summaryrefslogtreecommitdiff
path: root/TRANSPORT_PROCESSES_AND_UNIT_OPERATIONS/GeankoplisChapter07.ipynb
blob: a72ea66f1031ef56bac380450ce8c3093c416282 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
{
 "metadata": {
  "name": "",
  "signature": "sha256:bf40b679afe76f70c4240c30eab7a27a1947dac701038fe19ff02bcbe2341496"
 },
 "nbformat": 3,
 "nbformat_minor": 0,
 "worksheets": [
  {
   "cells": [
    {
     "cell_type": "heading",
     "level": 1,
     "metadata": {},
     "source": [
      "Chapter 7: Principles of Unsteady-State and Convective Mass Transfer"
     ]
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 7.1-1, Page number 431 "
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Unsteady State Diffusion in a Slab of Agar\n",
      "\n",
      "#Variable declaration\n",
      "c0 = 0.1        #Concentration of Urea in slab (kg.mol/m3)\n",
      "c1 = 0.         #Concentration of Urea in water (kg.mol/m3)fficient bution  \n",
      "tk = 10.16      #thickness of slab in mm\n",
      "DAB = 4.72e-10  #Diffusivity of urea in m2/s\n",
      "t = 10          #Time in hr\n",
      "kc = inf\n",
      "xa = 0.0        #Location at centre\n",
      "xb = 2.54       #Distance from surface in mm\n",
      "\n",
      "#Calculation\n",
      "K = 1.  #Equilibrium distribution coefficient since aqueous solution and ouside solution have very simillar properties\n",
      "x1 = tk/(1000*2)\n",
      "X = DAB*(t*3600)/x1**2\n",
      "n = xa/x1\n",
      "m = DAB/(K*kc*x1)\n",
      "#from fig 5.3-5\n",
      "X = 0.658\n",
      "Y =0.275\n",
      "#Calculation for part (a)\n",
      "ca1 = (c1/K) - Y*(c1/K - c0)\n",
      "\n",
      "x = (tk/2 - xb)/1000\n",
      "n = xb/x1\n",
      "#from fig 5.3-5\n",
      "Y = 0.172\n",
      "ca2 = (c1/K) - Y*(c1/K - c0)    \n",
      "#Calculation for part (b)\n",
      "\n",
      "X = X/(0.5**2)\n",
      "#from fig 5.3-5\n",
      "Y = 0.0020\n",
      "cb = (c1/K) - Y*(c1/K - c0)\n",
      "#Result\n",
      "print 'Part a'\n",
      "print \"The concentration at x=0 \",ca1,\"kmol/m3\"\n",
      "print \"The concentration at 2.54 mm \",ca2,\"kmol/m3\"\n",
      "print 'Part b'\n",
      "print 'The concentration at the mid-point of the slab %4.1e'%(cb),\"kmol/m3\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Part a\n",
        "The concentration at x=0  0.0275 kmol/m3\n",
        "The concentration at 2.54 mm  0.0172 kmol/m3\n",
        "Part b\n",
        "The concentration at the mid-point of the slab 2.0e-04 kmol/m3\n"
       ]
      }
     ],
     "prompt_number": 1
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 7.1-2, Page Number 431 "
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Unsteady-State Diffusion in Semi-Infinite Slab \n",
      "from math import sqrt\n",
      "\n",
      "#Variable declaration\n",
      "\n",
      "c0 = 1.e-2            #Concentration of solute A in slab (kg.mol A/m3)\n",
      "c1 = 0.1              #Concentration of solute A in moving fluid (kg.mol A/m3)\n",
      "Kc = 2.e-7            #Convective coeffcient (m/s)\n",
      "K = 2.                #Equilibrium distribution coefficient \n",
      "x1 = 0.0              #Location where cetre lies\n",
      "x2 = 0.01             #LOcation from the centre, m\n",
      "t = 3.e4              #Given time (s)\n",
      "DAB = 4.e-9           #Diffusivity in the solid (m2/s)\n",
      "cb = 3.48e-2          #Value taken from the Fig. 7.1-3b\n",
      "\n",
      "\n",
      "#Calculation\n",
      "\n",
      "absc = x2/sqrt(DAB*t)\n",
      "param = K*Kc*sqrt(DAB*t)/DAB\n",
      "# from fig 5.3-3 1-Y = 0.26\n",
      "ord = 0.26\n",
      "Y = 1.-ord\n",
      "cs = (1 - Y)*(c1/K - c0) + c0\n",
      "# At surface \n",
      "absc = x1/2*sqrt(DAB*t)\n",
      "#from  fig 5.3-3 1-Y = 0.62  at x=0 and absc\n",
      "ord =0.62\n",
      "Y = 1 - ord\n",
      "ca = (1 - Y)*(c1/K - c0) + c0\n",
      "CLi = K*cb\n",
      "\n",
      "#Result\n",
      "\n",
      "print \"The concentration of solid at surface (x=0) is \",cs,\"kmol/m3\"\n",
      "print 'The concentration of solid at (x=0.01m) is %5.2e'%(ca),\"kmol/m3\"\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The concentration of solid at surface (x=0) is  0.0204 kmol/m3\n",
        "The concentration of solid at (x=0.01m) is 3.48e-02 kmol/m3\n"
       ]
      }
     ],
     "prompt_number": 6
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 7.2-1, Page number 436"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Vaporizing A and Convective Mass Trasfer\n",
      "from math import log\n",
      "\n",
      "# Variable declaration\n",
      "\n",
      "P = 2.                     #Total Pressure over the nevaporating surface (atm)\n",
      "Pa1 = 0.2                  #Partial vapour pressure of A over the surface (atm) \n",
      "Pa2 = 0.                   #Partial vapour pressure of B over the surface (atm) \n",
      "Kydash = 6.78e-5       \n",
      "\n",
      "# Calculation\n",
      "Ya1 = Pa1/P\n",
      "Ya2 = Pa2/P\n",
      "Yb1 = 1. - Ya1\n",
      "Yb2 = 1. - Ya2\n",
      "Ybm = (Yb2 - Yb1)/log(Yb2/Yb1)\n",
      "ky = Kydash/Ybm         #eqn A\n",
      "\n",
      "kg1 = ky/(P*101325)     #eqn B\n",
      "kg2 = ky/P              #eqn C\n",
      "Na = ky*(Ya1 - Ya2)     #eqn 1\n",
      "pa1 = Pa1*101325.\n",
      "pa2 = Pa2*101325.\n",
      "\n",
      "Na1 = kg1*(pa1-pa2)    #eqn 2\n",
      "Na2 = kg2*(Pa1-Pa2)    #eqn 3\n",
      "\n",
      "#Result\n",
      "print 'The calculated value of ky is %5.3e kgmol/s.m2.molfrac from #eqn A'%(ky)\n",
      "print 'The calculated value of kg is %5.3e kgmol/s.m2.Pa #eqn B'%(kg1)\n",
      "print 'The calculated value of kg is %5.3e kgmol/s.m2.atm #eqn C'%(kg2) \n",
      "print 'The calculated value of the Flux is %5.3e kgmol/s.m2 #eqn 1'%(Na) \n",
      "print 'The calculated value of the Flux is %5.3e kgmol/s.m2 from #eqn 2'%(Na1) \n",
      "print 'The calculated value of the Flux is %5.3e kgmol/s.m2 from #eqn 3'%(Na2) "
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The calculated value of ky is 7.143e-05 kgmol/s.m2.molfrac from #eqn A\n",
        "The calculated value of kg is 3.525e-10 kgmol/s.m2.Pa #eqn B\n",
        "The calculated value of kg is 3.572e-05 kgmol/s.m2.atm #eqn C\n",
