x3)\n",
"\n",
"H1 = fH(Ts2) + 1.884*BPR1 #for effect 1\n",
"lambdas1 = fH(Ts1)-fh(Ts1) \n",
"H2 = fH(Ts3) + 1.884*BPR2 #for effect 2\n",
"lambdas2 = fH(Ts2)-fh(Ts2) \n",
"H3 = fH(Ts4) + 1.884*BPR3 #for effect 3\n",
"lambdas3 = fH(Ts3)-fh(Ts3) \n",
"\n",
"a11 = Cp1*T1 - lambdas2 - H2\n",
"a12 = -(Cp2*T2 - H2)\n",
"b1 = -F*lambdas2\n",
"a21 = lambdas3\n",
"a22 = Cp2*T2 - lambdas3 - H3\n",
"b2 = L3*Cp3*T2 - L3*H3\n",
"\n",
"\n",
"a = np.array([[a11,a12], [a21,a22]])\n",
"b = np.array([b1,b2])\n",
"L1,L2 = np.linalg.solve(a, b)\n",
"V1 = F - L1\n",
"V2 = L1 - L2\n",
"V3 = L2 - L3\n",
"S = (L1*Cp1*T1 + V1*H1 - F*CpF*TF)/lambdas1\n",
"\n",
"#Step5:\n",
"q1 = S*lambdas1*1000/3600\n",
"q2 = V1*lambdas2*1000/3600\n",
"q3 = V2*lambdas3*1000/3600\n",
"\n",
"A1 = q1/(U1*DelT1)\n",
"A2 = q2/(U2*DelT2)\n",
"A3 = q3/(U3*DelT3)\n",
"\n",
"Am = Am1 = (A1+A2+A3)/3\n",
"\n",
"#Step6:\n",
"x1 = F*xF/L1\n",
"x2 = L1*x1/L2\n",
"x3 = L2*x2/L3\n",
"\n",
"#Step7:\n",
"BPR1 = BPRDegC(x1)\n",
"BPR2 = BPRDegC(x2)\n",
"BPR3 = BPRDegC(x3)\n",
"SDelT = Ts1 - Tvs3 - (BPR1+BPR2+BPR3)\n",
"\n",
"DelT1 = DelT1*A1/Am\n",
"DelT2 = DelT2*A2/Am\n",
"DelT3 = DelT3*A3/Am\n",
"\n",
"T1 = Ts1 - DelT1\n",
"T2 = T1 - BPR1 - DelT2\n",
"Ts2 = T1 - BPR1\n",
"T3 = T2 -BPR2 - DelT3\n",
"Ts3 = T2 - BPR2\n",
"Ts4 = T3 - BPR3\n",
"\n",
"\n",
"#Step8: \n",
"CpF = SpecHeat(xF) #Calculate Heat Capacities\n",
"Cp1 = SpecHeat(x1)\n",
"Cp2 = SpecHeat(x2)\n",
"Cp3 = SpecHeat(x3)\n",
"\n",
"H1 = fH(Ts2) + 1.884*BPR1 #for effect 1\n",
"lambdas1 = fH(Ts1)-fh(Ts1) \n",
"H2 = fH(Ts3) + 1.884*BPR2 #for effect 2\n",
"lambdas2 = fH(Ts2)-fh(Ts2) \n",
"H3 = fH(Ts4) + 1.884*BPR3 #for effect 3\n",
"lambdas3 = fH(Ts3)-fh(Ts3) \n",
"\n",
"a11 = Cp1*T1 - lambdas2 - H2\n",
"a12 = -(Cp2*T2 - H2)\n",
"b1 = -F*lambdas2\n",
"a21 = lambdas3\n",
"a22 = Cp2*T2 - lambdas3 - H3\n",
"b2 = L3*Cp3*T2 - L3*H3\n",
"\n",
"a = np.array([[a11,a12], [a21,a22]])\n",
"b = np.array([b1,b2])\n",
"L1,L2 = np.linalg.solve(a, b)\n",
"V1 = F - L1\n",
"V2 = L1 - L2\n",
"V3 = L2 - L3\n",
"S = (L1*Cp1*T1 + V1*H1 - F*CpF*TF)/lambdas1\n",
"\n",
"q1 = S*lambdas1*1000/3600\n",
"q2 = V1*lambdas2*1000/3600\n",
"q3 = V2*lambdas3*1000/3600\n",
"\n",
"A1 = q1/(U1*DelT1)\n",
"A2 = q2/(U2*DelT2)\n",
"A3 = q3/(U3*DelT3)\n",
"Am = (A1+A2+A3)/3\n",
"SEconomy = (V1+V2+V3)/S\n",
"\n",
"#Results\n",
"print 'Area A1 A2 and A3 for 1st 2nd and 3rd effect are %4.3f, %4.3f,and %4.3f'%(A1,A2,A3) \n",
"print \"The Average area of each effect\",round(Am,2),\"as compared to average area\",round(Am1,2),\"in first trial\" \n",
"print \"Steam Economy for tripple effect evaporator:\", round(SEconomy,3) \n",
"print 'Difference in answers is due to machin precision'"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Area A1 A2 and A3 for 1st 2nd and 3rd effect are 111.421, 113.714,and 111.640\n",
"The Average area of each effect 112.26 as compared to average area 112.08 in first trial\n",
"Steam Economy for tripple effect evaporator: 1.999\n"
]
}
],
"prompt_number": 1
}
],
"metadata": {}
}
]
}
|