summaryrefslogtreecommitdiff
path: root/TRANSPORT_PROCESSES_AND_UNIT_OPERATIONS/GeankoplisChapter05.ipynb
blob: 163b766b9bca0f534bfeb82393b7f1201c3e8e23 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
{
 "metadata": {
  "name": "",
  "signature": "sha256:2e72bac4245ea0d7ffb20474fbd7477dd537a5d43e72a324996bb189620d2ad0"
 },
 "nbformat": 3,
 "nbformat_minor": 0,
 "worksheets": [
  {
   "cells": [
    {
     "cell_type": "heading",
     "level": 1,
     "metadata": {},
     "source": [
      "Chapter 5: Principles of Unsteady-State Heat Transfer"
     ]
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 5.2-1, Page number 333"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Cooling of a Steel Ball\n",
      "from math import pi, exp\n",
      "\n",
      "\n",
      "#Variable declaration #English Units\n",
      "r = 1./12           #Radius of a Steel Ball, ft\n",
      "Tbi = 800.          #Initial uniform temperature of the steel ball, \u00b0F\n",
      "Tinf = 250.         #Temeperature of a constant temperature bath, \u00b0F\n",
      "h = 2.0             #Convective Heat Transfer Coefficient, Btu/(h.ft2\u00b0F)\n",
      "t = 1.              #Time at which temperature of the ball is to be determined, s\n",
      "k = 25.             #Thermal conductivity of the steel ball, Btu/(h.ft\u00b0F)\n",
      "rho = 490.          #Density of a steel ball, lbm/ft3\n",
      "cp = 0.11           #Specific heat of steel ball, Btu/(lbm.\u00b0F)\n",
      "\n",
      "#Calculation\n",
      "\n",
      "x1 = r/3\n",
      "NBi = h*x1/k\n",
      "A = 4*pi*r**2\n",
      "V = 4*pi*r**3/3.\n",
      "tau = h*A/(cp*rho*V)\n",
      "Tb = Tinf + (Tbi - Tinf)*exp(-tau*t)\n",
      "#Result\n",
      "print \"Temperature of ball after one hour: \", round(Tb),\"\u00b0F\"\n",
      "\n",
      "\n",
      "#Variable declaration # SI Units\n",
      "\n",
      "r = 0.0254                              #Radius of a Steel Ball, m\n",
      "Tbi = 699.9                             #Initial uniform temperature of the steel ball, K\n",
      "Tinf = 394.3                            #TEmeperature of a constant temperature bath, K\n",
      "h = 11.36                               #Convective Heat Transfer Coefficient, W/(m2K)\n",
      "t = 3600.                               #Time at which temperature of the ball is to be determined, s\n",
      "k = 43.3                                #Thermal conductivity of the steel ball, W/(mK)\n",
      "rho = 7849.                             #Density of a steel ball, kg/m3\n",
      "cp = 460.6                              #Specific heat of steel ball, J/(kg.K)\n",
      "\n",
      "#Calculation\n",
      "\n",
      "x1 = r/3\n",
      "NBi = h*x1/k\n",
      "A = 4*pi*r**2\n",
      "V = 4*pi*r**3/3.\n",
      "tau = h*A/(cp*rho*V)\n",
      "Tb = Tinf + (Tbi - Tinf)*exp(-tau*t)\n",
      "#Result\n",
      "print \"Temperature of ball after one hour: \", round(Tb,1),\"\u00b0C\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Temperature of ball after one hour:  395.0 \u00b0F\n",
        "Temperature of ball after one hour:  474.6 \u00b0C\n"
       ]
      }
     ],
     "prompt_number": 1
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 5.2-2, Page Number 334"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Total amount of heat in cooling\n",
      "from math import pi \n",
      "\n",
      "#Variable declaration\n",
      "r = 0.0254                              #Radius of a Steel Ball, m\n",
      "Tbi = 699.9                             #Initial uniform temperature of the steel ball, K\n",
      "Tinf = 394.3                            #TEmeperature of a constant temperature bath, K\n",
      "h = 11.36                               #Convective Heat Transfer Coefficient, W/(m2K)\n",
      "t = 3600.                               #Time at which temperature of the ball is to be determined, s\n",