        "The calculated value of the Flux is 7.143e-06 kgmol/s.m2 #eqn 1\n",
        "The calculated value of the Flux is 7.143e-06 kgmol/s.m2 from #eqn 2\n",
        "The calculated value of the Flux is 7.143e-06 kgmol/s.m2 from #eqn 3\n"
       ]
      }
     ],
     "prompt_number": 17
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 7.3-1, Page number 443"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Mass Transfer Inside a Tube \n",
      "\n",
      "# Variable declaration\n",
      "Dab = 6.92e-6               #Diffusivity of solid (m2/s)\n",
      "Pai = 74.                   #Vapor pressure of A (Pa)\n",
      "R = 8314.3                  #Gas constant in (Pa.m3/(K.Kmol))\n",
      "T = 318.                    #Temperature in (K)\n",
      "Cao = 0.0                   #Inlet concentration (kg.mol A/m3)\n",
      "mu  = 1.932e-5              #Viscosity of air (Pa.s)\n",
      "Rho = 1.114                 #Density of air (kg/m3)\n",
      "D = 0.02                    #Diameter of the tube (m)\n",
      "L = 1.1                     #Length of the tube (m)\n",
      "V = 0.8                     #Velocity of fluid (m/s)\n",
      "    \n",
      "# Calculation\n",
      "Cai = Pai/(R*T)\n",
      "Nsc = mu/(Rho*Dab)\n",
      "Nre = D*V*Rho/mu\n",
      "    #Hence the flow is laminar \n",
      "abscisa = Nre*Nsc*D*pi/(4*L)     #From fig 7.3-2\n",
      "ordinate = 0.55\n",
      "Ca = Cao + ordinate*(Cai-Cao)\n",
      "\n",
      "#Result\n",
      "print 'Schmidt Number %4.3f'%Nsc\n",
      "print 'Reynolds Number %4.1f'%Nre\n",
      "print 'Concentration of Napthalene in exit Air: %5.3e' %(Ca),\"kmol/m3\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Schmidt Number 2.506\n",
        "Reynolds Number 922.6\n",
        "Concentration of Napthalene in exit Air: 1.539e-05 kmol/m3\n"
       ]
      }
     ],
     "prompt_number": 17
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 7.3-2, Page number 444"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Mass Transfer from a Flat Plate \n",
      "\n",
      "# Variable declaration\n",
      "L = 0.244                  #Length of the flat plate (m)\n",
      "V = 0.061                  #Velocity of water (m/s)\n",
      "mu = 8.71e-4               #Viscosity of water (Pa.s)\n",
      "Rho = 996.                 #Density of water (kg/m3)\n",
      "Dab = 1.245e-9             #Diffusivity of benzoic acid (m2/s)\n",
      "Ca1 = 2.948e-2             #Initial concentration (kg.mol A/m3)\n",
      "Ca2 = 0.                   #Final concentration (kg.mol A/m3)\n",
      "\n",
      "# Calculation\n",
      "Nsc = mu/(Rho*Dab)\n",
      "Nre = L*V*Rho/mu\n",
      "Jd = 0.99*Nre**-0.5\n",
      "Kcd = Jd*V/Nsc**(2./3.)\n",
      "    #Since the solution is very dilute \n",
      "Xbm = 1.\n",
      "Kc = Kcd \n",
      "Na = Kc*(Ca1 - Ca2)/Xbm\n",
      "\n",
      "#Result\n",
      "print 'Schmidt Number %4.3f'%Nsc\n",
      "print 'Reynolds Number %4.3e'%Nre\n",
      "print 'Mass Transfer Coefficient %5.2e m/s'%(Kc)\n",
      "print 'Flux of A through liquid:%5.3e kmol/(s.m2)'%(Na)"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Schmidt Number 702.408\n",
        "Reynolds Number 1.702e+04\n",
        "Mass Transfer Coefficient 5.86e-06 m/s\n",
        "Flux of A through liquid:1.727e-07 kmol/(s.m2)\n"
       ]
      }
     ],
     "prompt_number": 18
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 7.3-3, Page number 446"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Mass Transfer from a Sphere \n",
      "from math import pi\n",
      "\n",
      "#Variable declaration SI units\n",
      "Tdeg = 45                 #Temperature in deg C\n",
      "v = 0.305                 #Velocity of air m/s\n",
      "dp = 0.0254               #Diameter of the sphere m\n",
      "Dab = 6.92e-6             #Diffusivity of napthalene in air (m2/s)\n",
      "pa0 = 0.555               #Vapor pressure of solid napthalene mm Hg\n",
      "mu = 1.93e-5              #Viscosity of air (Pa.s)\n",
      "rho = 1.113               #Density of air (kg/m3)\n",
      "R = 8314                  #Gas constant (Pa.m3/K.Kmol)\n",
      "P = 760                   #Atmospheric pressure in mm Hg\n",
      "\n",
      "#Calculation\n",
      "Tk = Tdeg+ 273\n",
      "Nsc = mu/(Dab*rho)\n",
      "Nre = dp*v*rho/mu\n",
      "Nsh = 2 + 0.552*Nre**0.53*Nsc**(1./3)\n",
      "kcd = Nsh*Dab/dp\n",
      "kGd = kcd/(R*Tk)\n",
      "    # For dilute solutions kgd = kg,  ybm = 1\n",
      "kG = kGd\n",
      "pa1 = pa0/P\n",
      "pa1 = pa1*101325\n",
      "pa2 = 0.0  #for pure air\n",
      "Na = kG*(pa1-pa2)\n",
      "A = pi*dp**2   \n",
      "Ae = Na*A\n",
      "\n",
      "#Result\n",
      "print \"Results in SI units\"\n",
      "print 'Schmidt Number %4.3f'%Nsc\n",
      "print 'Reynolds Number %4.0f'%Nre\n",
      "print 'Mass transfer coefficient kcd= %5.3e' %(kcd),\"m/s\"\n",
      "print 'Mass transfer coefficient KGd= %5.3e' %(kGd),\"kmol/(s.m2)\"\n",
      "print \"Flux of Napthalene evaporation\", round(Na,10),\"kmol/(s.m2)\"\n",
      "print 'Total amount evaporated: %5.3e kmol/s'%Ae\n",
      "\n",
      "print \n",
      "\n",
      "#Calculation\n",
      "R = 0.73\n",
      "    #Unit conversion to English units\n",
      "mu = mu*2.4191e3          #Viscosity of air (lbm/(ft.h))\n",
      "Dab = Dab*3.875e4         #Diffusivity of napthalene in air (ft2/h)\n",
      "dp = dp*3.2808            #Diameter of the sphere ft\n",
      "rho = rho/16.0185         #Density of air (lbm/ft3)\n",
      "v = v*3600*3.2808         #Velocity of air ft/h\n",
      "T = Tk*1.8             #Temperature in Rankine\n",
      "\n",
      "Nsc = mu/(Dab*rho)\n",
      "Nre = dp*v*rho/mu\n",
      "Nsh = 2 + 0.552*Nre**0.53*Nsc**(1./3)\n",
      "#print Nsc, Nre, Nsh\n",
      "kcd = Nsh*Dab/dp\n",
      "kGd = kcd/(R*T)\n",
      "\n",
      "    # For dilute solutions kgd = kg,  ybm = 1\n",
      "kG = kGd\n",
      "pa1 = pa0/P\n",
      "pa2 = pa2/P             #for pure air\n",
      "Na = kG*(pa1-pa2)\n",
      "A = pi*dp**2 \n",
      "Ae = Na*A\n",
      "\n",
      "#Result\n",
      "print \"Results in English units\" \n",
      "print 'Schmidt Number %4.3f'%Nsc\n",
      "print 'Reynolds Number %4.0f'%Nre\n",
      "print 'Mass transfer coefficient kcd=%5.1f' %(kcd),\"ft/h\"\n",
      "print 'Mass transfer coefficient KGd= %6.5f' %(kGd),\"lbmol/(h.ft2)\"\n",
      "print 'Flux of Napthalene evaporation %5.2e'%(Na),\"lbmol/(h.ft2)\"\n",
      "print 'Total amount evaporated: %5.3e lbmol/h'%Ae\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Results in SI units\n",
        "Schmidt Number 2.506\n",
        "Reynolds Number  447\n",
        "Mass transfer coefficient kcd= 5.730e-03 m/s\n",
        "Mass transfer coefficient KGd= 2.167e-09 kmol/(s.m2)\n",
        "Flux of Napthalene evaporation 1.604e-07 kmol/(s.m2)\n",
        "Total amount evaporated: 3.250e-10 kmol/s\n",
        "\n",
        "Results in English units\n",
        "Schmidt Number 2.506\n",
        "Reynolds Number  447\n",
        "Mass transfer coefficient kcd= 67.7 ft/h\n",
        "Mass transfer coefficient KGd= 0.16196 lbmol/(h.ft2)\n",
        "Flux of Napthalene evaporation 1.18e-04 lbmol/(h.ft2)\n",
        "Total amount evaporated: 2.580e-06 lbmol/h\n"
       ]
      }
     ],
     "prompt_number": 23
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 7.3-4, Page number 449"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Mass Transfer of a Liquid in a Packed Bed\n",
      "from scipy.optimize import root\n",
      "from math import pi,log\n",
      "\n",
      "#Variable declaration\n",
      "Tdeg = 26.1              #Temperature in deg C\n",
      "Q = 5.514e-7             #Flowrate of benzoic acid (m3/s)\n",
      "d = 0.006375             #Diameter of sphere (m)\n",
      "As = 0.01198             #Total surface area of the sphere m2\n",
      "epsilon = 0.436          #Void fraction \n",
      "Dt = 0.0667              #Diameter of the tower in m\n",
      "Cai = 2.948e-2           #Inlet concentration (kg.mol A/m3)\n",
      "Ca1 = 0.0\n",
      "kce = 4.665e-6           #Experimental value of the mass transfer coefficient in m2/s\n",
      "mu261 = 0.8718e-3        #Viscosity of solution at 26.1 deg C (Pa.s)\n",
      "rho261 = 996.7           #Density of the solution in (kg/m3)\n",
      "mu250 = 0.8940e-3        #Viscosity of solution at 25 deg C (Pa.s)\n",
      "Dab = 1.21e-9            #DIffusivity of benzoic acid (m2/s)\n",
      "\n",
      "#Calculation\n",
      "Tk = Tdeg + 273\n",
      "        #Dab ~ T/mu\n",
      "Dab261 = Dab*(Tk/298)*(mu250/mu261) \n",
      "At = pi*Dt**2/4\n",
      "v = Q/At\n",
      "Nsc = mu261/(rho261*Dab261)  \n",
      "Nre = d*v*rho261/mu261\n",
      "Jd = (1.09/epsilon)*Nre**(-2./3)   \n",
      "kcd = Jd*v/Nsc**(2./3)      \n",
      "\n",
      "f = lambda x:Q*(x-Ca1)-As*kcd*(((Cai-Ca1)-(Cai-x))/log((Cai-Ca1)/(Cai-x)))\n",
      "sol = root(f,1e-3)\n",
      "Ca2 = sol.x[0]\n",
      "\n",
      "#Result\n",
      "print 'Schmidt Number %4.1f'%Nsc\n",
      "print 'Reynolds Number %4.3f'%Nre\n",
      "print 'Mass Transfer Coefficient:%5.2e m/s This compares with expt. value of %5.3e m/s'%(kcd,kce)\n",
      "print 'Concentration of Benzoic acid in Water:%5.3e'%(Ca2),\"kgmol/m3\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Schmidt Number 702.3\n",
        "Reynolds Number 1.150\n",
        "Mass Transfer Coefficient:4.55e-06 m/s This compares with expt. value of 4.665e-06 m/s\n",
        "Concentration of Benzoic acid in Water:2.774e-03 kgmol/m3\n"
       ]
      }
     ],
     "prompt_number": 29
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 7.4-1, Page number 451"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Mass Transfer from Air Bubbles in Fermentation\n",
      "\n",
      "# Variable declaration\n",
      "P = 1.0                   #Absolute pressure of bubbles, atm\n",
      "d = 100e-6                #Diameter of bubbles, m\n",
      "Ca1 = 2.26e-4             #Solubility of O2 in water, kmol O2/m3\n",
      "D = 3.25e-9               #Diffusivity of O2 in water, m2/s\n",
      "mu37 = 6.947e-4           #Viscosity of water at 37 \u00b0C, Pa.s\n",
      "rhow = 994                #density of water at 37 \u00b0C, kg/m3\n",
      "rhoa = 1.13               #Density of air at 37 \u00b0C, kg/m3\n",
      "g = 9.806                 #Gravitational acceleration (m/s2)\n",
      "Ca2 = 0.0\n",
      "#Calculations\n",
      "Nsc = mu37/(rhow*D)\n",
      "delP = rhow-rhoa\n",
      "kld = 2*D/d + 0.31*Nsc**(-2./3)*(delP*mu37*g/rhow**2)**(1./3)\n",
      "kl = kld\n",
      "Na = kl*(Ca1-Ca2)\n",
      "\n",
      "#Result\n",
      "print 'Schmidt Number %4.1f'%Nsc\n",
      "print 'Maximum rate of absorption per unit area is %3.2e kmol O2/m2' %Na "
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Schmidt Number 215.0\n",
        "Maximum rate of absorption per unit area is 5.18e-08 kmol O2/m2\n"
       ]
      }
     ],
     "prompt_number": 32
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 7.5-2, Page number 458 "
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Diffusion of Chemical Reaction at Boundary\n",
      "from scipy.optimize import root\n",
      "from math import log\n",
      "\n",
      "#Variable Declaration\n",
      "Pa1 = 101.32             #Partial pressure of gas A (kPA)\n",
      "d = 2.e-3                #Distance between point A and B (m)\n",
      "Pt = 101.32              #Total pressure (kPa)\n",
      "T = 300.                 #Temperature in K\n",
      "Dab = 0.15e-4            #Diffusivity of gas A (m2/s)\n",
      "K1 = 5.63e-3\n",
      "R =8314.\n",
      "#Calculation\n",
      "    #Calculation for part (a)\n",
      "c = Pt*1000./(R*T)\n",
      "xa1 = Pa1*1000./(Pt*1000.)\n",
      "xa2 = 0./ Pt\n",
      "Na = c*Dab*log((1+xa1)/(1+xa2))/d\n",
      "\n",
      "#Calculation for part (b)\n",
      "f = lambda z: z - c*Dab/d*log((1+xa1)/(1+z/(c*K1)))\n",
      "sol = root(f,0.00005)\n",
      "Nb = sol.x[0]\n",
      "xa2b = Nb/(c*K1)\n",
      "#Result\n",
      "\n",
      "print 'a) The calculated value of flux for instantaneous rate of reaction is %4.3e kgmol A/s.m2'%(Na)\n",
      "print 'b) The calculated value of flux for slow reaction is %5.3e kgmol A/s.m2'%(Nb)\n",
      "print 'c) The fraction of A in liquid for slow reaction is %4.3f'%(xa2b)"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "a) The calculated value of flux for instantaneous rate of reaction is 2.112e-04 kgmol A/s.m2\n",
        "b) The calculated value of flux for slow reaction is 1.003e-04 kgmol A/s.m2\n",
        "c) The fraction of A in liquid for slow reaction is 0.439\n"
       ]
      }
     ],
     "prompt_number": 33
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 7.5-3, Page number 460"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Reaction and Unsteady State Diffusion\n",
      "from math import erf, sqrt,pi,e\n",
      "\n",
      "#Variable Declaration\n",
      "P = 101.32           #Pressure in (kPa)\n",
      "k = 35.              #First order reaction (1/s)\n",
      "Dab = 1.5e-9         #Diffusivity of CO2 in (m2/s)\n",
      "s = 2.961e-7         #Solubility of CO2 (kg mol/m3.Pa)\n",
      "t = 0.01             #Time for which surface is exposed to gas (s) \n",
      "\n",
      "#Calculations\n",
      "Ca0 = s*P*1000.\n",
      "Q = Ca0*sqrt(Dab/k)*((k*t+0.5)*erf(sqrt(k*t)) + sqrt(k*t/pi)*e**(-k*t))\n",
      "#Results\n",
      "print 'CO2 absorbed on the surface %5.3e kgmolCO2/m2'%(Q)"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "CO2 absorbed on the surface 1.459e-07 kgmolCO2/m2\n"
       ]
      }
     ],
     "prompt_number": 34
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 7.5-4, Page number 461"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Diffusion of A Through Nondiffusing B and C\n",
      "from math import log\n",
      "\n",
      "#Variable Declaration\n",
      "P = 1.             #Total presure in (atm)\n",
      "P_SI = 1.01325e5   #Total pressure in (Pa)\n",
      "T = 298.           #Temperature in (K)\n",
      "z1 = 0.            #Starting point (m)\n",
      "z2 = 0.005         #End point (m)\n",
      "pa1 = 0.4          #Initial Partial pressure of methane (atm)\n",
      "pb1 = 0.4          #Initial Partial pressure of argon (atm)\n",
      "pc1 = 0.2          #Initial Partial pressure of helium (atm)\n",
      "pa2 = 0.1          #Final Partial pressure of methane (atm)\n",
      "pb2 = 0.6          #Final  Partial pressure of argon (atm)\n",
      "pc2 = 0.3          #Final  Partial pressure of helium (atm)\n",
      "Dab = 2.02e-5      #Binary Diffusivities (m2/s)\n",
      "Dac = 6.75e-5      #Binary Diffusivities (m2/s)\n",
      "Dbc = 7.29e-5      #Binary Diffusivities (m2/s)\n",
      "R = 82.06e-3       #Gas constant (atm.m3/Kmol.K)\n",
      "R_SI = 8314        #Gas constant (Pa.m3/Kmol.K)\n",
      "\n",
      "#Calculations\n",
      "xb_1 = pb1/(1-pa1)\n",
      "xb_2 = pb2/(1 - pb1)\n",
      "xc_ = pc1/(1 - pa1)\n",
      "Dam = 1/((xb_1/Dab)+(xc_/Dac))\n",
      "pi1 = P - pa1\n",
      "pi2 = P - pa2\n",
      "pim = (pi2-pi1)/log(pi2/pi1)\n",
      "pim_SI = pim*(1.01325e5)\n",
      "pa1_SI = pa1*(1.01325e5)\n",
      "pa2_SI = pa2*(1.01325e5)\n",
      "Na_SI = Dam*P_SI*(pa1_SI - pa2_SI)/(R_SI*T*(z2-z1)*pim_SI)\n",
      "Na = Dam*P*(pa1 - pa2)/(R*T*(z2-z1)*pim)\n",
      "\n",
      "#Results\n",
      "print 'The flux calculated is NA= %5.2e kgmol A/(s.m2) using Pa pressure units'%Na_SI\n",
      "print 'The flux calculated is NA= %5.2e kgmol A/(s.m2) using atm pressure units'%Na"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The flux calculated is NA= 8.74e-05 kgmol A/(s.m2) using Pa pressure units\n",
        "The flux calculated is NA= 8.74e-05 kgmol A/(s.m2) using atm pressure units\n"
       ]
      }
     ],
     "prompt_number": 38
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 7.6-1, Page number 463"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Knudsen Diffusion of Hydrogen\n",
      "\n",
      "#Variable Declaration\n",
      "P = 1.01325e4                 #Total pressure in (Pa)\n",
      "T = 373.                      #Temperature in (K)\n",
      "r = 60.                       #Radius of the pore in (angstorm)\n",
      "Ma = 2.016                    \n",
      "#Calculations \n",
      "r_SI = r*1.e-10               #Radius in(m)\n",
      "Dka = 97.*r_SI*(T/Ma)**0.5\n",
      "\n",
      "#Results\n",
      "print 'The calculated Knudsen Diffusivity is %4.2e m2/s'%(Dka)"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The calculated Knudsen Diffusivity is 7.92e-06 m2/s\n"
       ]
      }
     ],
     "prompt_number": 69
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 7.6-2, Page Number 466"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Transition-Region Diffusion of He and N2\n",
      "from math import sqrt\n",
      "\n",
      "#Variable Declaration\n",
      "T = 298.               #Temperature of gas (K)\n",
      "r = 2.5e-6             #Radius of the capillary (m)\n",
      "L = 0.01               #Length of the capillary (m)\n",
      "P = 1.013e4            #Total Pressure of the gas mixture (Pa)\n",
      "xa1 = 0.8              #Mole fraction of N2 at one end\n",
      "xa2 = 0.2              #Mole fraction of N2 at another end \n",
      "Dab = 6.98e-5          #Molecular Diffusivty at one atmosphere (m2/s)\n",
      "Ma = 28.02             #Molecular weight of nitrogen \n",
      "Mb = 4.003 \n",
      "R = 8314.\n",
      "\n",
      "#Calculations\n",
      "Dabc = Dab/0.1             #Molecular Diffusivity at 0.1 (m2/s)\n",
      "Dka = 97.0*r*(T/Ma)**.5\n",
      "NbbyNa = -sqrt(Ma/Mb)\n",
      "alpha = 1. + NbbyNa\n",
      "\n",
      "Na = Dabc*P/(alpha*R*T*L)*log( (1. - alpha*xa2 + Dabc/Dka)/(1. - alpha*xa1 + Dabc/Dka))\n",
      "Dnad = 1./(1./Dabc + 1./Dka)\n",
      "Naf = Dnad*P*(xa1 - xa2)/(R*T*L)        #Eqn A\n",
      "\n",
      "xAav = (xa1 + xa2)/2.\n",
      "Dacc = 1./( 1./Dka + (1. - alpha*xAav)/Dabc)\n",
      "Nacc = Dacc*P*(xa1 - xa2)/(R*T*L)      #Eqn B\n",
      "#Results\n",
      "print 'The flux at steady state is NA= %5.2e kg mol/s.m2'%(Na)\n",
      "print 'The approximate flux at steady state using two different equations\\nA) %5.2e kgmol/(s.m2) by Eqn A and'%(Naf)\n",
      "print 'B) %5.2e kgmol/(s.m2) by eqn B' %(Nacc)"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The flux at steady state is NA= 6.40e-05 kg mol/s.m2\n",
        "The approximate flux at steady state using two different equations\n",
        "A) 9.10e-05 kgmol/(s.m2) by Eqn A and\n",
        "B) 6.33e-05 kgmol/(s.m2) by eqn B\n"
       ]
      }
     ],
     "prompt_number": 44
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 7.7-1, Page Number 471"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Numerical Solution for Unsteady-State Diffusion with a Distribution Coefficient\n",
      "import numpy as np\n",
      "import copy \n",
      "import matplotlib.pyplot as plt\n",
      "\n",
      "#Variable Declaration\n",
      "t = 0.004                   #Thickness of the material (m)\n",
      "Dab = 1.e-9                 #Diffusivity of material (m2/s)\n",
      "ca = 6.e-3                  #Concentration of fluid (kg mol A/m3)\n",
      "K = 1.5                     #Distribution coefficient\n",
      "delx = 0.001\n",
      "M = 2.\n",
      "tmax = 2500\n",
      "xm = np.arange(1,5,1)\n",
      "c = np.array([1.e-3,1.25e-3,1.5e-3,1.75e-3,2.e-3])\n",
      "n = np.array([1,2,3,4,5])\n",
      "#Calculations\n",
      "plt.plot(n,c, 'bo-')\n",
      "plt.xlabel('Node number, n')\n",
      "plt.ylabel('concentration c, kgmol/m3')\n",
      "delt = delx**2/(2*Dab)\n",
      "\n",
      "m = tmax/int(delt)\n",
      "Ccal = [0,0,0,0,0]\n",
      "t = 0\n",
      "print \"After\",t,\"s\"\n",
      "for i in range(len(n)):\n",
      "    print \"At \",i+1,'th node, the value of concentration is %6.3e kgmol/m3'%c[i]\n",
      "for i in range(1,6,1):\n",
      "    t = delt*i\n",
      "    #print c\n",
      "    for j in range(len(c)):\n",
      "        if j==0:\n",
      "            if i == 1:\n",
      "                Ccal[j]= (ca/K+c[j])/2\n",
      "            else:\n",
      "                Ccal[j]= ca/K        \n",
      "        elif j>=1 and j<(len(c)-1):\n",
      "            Ccal[j]=(c[j-1]+c[j+1])/2.\n",
      "            #print c[j-1], c[j+1], Ccal[j]\n",
      "        else:\n",
      "            Ccal[j]=c[j-1]\n",
      "    c = copy.copy(Ccal)\n",
      "    print \"After\",t,\"s\"\n",
      "    for i in range(len(n)):\n",
      "        print \"At \",i+1,'th node, the value of concentration is %6.3e kgmol/m3'%c[i]\n",
      "\n",
      "#Results\n",
      "plt.plot(n,c,'ro-')\n",
      "print 'The results are different than book because for first iteration at second node\\nThe value of c(0,1)= 1e-3 is taken as 2.5e-3, which is wrong substitution' "
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "After 0 s\n",
        "At  1 th node, the value of concentration is 1.000e-03 kgmol/m3\n",
        "At  2 th node, the value of concentration is 1.250e-03 kgmol/m3\n",
        "At  3 th node, the value of concentration is 1.500e-03 kgmol/m3\n",
        "At  4 th node, the value of concentration is 1.750e-03 kgmol/m3\n",
        "At  5 th node, the value of concentration is 2.000e-03 kgmol/m3\n",
        "After 500.0 s\n",
        "At  1 th node, the value of concentration is 2.500e-03 kgmol/m3\n",
        "At  2 th node, the value of concentration is 1.250e-03 kgmol/m3\n",
        "At  3 th node, the value of concentration is 1.500e-03 kgmol/m3\n",
        "At  4 th node, the value of concentration is 1.750e-03 kgmol/m3\n",
        "At  5 th node, the value of concentration is 1.750e-03 kgmol/m3\n",
        "After 1000.0 s\n",
        "At  1 th node, the value of concentration is 4.000e-03 kgmol/m3\n",
        "At  2 th node, the value of concentration is 2.000e-03 kgmol/m3\n",
        "At  3 th node, the value of concentration is 1.500e-03 kgmol/m3\n",
        "At  4 th node, the value of concentration is 1.625e-03 kgmol/m3\n",
        "At  5 th node, the value of concentration is 1.750e-03 kgmol/m3\n",
        "After 1500.0 s\n",
        "At  1 th node, the value of concentration is 4.000e-03 kgmol/m3\n",
        "At  2 th node, the value of concentration is 2.750e-03 kgmol/m3\n",
        "At  3 th node, the value of concentration is 1.813e-03 kgmol/m3\n",
        "At  4 th node, the value of concentration is 1.625e-03 kgmol/m3\n",
        "At  5 th node, the value of concentration is 1.625e-03 kgmol/m3\n",
        "After 2000.0 s\n",
        "At  1 th node, the value of concentration is 4.000e-03 kgmol/m3\n",
        "At  2 th node, the value of concentration is 2.906e-03 kgmol/m3\n",
        "At  3 th node, the value of concentration is 2.188e-03 kgmol/m3\n",
        "At  4 th node, the value of concentration is 1.719e-03 kgmol/m3\n",
        "At  5 th node, the value of concentration is 1.625e-03 kgmol/m3\n",
        "After 2500.0 s\n",
        "At  1 th node, the value of concentration is 4.000e-03 kgmol/m3\n",
        "At  2 th node, the value of concentration is 3.094e-03 kgmol/m3\n",
        "At  3 th node, the value of concentration is 2.313e-03 kgmol/m3\n",
        "At  4 th node, the value of concentration is 1.906e-03 kgmol/m3\n",
        "At  5 th node, the value of concentration is 1.719e-03 kgmol/m3\n",
        "The results are different than book because for first iteration at second node\n",
        "The value of c(0,1)= 1e-3 is taken as 2.5e-3, which is wrong substitution\n"
       ]
      },
      {
       "metadata": {},
       "output_type": "display_data",
       "png": "iVBORw0KGgoAAAANSUhEUgAAAZkAAAEPCAYAAACQmrmQAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XtclFX+wPHPIOA9zUpTUNEB5aIOqIlmGmpIYLF2WRcv\npWabpUlubj8zrexirlvtJppGvVLTTF2zXpAo0UXEXJFSylYSDYfioll5S02u5/fHI5PIZYZxHmaA\n7/v14hUzPOeZ7zzhfDnPOed7DEophRBCCKEDN2cHIIQQovGSJCOEEEI3kmSEEELoRpKMEEII3UiS\nEUIIoRtJMkIIIXSja5JJTk7G398fPz8/lixZUu0xsbGx+Pn5YTKZyMzMtLntq6++ipubGydPnrQ8\nt3jxYvz8/PD39yclJcXxb0gIIUTdKJ2UlpYqo9GozGazKi4uViaTSWVlZVU6JikpSUVGRiqllEpP\nT1ehoaE2tf3xxx9VRESE8vHxUb/++qtSSqmDBw8qk8mkiouLldlsVkajUZWVlen19oQQQthAt55M\nRkYGvr6++Pj44OHhQUxMDAkJCZWOSUxMZPLkyQCEhoZy+vRpjh8/brXt448/zj//+c9K50pISGD8\n+PF4eHjg4+ODr68vGRkZer09IYQQNtAtyRQUFNC1a1fLY29vbwoKCmw6prCwsMa2CQkJeHt7069f\nv0rnKiwsxNvbu9bXE0IIUb/c9TqxwWCw6ThVh6o2v//+Oy+99BKffPKJTe1tjUEIIYQ+dEsyXl5e\n5OXlWR7n5eVV6mlUd0x+fj7e3t6UlJRU2zYnJ4fc3FxMJpPl+AEDBrB3795qz+Xl5VUlLl+DgRyH\nvUshhGgajEYj33//fd0b6jXYU1JSonr27KnMZrMqKiqyOvC/Z88ey8C/LW2VUtUO/BcVFamjR4+q\nnj17qvLy8iptAKUufS0YPNjRb9thnn32WWeHYBOJ03EaQoxKSZyO1lDitDdd6NaTcXd3Z/ny5URE\nRFBWVsa0adMICAggPj4egOnTpxMVFcW2bdvw9fWldevWrF69uta2V7r8dlhgYCDjxo0jMDAQd3d3\nVqxYUevtsqduvJHbs7Jg9WqYOtXB714IIQToeLsMIDIyksjIyErPTZ8+vdLj5cuX29z2SkePHq30\n+KmnnuKpp56yGtfTERHcPmsWw3v2hLFjITMTXn0VPDysthVCCGE7XZOMq3ohOfmPB3v3wsSJEB4O\nmzfDDTc4L7DLhIWFOTsEm0icjtMQYgSJ09EaSpz2Mly619ZkGAyGqjPSysrg2Wfh3Xfhww8hJMQ5\nwQkhhIuq9rPTlnaSZC7z/vswYwa89hpMmFC/gQkhhAuTJGMjqxfq22+1cZq774bFi8G9Sd5RFEKI\nSiTJ2MimC/XrrxATAwYDbNwIHTrUT3BCCOGi7E0yUuq/OtddB9u3Q79+cNNNWu9GCCFEnUmSqYm7\nO7zyCjz/PIwcCVu2ODsiIYRocOR2mS3279fGaCZN0pKOm+RmIUTTImMyNrL3QnHiBPz5z9C2Laxf\nD+3aOT44IYRwUTImo7eOHeHTT6FHDxg0CA4dcnZEQgjh8iTJ1IWHByxbBnPnwvDh8NFHzo5ICCFc\nmtwus9fevXDvvfDQQzB/vozTCCEaNRmTsZHDkgzAsWNwzz3QuTOsWaON1wghRCMkYzLO0Lkz7Nih\nrasZMgTs2dBHCCEaMUkyV6t5c4iPh0cfhaFD4eOPnR2REEK4DLld5ki7dsFf/gKzZ8MTT2hlaYQQ\nohGQMRkb6ZpkAPLytIWbvr7w9tvQqpV+ryWEEPVExmRcRdeukJYGnp7a7bPcXGdHJIQQTiNJRg8t\nW2qzzaZMgcGD4fPPnR2REEI4hdwu09tnn2nbO8+bB7GxMk4jhGiQZEzGRvWeZADMZrjrLggOhjfe\ngBYt6vf1hRDiKsmYjCvr0QN274aLF7VyNPn5zo5ICCHqhSSZ+tK6NWzYoJWiGTQIvvjC2REJIYTu\nJMnUJ4MB/u//YNUqbZrzG284OyIhhNCVjMk4y5EjMHYs3HILxMVplQOEEMJFyZhMQ+PnB+np2mZo\nI0dqxTaFEKKRkSTjTG3bwpYtcPvt2jhNRoazIxJCCIeS22WuIjERHnwQliyBqVOdHY0QQlTikrfL\nkpOT8ff3x8/PjyVLllR7TGxsLH5+fphMJjIzM622ffrppzGZTAQHBzNq1Cjy8vIAyM3NpWXLloSE\nhBASEsKMGTP0fGuOFx0NO3fCP/6hLdosKXF2REIIcfWUTkpLS5XRaFRms1kVFxcrk8mksrKyKh2T\nlJSkIiMjlVJKpaenq9DQUKttz549a2kfFxenpk2bppRSymw2qz59+liNS8e37BinTikVFaXUrbcq\ndeKEs6MRQgillP2fnbr1ZDIyMvD19cXHxwcPDw9iYmJISEiodExiYiKTJ08GIDQ0lNOnT3P8+PFa\n27a9bPfJc+fOcf311+v1FpyjfXvt1tktt8BNN8FlvTshhGhodEsyBQUFdO3a1fLY29ubgoICm44p\nLCyste38+fPp1q0b77zzDk8++aTlebPZTEhICGFhYXzRkBc7NmsGL74Ir7wCERHw3nvOjkgIIeyi\nW5Ix2FgIUtkxkLRo0SJ+/PFHpkyZwt/+9jcAunTpQl5eHpmZmfzrX/9iwoQJ/Pbbb3U+t0u5916t\nwObTT2uboJWWOjsiIYSoE3e9Tuzl5WUZlAfIy8vD29u71mPy8/Px9vampKTEaluACRMmEBUVBYCn\npyeenp4A9O/fH6PRyJEjR+jfv3+VdgsXLrR8HxYWRlhYmF3vsV707atNbY6Jgago2LgROnRwdlRC\niEYuNTWV1NTUqz+RY4eG/lBSUqJ69uypzGazKioqsjrwv2fPHsvAf21tDx8+bGkfFxenJk2apJRS\n6ueff1alpaVKKaVycnKUl5eXOnXqVJW4dHzL+iopUWrOHKV69lTqwAFnRyOEaGLs/ezUrSfj7u7O\n8uXLiYiIoKysjGnTphEQEEB8fDwA06dPJyoqim3btuHr60vr1q1ZvXp1rW0B5s2bR3Z2Ns2aNcNo\nNLJy5UoA0tLSeOaZZ/Dw8MDNzY34+Hjat2+v19urf+7u2hhNSIhWIeCNN+Cee5wdlRBC1EoWYzZE\n+/drBTYnTYLnnwc3KdwghNCXbFpmo0aRZECrefbnP2uladavh3btnB2REKIRc8kV/0JHHTvCp59q\nG6INGgSHDjk7IiGEqEKSTEPm4QHLlsHcudqOmx995OyIhBCiErld1ljs3autq3noIZg/X8ZphBAO\nVS9jMr/++ivXXXddnV/ElTTaJAPanjT33AOdO8OaNdp4jRBCOIDDx2Q+//xzfH19GTx4MBkZGfTu\n3ZtBgwZhNBr58ssvrypYoZPOnWHHDrjuOhgyBL7/3tkRCSGauBp7MgMGDGDNmjWcO3eOyMhIPvro\nI4YNG8b+/ft57LHH2LVrV33H6hCNuidTQSmIj4dnn4W1a7X6Z0IIcRXs/eyscTFmeXk5ffv2BaBz\n584MGzYM0Eq2nDt3zs4wRb0wGODhhyEoCP7yF5g9W6t9ZmM9OSGEcJQab5eVl5dbvl+8eLHle6UU\nJbKhVsMwbJg2IWDzZpgwAS5ccHZEQogmpsYk8/zzz3P+/HkAxo4da3n+6NGj3HffffpHJhyja1dI\nSwNPTxg6FHJznR2REKIJkSnMTYVSEBcHixdr+9OMHOnsiIQQDYhuU5i//PJLXnrpJXJzcym9tJ+J\nwWDgwIED9kXqZE02yVT47DOYOBHmzYPYWBmnEULYRLck06tXL1555RX69OmD22UL/Hx8fOr8Yq6g\nyScZALMZ7roLgoO1as4tWjg7IiGEi9MtyQwdOpTdu3fbHZirkSRzyfnzMG0aHD0KH3wA1WwKJ4QQ\nFXRLMikpKWzatInbbrvNsvOkwWDg7rvvti9SJ5Mkcxml4J//hKVL4T//gVtucXZEQggXpVuSmThx\nItnZ2QQFBVW6XVaxwVhDI0mmGsnJcP/92t40Dz/s7GiEEC5ItyTTu3dvDh06hKGRDBBLkqnBkSMw\ndqzWm4mLg+bNnR2REMKF6LafzM0330xWVpZdQYkGxM8P0tO1zdBGjtSKbQohxFWy2pPx9/cnJyeH\nHj160PzSX7cyhbkRKy+HRYvgzTdhyxZtQzQhRJOn2+2y3BpWiMsU5kYuMREefBCWLIGpU50djRDC\nyRyeZAYMGMAtt9xCZGQkYWFhtGgkaykkydTBd99p4zQREfDqq9pOnEKIJsnhSaakpIQvvviC5ORk\nUlNT6dChA7fffjuRkZH06tXrqgN2FkkydXT6tFYh4Px5rdDmDTc4OyIhhBPovjNmQUEBycnJfPzx\nx3z//fcMHjyYFStW1PkFnU2SjB3KyrS9ad59Fz78EEJCnB2REKKe1cv2yxXKy8vZs2cPQ4cOrfML\nOpskmavw/vswYwa89hpp7dqREheHe1ERpc2bMzo2luFjxjg7QiGEThy+admdd95Z64slJibW+cVE\nA3fvvdC7N2nh4Xx88SKLzpyx/Gh+Tg6AJBohRCU19mRSU1NrbmQwcOutt+oVk66kJ3P1FowcyYs7\ndlR5/umICF5ITnZCREIIvTm8JxMWFmb5vqioiMOHD2MwGOjduzceMsuoSXO/bNfUyzW7eLGeIxFC\nuLoak0yF1NRUJk+eTPfu3QH48ccfeeeddxpsT0ZcvdIaSs6UuVv9dRJCNDFWB/779+/Phg0b6N27\nNwCHDx8mJiaG/fv310uAjia3y65eWlISHz/2GIsujcMAPNW2Lbe3asXwLVu0bZ6FEI2KbrXLSktL\nLQkGtE3MKnbItCY5ORl/f3/8/PxYsmRJtcfExsbi5+eHyWQiMzPTatunn34ak8lEcHAwo0aNIi8v\nz/KzxYsX4+fnh7+/PykpKTbFKOpu+JgxRCxdytMRESy89Vaejojg9g0bGB4fr00OmD8fioudHaYQ\nwhUoK6ZMmaKmTZumduzYoT7//HM1bdo0NXXqVGvNVGlpqTIajcpsNqvi4mJlMplUVlZWpWOSkpJU\nZGSkUkqp9PR0FRoaarXt2bNnLe3j4uLUtGnTlFJKHTx4UJlMJlVcXKzMZrMyGo2qrKysSlw2vGVx\nNY4fV+rOO5UKCVHqf/9zdjRCCAex97PTak9m5cqVBAQEEBcXx7JlywgKCmLlypVWk1dGRga+vr74\n+Pjg4eFBTEwMCQkJlY5JTExk8uTJAISGhnL69GmOHz9ea9u2bdta2p87d47rr78egISEBMaPH4+H\nhwc+Pj74+vqSkZFha64VjtKpEyQkaOtpwsLgtde0optCiCbJ6khtixYtmDNnDnPmzKnTiQsKCuja\ntavlsbe3N3v37rV6TEFBAYWFhbW2nT9/PuvWraNly5aWRFJYWMjgwYOrnEs4gcGgFdccMULbDO2j\nj2DNGrjs/6kQommwmmQ++ugjnnnmGXJzcy1jMQaDgbNnz9baztZNzpQdA0mLFi1i0aJF/OMf/2D2\n7Nk17tJZUwwLFy60fB8WFlZpurZwIKMR0tK0LZ4HDIB//xsmTNCSkBDCpaWmpta6XtJWVpPM7Nmz\n+fDDD+nTp0+l7Zet8fLyqjQon5eXh7e3d63H5Ofn4+3tTUlJidW2ABMmTCAqKqrGc3l5eVUb2+VJ\nRuisWTOYNw9uvx0mTdK2EFi5Ejp0cHZkQohaXPkH+HPPPWfXeaxmDW9vb4KCguqUYAAGDhzIkSNH\nyM3Npbi4mE2bNhEdHV3pmOjoaNauXQtAeno67du3p1OnTrW2PXLkiKV9QkICIZeKNUZHR7Nx40aK\ni4sxm80cOXKEQbLhlusICYGvvoIuXaBfP/j4Y2dHJISoB1Z7MkuWLCEyMpIRI0bg6ekJaLehHn/8\n8dpP7O7O8uXLiYiIoKysjGnTphEQEEB8fDwA06dPJyoqim3btuHr60vr1q0tt71qagswb948srOz\nadasGUaj0TIJITAwkHHjxhEYGIi7uzsrVqyw+ZadqCctW2q3zO64Q9sILTpau5XWqpWzIxNC6MTq\nYszw8HDatm1L3759K/Vmnn32Wd2D04MsxnQRp0/Do49qvZt16+Cmm5wdkRCiFrqV+u/Tpw//+9//\n7A7M1UiScTH/+Q/MmgUzZ8JTT4GUphHCJem24j8qKoqP5f650Mu4cbB/P+zerZWjOXzY2REJIRzI\nak+mTZs2XLhwAU9PT0v1ZVumMLsq6cm4KKVgxQptB84XXoCHH5apzkK4kHrdGbMhkyTj4rKz4b77\n4Prr4e23oXNnZ0ckhEDHJFNdteV27drRvXt33Bvg/XNJMg1ASQksWqStp3n9da3ophDCqXRLMoMH\nD2bfvn3069cPgG+//ZagoCDOnDnDypUriYiIsC9iJ5Ek04Ds3av1agYPhmXLoF07Z0ckRJOl28B/\nly5d+Prrr9m3bx/79u3j66+/pmfPnnzyySf83//9n13BCmGT0FDIzIQ2bcBkAgeUuBBC1C+rSSY7\nO5ugoCDL48DAQA4dOoTRaJTFjkJ/rVtrEwJWroSJE2HOHJBtnoVoMKwmmaCgIB555BF27txJamoq\nM2bMIDAwkKKiIstsMyF0FxkJ33wDP/wAAwfC1187OyIhhA2sjslcuHCBFStWsHv3bgCGDh3KjBkz\naNGiBefPn6+0v0tDIGMyDZxS8O678Pjj8Pe/a1/Nmjk7KiEaPd0G/vft28eAAQMqPbd161buuOOO\nOr+YK5Ak00j88ANMmQKlpbB2LfTo4eyIhGjUdBv4/+tf/8q3335rebxhwwaef/75Or+QEA7VvTt8\n9hncdRcMGgSrVmm9HCGES7Hakzl69Cj33nsv7733Hrt27WLt2rVs3bqVdg10Oqn0ZBqh//1P26vG\nxwfefBM6dnR2REI0Orqu+M/Ozmbs2LF0796dDz74gFYNuDS7JJlGqqhIK0mzdi3Ex8Oddzo7IiEa\nFYcnmb59+1Z6fOLECdq3b4+npycGg4EDBw7YF6mTSZJp5HbtgsmTYdQo+Ne/oIFNTBHCVTk8yeTm\n5tba0MfHp84v5gokyTQBZ8/C3/6mLd5cu1ar7iyEuCpSINNGkmSakIQErZrzAw9ot9Iu7ewqhKg7\n3WaXCdFg/elP2qLNAwe0+mcHDzo7IiGaHEkyonHr1AkSE2HGDAgLg9deg/JyZ0clRJMht8tE05GT\nA/ffDy1awJo10LWrsyMSosGot9tlt912G7fffjtbt26t84sJ4VRGI6SlwW23wYABsH69LOAUQmd1\n7skUFBRw7Ngx9u7dy8yZM/WKSzfSkxEA7N+v7VXTp49W4blDB2dHJIRL02122blz52jZsiXNLhUh\nLCsr4+LFi7Ru3dq+SJ1Mkoyw+P13eOop2LxZ2+q5gW3AJ0R90u122ahRo/j9998tjy9cuEB4eHid\nX0gIl9OyJfz73/DOO/DXv8Kjj8KFC86OSohGxWqSKSoqok2bNpbHbdu25YL8QxSNyahR2jTn06eh\nf3/48ktnRyREo2E1ybRu3Zp9+/ZZHn/11Ve0bNlS16CEqHft22v71Dz/PNxxh/bf0lJnRyVEg2d1\nTObLL78kJiaGzp07A3Ds2DE2bdrEwIED6yVAR5MxGWFVQYFWJeD0aVi3Dnr1cnZEQjidrmVliouL\nyc7OBqB37954NuDyHJJkhE2UghUrtHI0L7yglacxGJwdlRBOo+s6GU9PT/r27Uvfvn3rlGCSk5Px\n9/fHz8+PJUuWVHtMbGwsfn5+mEwmMjMzrbZ94oknCAgIwGQycffdd3PmzBlAK+jZsmVLQkJCCAkJ\nYcaMGTbHKUQVBgPMnAlffKFtiDZmDBw75uyohGh4lE5KS0uV0WhUZrNZFRcXK5PJpLKysiodk5SU\npCIjI5VSSqWnp6vQ0FCrbVNSUlRZWZlSSqm5c+equXPnKqWUMpvNqk+fPlbj0vEti8aquFipZ55R\nqmNHpTZvdnY0QjiFvZ+dutUuy8jIwNfXFx8fHzw8PIiJiSEhIaHSMYmJiUyePBmA0NBQTp8+zfHj\nx2ttGx4ejpubm6VNfn6+Xm9BCI2HBzz3nFYD7amntNI0l3rQQoja2ZRkCgoK2L17N2lpaezcuZO0\ntDSb2nS9rDaUt7c3BQUFNh1TWFhotS3AqlWriIqKsjw2m82EhIQQFhbGF198YctbE8J2oaGQmQlt\n2kC/ftp+NUKIWrlbO2Du3Lls2rSJwMBAy6p/gOHDh9fazmDjIKmycxB+0aJFeHp6MmHCBAC6dOlC\nXl4e1157Lfv372fs2LEcPHiQttXsjLhw4ULL92FhYYSFhdkVg2iCWrfWJgRs3w4TJ0JMDCxapBXd\nFKIRSU1NJdUBf0hZTTIffvgh2dnZNG/evE4n9vLyIi8vz/I4Ly8Pb2/vWo/Jz8/H29ubkpKSWtuu\nWbOGbdu28dlnn1me8/T0tExK6N+/P0ajkSNHjtC/f/8qsV2eZISwS2QkfPONNuts4EBtjU1wsLOj\nEsJhrvwD/LnnnrPrPFZvlxmNRoqLi+t84oEDB3LkyBFyc3MpLi5m06ZNREdHVzomOjqatWvXApCe\nnk779u3p1KlTrW2Tk5N5+eWXSUhIoMVlfz3+8ssvlJWVAXD06FGOHDlCz5496xy3EDa7/nqt7tnc\nuRAeDkuWwKXfQSGExmpPpmXLlgQHBzNq1ChLb8ZgMBAXF1f7id3dWb58OREREZSVlTFt2jQCAgKI\nj48HYPr06URFRbFt2zZ8fX1p3bo1q1evrrUtwKxZsyguLrbUTxsyZAgrVqxg586dPPvss3h4eODm\n5kZ8fDzt27e3/8oIYQuDQavmPHw4TJkCW7dqtdDkDxwhABsWY65Zs0Y78NIYi1IKg8FgmRXW0Mhi\nTKGb8nJt583Fi7VezdSpsoBTNBq6rvgvKiri8OHDAPj7++Ph4VH3CF2EJBmhu2+/1Xo3Pj7w5pvQ\nsaOzIxLiqum24j81NZVevXoxc+ZMZs6ciZ+fHzt37rQrSCGahL59Ye9e8PfXJgN89JGzIxLCaaz2\nZPr378+GDRvo3bs3AIcPHyYmJob9+/fXS4COJj0ZUa927YLJk7XtBP71L6hmSr0QDYFuPZnS0lJL\nggHo1asXpVICXQjbDBsGX3+tjdcEB8Pu3c6OSIh6ZbUnM3XqVJo1a8akSZNQSrF+/XrKy8tZtWpV\nfcXoUNKTEU6TkKCtq3ngAa26cwOuZi6aHt0G/i9evMjrr7/O7kt/gQ0bNowZM2bUeXGmq5AkI5zq\np5/gwQe1PWvWrYOgIGdHJIRNdJ1d1phIkhFOpxS8/TbMmwfz55NmNJKyfDnuRUWUNm/O6NhYho8Z\n4+wohajE3s/OGhdj/vnPf2bz5s306dOnSh0yg8HAgQMH6h6lEEJbO/PggzBiBGl33MHHP/zAot9/\nt/x4fk4OgCQa0SjU2JMpLCykS5cu/PDDD1Wyl8FgoHv37vUSoKNJT0a4kgWjR/PiJ59Uef7piAhe\nSE52QkRCVM/hs8u6dOkCwIoVK/Dx8an0tWLFCvsjFUJYuNdQF7DZ8ePajDQhGjirU5hTUlKqPLdt\n2zZdghGiqSmtYQJNWU4O9OihbZKWlVXPUQnhODUmmZUrV9K3b1+ys7Pp27ev5cvHx4d+/frVZ4xC\nNFqjY2OZbzRWeu4po5HwjRu1SgElJVqF5wED4N//huPHnRSpEPapcUzmzJkznDp1iieffJIlS5ZY\n7sW1bduW6667rl6DdCQZkxGuJi0piU+WLaPZxYuUtWhB+KxZlQf9y8pgxw5tz5qEBG2Hzvvug7Fj\ntU3UhKgHuk9hPnHiBBcvXrQ87tatW51fzBVIkhEN2oULWqJ5912tekB0NEyapJWtuWznWiEcTbck\nk5iYyJw5cygsLKRjx4788MMPBAQEcPDgQbuDdSZJMqLR+Okn2LRJW9RZUADjx2s9HJNJthgQDqdb\n7bIFCxawZ88eevXqhdls5rPPPiM0NNSuIIUQDtSpE8TGwpdfwuefQ8uW2i20vn3hH/+Ay7YwF8JZ\nrCYZDw8Prr/+esrLyykrK2PEiBF89dVX9RGbEMJW/v7w4otw9Ci88QaYzVpBzhEjYNUqOHPG2RGK\nJspqkrn22mv57bffGDZsGBMnTiQ2NpY2bdrUR2xCiLpyc4NbboH4eCgshFmztC2hu3eHv/zljxlr\nQtQTq2My58+fp0WLFpSXl7N+/XrOnj3LxIkTG+wMMxmTEU3SyZOwebM2YSA7G8aN0yYMhIbK+I2w\niS4D/6WlpYSHh7Njx46rCs6VSJIRTd7Ro/Dee9qEgfJyLdlMmgRXrNcR4nK6DPy7u7vj5ubG6dOn\n7Q5MCOFievaEBQvg0CEt2fz6KwwZAjffDCtXao+FcBCrt8uio6PJzMxk9OjRtGrVSmtkMBAXF1cv\nATqa9GSEqEZJCXzyida72bYNwsK06dB33AEtWjg7OuECdFsn884776CUspT7r/h+8uTJ9kXqZJJk\nhLDi7Fn44ANt/Gb/frjnHu122rBh2sQC0SQ5fD+ZCqdOnWL27NmVnnvttdfq/EJCiAbimmtgyhTt\nKz8fNmzQZqmdOQMTJ2o9nIAAZ0cpGgirPZmQkBAyMzMrPRccHMzXX3+ta2B6kZ6MEHY6cEDr3axf\nDzfeqCWbmBjte9HoOfx22YYNG3jvvffYtWsXw4YNszz/22+/0axZMz777DP7o3UiSTJCXKWyMkhN\n1cZvEhJg8GDtdpoU7GzUHJ5kfvjhB8xmc7VVmE0mE+7uVu+0uSRJMkI40OUFO//7X7jzTinY2Ujp\nXoW5sZAkI4ROTpyAjRu1hJOfLwU7GxndCmRu2bIFPz8/rrnmGtq2bUvbtm255pprbDp5cnIy/v7+\n+Pn5sWTJkmqPiY2Nxc/PD5PJVGnsp6a2TzzxBAEBAZhMJu6++27OXFaTafHixfj5+eHv71/tjp5C\nCB117KgV7MzI0Ap2tmoFd90lBTubOmVFz549VVZWlrXDqigtLVVGo1GZzWZVXFysTCZTlfMkJSWp\nyMhIpZRS6enpKjQ01GrblJQUVVZWppRSau7cuWru3LlKKaUOHjyoTCaTKi4uVmazWRmNRstxl7Ph\nLQshHKVor8+gAAAZRUlEQVSsTKldu5SaPl2pDh2UCgtT6u23lTp92tmRCRtt3bpTjR493+7PTqs9\nmRtvvJEAO6YrZmRk4Ovri4+PDx4eHsTExJCQkFDpmMTERMt6m9DQUE6fPs3x48drbRseHo7bpbn6\noaGh5OfnA5CQkMD48ePx8PDAx8cHX19fMjIy6hy3EMKBKgp2vvGGVrAzNlYKdjYgSUlpPPbYx6Sk\nvGj3OawmmYEDB/KXv/yFDRs2sGXLFrZs2cIHH3xg9cQFBQV07drV8tjb25uCggKbjiksLLTaFmDV\nqlVERUUBUFhYiLe3t9U2Qggnad5cu332wQda/bSRI+Gf/wQvL3j0UUhPBxkvdSlxcSnk5Cy6qnNY\nnSJ25swZWrZsWWWM4+677661ncHGgT5l5y/VokWL8PT0ZMKECXWOYeHChZbvw8LCCAsLsysGIYSd\nOnSA6dO1L7NZW3szebIU7HQB5eWQlQVr1qSye/cXwMKrOp/VJLNmzRq7Tuzl5UXeZQN9eXl5lXoa\n1R2Tn5+Pt7c3JSUltbZds2YN27Ztq7RWp7pzeXl5VRvb5UlGCOFkPXpoBTvnz4evvtLW3wwZAr6+\n2uy0ceOggW4t0hCcOgV798KePdpXRgbccAMMGRJGt2638N13Cy8d+Zx9L2Bt0ObQoUNq5MiRKjAw\nUCml1DfffKNeeOEFq4M9JSUlqmfPnspsNquioiKrA/979uyxDPzX1nb79u0qMDBQ/fzzz5XOVTHw\nX1RUpI4ePap69uypysvLq8Rlw1sWQjhbcbFSSUlKxcQodc01SkVHK7V5s1K//+7syBq0sjKlvv1W\nqTffVGrqVKX8/ZVq00apESOUmjdPqcREpU6c+OP4rVt3KqPxKXXpPqZdr2m11bBhw1R6eroKDg5W\nSilVXl5uSTjWbNu2TfXq1UsZjUb10ksvKaWUeuONN9Qbb7xhOWbmzJnKaDSqfv36qX379tXaViml\nfH19Vbdu3VRwcLAKDg5WjzzyiOVnixYtUkajUfXu3VslJydX/4YlyQjRsJw5o9Tq1UqNGqXNUHvw\nQaV27tQ+MUWtTp5Uavt2pZ55RqnwcKXatVPK11ep++5TasUKpTIzlSopqf0cW7fuVBERC+z+7LS6\nGHPgwIF89dVXlWqYSe0yIYRTVBTsXLeuxoKdaUlJpMTF4V5URGnz5oyOjWX4mDFODLp+VIylVNz2\n2rNHu1w33aRV/hkyRPvvDTfYd37dqjDfcMMNfP/995bH77//Pp07d67zCwkhxFXz9oYnntC+Kgp2\n3nabpWBn2nXX8fFzz7EoJ8fSZP6l7xtboql5LEX7io2FPn3A2RXArPZkcnJyeOihh9izZw/t27en\nR48erF+/Hh8fn3oK0bGkJyNEI3NZwc4F69fzYmlplUOejojgheTk+o/NQWrqpQwc+EdSuZpeii10\nr1127tw5ysvLbS4p46okyQjReC0cNoyFX3xR9XkvL21WaWAgBAVBu3b1H1wdWOulDBlS/70U3W6X\nzZs3j7lz59K+fXtA28Ts1Vdf5cUX7V8BKoQQeii9tEX8lcpat4bdu+HNN+G777QkU5FwgoKcmnys\n9VJmzdK/l6Inqz2Z6gb5q9vIrKGQnowQjVdaUhIfP/ZYpTGZp4xGbl+69I8xmfJyrVjnwYPaV1aW\n9t96Sj6u2EuxhW63y/r160dGRgYtWrQA4Pfff2fgwIEcPHjQvkidTJKMEI1bWlISnyxbRrOLFylr\n0YLwWbNsG/TXIfm4wliKo+iWZJYsWUJiYiIPPPAASilWr15NdHQ0c+fOtTtYZ5IkI4Sokzokn7Pe\ngWScC2TXt+0bVC/FFroO/G/fvp1PP/0Ug8FAeHg4ERERdgXpCiTJCCEcoby0nCOf/Yg5KYuzew7i\ncfggXc9lEWj4jpJW7Sg2BtI6NIhWAy/1fAID4dLYdkMkO2PaSJKMEMIeNo+luJXDjz/+0eOp6P3U\ndNutgSQf3ZLMli1bePLJJ/npp58sL2AwGDh79qx9kTqZJBkhhDW6jKWUN+zko1uSMRqNbN261a6N\ny1yRJBkhxJVq66VUlGTp21ensZQGknx0SzJDhw5l9+7ddgfmaiTJCNG4JSWlEReXQlGRO82blxIb\nO5oxY4Zbft5gZnzVlHyysrTkc+VMN52Tj25J5rHHHuP48eOMHTsWT09Py4tZ27TMVUmSEaLxqtgu\n+PLdHHv0mM/kyRGUlw+v/16KHpyUfHRLMlOmTLG8wOVWr15d5xdzBZJkhGi8IiIWVLsf/bXXPs3D\nD7/gOr0UPeiUfCqqWi9KSZHZZbaQJCNE43HlWMrnny+krGxhleNuvXUhqalVn28SKpLP5Wt8Ll/n\nU0vyubyCggH0qV2Wl5dHbGwsX1wqOjd8+HCWLl1aZStlIYTQky01vkpKSklNrdq2RYuyeo/XZbi5\ngY+P9nV55YMrk8+Vtd2CgkjJzmbRjz9e1ctbTTJTp05l4sSJ/Oc//wFg/fr1TJ06lU8++eSqXlgI\nIWpjbcbXrFlVx1Lc3EaTlze/0piM0fgUs2bd7oR34OJsSD7us2Zd9ctYvV1mMpn45ptvrD7XUMjt\nMiFcjyNnfCUlpbFs2SdcvNiMFi3KmDUrvNLsMmG7BRERvJiSAqDf7bLrrruOdevWMWHCBJRSbNy4\nkeuvv77OLySEEBXs6aXYasyY4ZJUHGR0bCzzc3IqVbWuK6s9mdzcXGbNmkV6ejoAN998M8uWLaNb\nt252v6gzSU9GiPp1ZS8lPV2rN+ly61JEtSqqWr/48ccyu8wWkmSE0JdTV88L3ei2Tub+++8nLi6u\n0s6Yc+bMYdWqVfZF6mSSZIRwHOmlNB26bb984MABS4IBuPbaa9m/f3+dX0gI0fDpOZYiGiervwpK\nKU6ePEmHDh0AOHnyJGVlTXjOuRBNhLVeSkPfe17UD6tJZs6cOQwZMoRx48ahlGLz5s3Mnz+/PmIT\nQtSj6nop11//x20v6aUIe9g08H/w4EE+//xzDAYDI0eOJDAwsD5i04WMyQghYymi7mRnTBtJkhFN\nkbVeisz4EtZIkrGRJBnR2EkvRejB3s9ONx1isUhOTsbf3x8/Pz+WLFlS7TGxsbH4+flhMpnIzMy0\n2nbz5s0EBQXRrFmzSrPccnNzadmyJSEhIYSEhDBjxgz93pgQLuTUKUhOhmefhdGjoUMHGDsW0tK0\nxLJ+vXbMjh3w0ktw552SYEQ9UjopLS1VRqNRmc1mVVxcrEwmk8rKyqp0TFJSkoqMjFRKKZWenq5C\nQ0Ottv3uu+9Udna2CgsLU/v27bOcy2w2qz59+liNS8e3LITuysqU+vZbpd56S6kHHlAqIECpNm2U\nCgtTat48pRITlTpxwtlRisbI3s9O3e7AZmRk4Ovri4+PDwAxMTEkJCQQEBBgOSYxMZHJkycDEBoa\nyunTpzl+/Dhms7nGtv7+/nqFLIRT1LZdsLWxlEcflbEU4dp0+9UsKCiga9eulsfe3t7s3bvX6jEF\nBQUUFhZabVsds9lMSEgI7dq148UXX+SWW25xwDsRQj/VbRecmTkfkwkKCobLuhTR4OmWZK7crrkm\nykGD8F26dCEvL89SkWDs2LEcPHiQtm3bOuT8QjjaqVPwzDMplRIMwM8/L6Kg4GnWrx8uvRTR4On2\n6+vl5UVeXp7lcV5eXpXdNK88Jj8/H29vb0pKSqy2vZKnpyeenp4A9O/fH6PRyJEjR+jfv3+VYxcu\nXGj5PiwsjLCwsLq8NSHqrGLGV3r6H7e+8vKgWbPq/wl27NiMkJB6DlKIy6SmppJa3TajdeXYoaE/\nlJSUqJ49eyqz2ayKioqsDvzv2bPHMvBvS9uwsDD11VdfWR7//PPPqrS0VCmlVE5OjvLy8lKnTp2q\nEpeOb1kIi5Mnldq+XalnnlEqPFypdu2UMhqVmjRJqddfV2r/fqVKSpQaPXq+AlXlKyJigbPfghCV\n2PvZqVtPxt3dneXLlxMREUFZWRnTpk0jICCA+Ph4AKZPn05UVBTbtm3D19eX1q1bs3r16lrbAnz4\n4YfExsbyyy+/MGbMGEJCQti+fTs7d+7k2WefxcPDAzc3N+Lj4ysV9hRCL5evS6noqdg6lhIbO5qc\nHNkuWDReshhTiDpy9H4psl2waAhkxb+NJMmIupDV80JoJMnYSJKMqI3s6ihE9STJ2EiSjKggvRQh\nbCdJxkaSZJou6aUIYT9JMjaSJNM0SC9FCMeSJGMjSTKNk/RShNCXJBkbSZJp+K7spezZA/n50ksR\nQk+SZGwkSabhqa2XUpFQpJcihL4kydhIkoxrk16KEK5JkoyNJMm4Fmu9lCFDoE8f6aUI4WySZGwk\nScZ5pJciRMMlScZGkmQco7bdHCtIL0WIxsPez0755y3qrLrdHHNy5pObC56ew6vtpciujkI0TdKT\nEXUWEbGAlJQXqzzfsuXT3HvvC9JLEaIRkp6M0M2VYym7dlX/azNoUDPWrq3n4IQQLk2SjKjC2ljK\noUOl7NlTtV2LFmX1H6wQwqVJkmnirM34qm4spVu30Tz2mOzmKISwTsZkmhhHzfiS3RyFaFpkCrON\nmlKSkXUpQghHkSRjo8acZGRdihBCL5JkbNRYkoz0UoQQ9UmSjI0aapKRXooQwpkkydioISQZ6aUI\nIVyNJBkbuWKSkV6KEMLVSZKxkbOTjPRShBANkSQZG9V3kpFeihCiMZAkYyM9k4z0UoQQjZUkGRs5\nMslIL0UI0VTY+9nppkMsFsnJyfj7++Pn58eSJUuqPSY2NhY/Pz9MJhOZmZlW227evJmgoCCaNWvG\n/v37K51r8eLF+Pn54e/vT0pKikPfS3k5/O9/8NZb8MADEBgI3brBkiVQUqLV+DpyRPtauxYeeQSC\ngyXBCCGaOKWT0tJSZTQaldlsVsXFxcpkMqmsrKxKxyQlJanIyEillFLp6ekqNDTUatvvvvtOZWdn\nq7CwMLVv3z7LuQ4ePKhMJpMqLi5WZrNZGY1GVVZWViUuW9/yyZNKbd+u1DPPKBUerlS7dkr5+ip1\n331KrVihVGamUiUldl0am+zYsUO/kzuQxOk4DSFGpSROR2socdqbLnTryWRkZODr64uPjw8eHh7E\nxMSQkJBQ6ZjExEQmT54MQGhoKKdPn+b48eO1tvX396dXr15VXi8hIYHx48fj4eGBj48Pvr6+ZGRk\nVBtbRMQCkpLSLI9dsZeSmpqq38kdSOJ0nIYQI0icjtZQ4rSXbh+TBQUFdO3a1fLY29ubvXv3Wj2m\noKCAwsJCq22vVFhYyODBg6ucqzopKS/y7bfzufVW+PXX4VXGUmJjZSxFCCEcQbePUYPBYNNxSsd5\nB7XFcOzYIvbufZqlS4fLjC8hhNCJbknGy8uLvLw8y+O8vDy8vb1rPSY/Px9vb29KSkqstrX2evn5\n+Xh5eVVzpBHQko/ZDNHRVfeqdxXPPfecs0OwicTpOA0hRpA4Ha0hxGk0Gu1qp1uSGThwIEeOHCE3\nN5cuXbqwadMmNmzYUOmY6Oholi9fTkxMDOnp6bRv355OnTpx3XXXWW0LlXtB0dHRTJgwgccff5yC\nggKOHDnCoEGDqmnzvePfrBBCiGrplmTc3d1Zvnw5ERERlJWVMW3aNAICAoiPjwdg+vTpREVFsW3b\nNnx9fWndujWrV6+utS3Ahx9+SGxsLL/88gtjxowhJCSE7du3ExgYyLhx4wgMDMTd3Z0VK1bYfMtO\nCCGEPprcYkwhhBD1R9fFmM7ywAMP0KlTJ/r27VvjMTUtAq1P1uJMTU2lXbt2hISEEBISwosv1v/4\nUV5eHiNGjCAoKIg+ffoQFxdX7XHOvp62xOkK1/PixYuEhoYSHBxMYGAg8+bNq/Y4Z19PW+J0hetZ\noaysjJCQEO68885qf+7s61mhtjhd5Xr6+PjQr18/QkJCqh1ygDpeTweu1XEZaWlpav/+/apPnz7V\n/rymRaD1zVqcO3bsUHfeeWc9R1XZsWPHVGZmplJKqd9++0316tXL5kW1rhanK1xPpZQ6f/68Ukqp\nkpISFRoaqnbt2lXp565wPZWyHqerXE+llHr11VfVhAkTqo3HVa6nUrXH6SrX08fHR/366681/ryu\n17NR9mSGDRvGtddeW+PPq1sE+tNPP9VXeBbW4gR9p3jb4sYbbyQ4OBiANm3aEBAQQGFhYaVjXOF6\n2hInOP96ArRq1QqA4uJiysrK6NChQ6Wfu8L1tCVOcI3rmZ+fz7Zt23jwwQerjcdVrqe1OME1rifU\nHkddr2ejTDLWVLcIND8/34kRVc9gMPDf//4Xk8lEVFQUWVlZTo0nNzeXzMxMQkNDKz3vatezpjhd\n5XqWl5cTHBxMp06dGDFiBIGBgZV+7irX01qcrnI9//a3v/Hyyy/j5lb9x5mrXE9rcbrK9TQYDNx2\n220MHDiQt956q8rP63o9m2SSgaqZ2hVnovXv35+8vDy++eYbZs2axdixY50Wy7lz57j33ntZunQp\nbdq0qfJzV7metcXpKtfTzc2Nr7/+mvz8fNLS0qotK+IK19NanK5wPbdu3UrHjh0JCQmp9a9vZ19P\nW+J0hesJsHv3bjIzM9m+fTuvv/46u3btqnJMXa5nk0wyti/cdK62bdtabllERkZSUlLCyZMn6z2O\nkpIS7rnnHiZNmlTtL76rXE9rcbrK9azQrl07xowZw1dffVXpeVe5nhVqitMVrud///tfEhMT6dGj\nB+PHj+fzzz/n/vvvr3SMK1xPW+J0hesJ0LlzZwBuuOEG7rrrrio1IOt6PZtkkomOjmbt2rUAlRaB\nupqffvrJ8hdDRkYGSqlq74vrSSnFtGnTCAwMZPbs2dUe4wrX05Y4XeF6/vLLL5w+fRqA33//nU8+\n+YSQkJBKx7jC9bQlTle4ni+99BJ5eXmYzWY2btzIyJEjLdeugitcT1vidIXreeHCBX777TcAzp8/\nT0pKSpXZr3W9no2yBOT48ePZuXMnv/zyC127duW5556jpKQEqH0RqKvF+f7777Ny5Urc3d1p1aoV\nGzdurPcYd+/ezbvvvmuZ0gjaP5gff/zREqcrXE9b4nSF63ns2DEmT55MeXk55eXl3HfffYwaNcqm\nRcquFqcrXM8rVdy2cbXreaXq4nSF6/nTTz9x1113AVBaWsrEiRMZPXr0VV1PWYwphBBCN03ydpkQ\nQoj6IUlGCCGEbiTJCCGE0I0kGSGEELqRJCOEEEI3kmSEEELoRpKMaFLc3Nz4+9//bnn8yiuv1Hnr\n2+rK6jjDlClT2LJli7PDEKJWkmREk+Lp6cmHH37Ir7/+CthXw8pV6txdTRylpaUOjESImkmSEU2K\nh4cHDz30EP/+97+r/Cw3N5eRI0diMpm47bbbLPWZzGYzQ4YMoV+/fixYsKBSm5dffplBgwZhMplY\nuHBhta/Zpk0bFixYQHBwMEOGDOHEiRNA1Z5IRQ8pNTWVW2+9lbFjx2I0GnnyySdZt24dgwYNol+/\nfhw9etTS5tNPP+Wmm26id+/eJCUlAdrGWE888YQlrjfffNNy3mHDhvGnP/2JoKCgWq+Tj48PCxcu\nZMCAAfTr14/s7OxajxeiJpJkRJMzY8YM1q9fz9mzZys9P2vWLKZOnco333zDxIkTiY2NBeCxxx5j\n5syZHDhwgC5duliOT0lJ4fvvvycjI4PMzEz27dtXbcXaCxcuMGTIEL7++muGDx9uKZ9+ZU/k8scH\nDhwgPj6e7777jnXr1pGTk0NGRgYPPvggy5YtA7R6bT/88ANffvklSUlJPPzwwxQVFfH222/Tvn17\nMjIyyMjI4K233iI3NxeAzMxM4uLirCYNg8HADTfcwL59+3jkkUd45ZVXbLy6QlQmSUY0OW3btuX+\n+++vskVzeno6EyZMAGDSpEl88cUXgFZBd/z48ZbnK6SkpJCSkkJISAgDBgwgOzub77//vsrreXp6\nMmbMGAAGDBhg+cCvzU033USnTp3w9PTE19eXiIgIAPr06WNpbzAYGDduHAC+vr707NmTQ4cOkZKS\nwtq1awkJCWHw4MGcPHnSEtegQYPo3r27Tdfp7rvvBrQS9LbELER1GmWBTCGsmT17Nv3792fq1KmV\nnq9rKb958+bx0EMP1XqMh4eH5Xs3NzfLeIi7uzvl5eWAtkFYcXGx5bjmzZtXalPx+PL21anoDS1f\nvpzw8PBKP0tNTaV169a2vK1KMTRr1kzGcITdpCcjmqRrr72WcePG8fbbb1s+mG+++WZL5dv169cz\nfPhwAIYOHVrp+QoRERGsWrWK8+fPA9qOgT///LPNMfj4+LBv3z5A29K2ogK3rZRSbN68GaUUOTk5\nHD16FH9/fyIiIlixYoUlMRw+fJgLFy5Ue45Ro0Zx7NixOr2uEHUhSUY0KZePe8yZM4dffvnF8njZ\nsmWsXr0ak8nE+vXrWbp0KQBLly7l9ddfp1+/fhQWFlrOER4ezoQJEyyTAsaNG8e5c+dqfU2DwWB5\n/Ne//pWdO3cSHBxMenp6panRNc0cu7y9wWCgW7duDBo0iKioKOLj4/H09OTBBx8kMDCQ/v3707dv\nXx555BFKS0srtQWt95STk1PtniU1xSxEXUmpfyGaqIMHD7J69WoZ1Be6kiQjhBBCN3K7TAghhG4k\nyQghhNCNJBkhhBC6kSQjhBBCN5JkhBBC6EaSjBBCCN1IkhFCCKGb/wc9ZEtntEUWCwAAAABJRU5E\nrkJggg==\n",
       "text": [
        "<matplotlib.figure.Figure at 0x112b7a30>"
       ]
      }
     ],
     "prompt_number": 86
    }
   ],
   "metadata": {}
  }
 ]
}