      "k = 43.3                                #Thermal conductivity of the steel ball, W/(mK)\n",
      "rho = 7849.                             #Density of a steel ball, kg/m3\n",
      "cp = 460.6                              #Specific heat of steel ball, J/(kg.K)\n",
      "\n",
      "#Calculation\n",
      "\n",
      "x1 = r/3\n",
      "NBi = h*x1/k\n",
      "A = 4*pi*r**2\n",
      "V = 4*pi*r**3/3.\n",
      "tau = cp*rho*V/(h*A)\n",
      "Q = cp*rho*V*(Tbi-Tinf)*(1-exp(-t/tau))\n",
      "#Result\n",
      "\n",
      "print 'Amount of Heat Transffered %6.4e'%(Q),\"J\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Amount of Heat Transffered 5.5901e+04 J\n"
       ]
      }
     ],
     "prompt_number": 7
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 5.3-1, Page number 336"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Freezing Temperature in the ground\n",
      "from math import pi, erfc, exp\n",
      "\n",
      "# Variable declaration\n",
      "Ti = 15.6                     #Earths constant temperature, degC\n",
      "Tc = -17.8                    #Cold wave temperature, deg C\n",
      "h = 11.36                     #Convective heat transfer coefficient, W/(m2K)\n",
      "alpha = 4.65e-7               #THermal diffusivity of soil, m2/s\n",
      "k = 0.865                     #Thermal conductivity of soil, W/(mK)\n",
      "t = 5*3600                    #Time in seconds\n",
      "x = 0.                        #Surface position , m\n",
      "T0 = 0.                       #Freezing temperature for water\n",
      "\n",
      "# Calculation SI units\n",
      "absc = x/(2*sqrt(alpha*t))\n",
      "param = h*sqrt(alpha*t)/k\n",
      "corr = erfc(absc) - exp(param*(2*absc+param))*erfc(absc+param)\n",
      "T = Ti + (Tc - Ti)*(erfc(absc) - exp(param*(2*absc+param))*erfc(absc+param))\n",
      "\n",
      "ordi = (T0-Ti)/(Tc-Ti)\n",
      "abscOrd = .16\n",
      "x0 = 2*sqrt(alpha*t)*abscOrd\n",
      "\n",
      "#Results\n",
      "print \"(a)   Temperature of the surface after 5 hour:\", round(T,1), \"\u00b0C\"\n",
      "print \"(b)   Location of Freezing Temperature  after 5 hour:\",round(x0,4),\"m\"\n",
      "\n",
      "\n",
      "# Variable declaration English units\n",
      "Ti = 60.                     #Earths constant temperature, degF\n",
      "Tc = -0.                     #Cold wave temperature, deg F\n",
      "h = 2.                       #Convective heat transfer coefficient, Btu/(ft2Fhr)\n",
      "alpha = 0.018                #THermal diffusivity of soil, ft2/hr\n",
      "k = 0.5                      #Thermal conductivity of soil, Btu/(ft F)\n",
      "t = 5                        #Time in hr\n",
      "x = 0.                       #Surface position , ft\n",
      "T0 = 32.                     #Freezing temperature for water\n",
      "\n",
      "# Calculation SI units\n",
      "absc = x/(2*sqrt(alpha*t))\n",
      "param = h*sqrt(alpha*t)/k\n",
      "corr = erfc(absc) - exp(param*(2*absc+param))*erfc(absc+param)\n",
      "T = Ti + (Tc - Ti)*(erfc(absc) - exp(param*(2*absc+param))*erfc(absc+param))\n",
      "\n",
      "ordi = (T0-Ti)/(Tc-Ti)\n",
      "abscOrd = .16\n",
      "x0 = 2*sqrt(alpha*t)*abscOrd\n",
      "\n",
      "#Result\n",
      "print \"(a)   Temperature of the surface after 5 hour:\", round(T,1), \"\u00b0F\"\n",
      "print \"(b)   Location of Freezing Temperature  after 5 hour:\",round(x0,4),\"ft\"\n",
      "print 'The answers are different than book, because of book uses rounded numbers and rounded values of \\ncomplimentary error function whereas code used built in erfc function'"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "(a)   Temperature of the surface after 5 hour: -5.2 \u00b0C\n",
        "(b)   Location of Freezing Temperature  after 5 hour: 0.0293 m\n",
        "(a)   Temperature of the surface after 5 hour: 22.7 \u00b0F\n",
        "(b)   Location of Freezing Temperature  after 5 hour: 0.096 ft\n",
        "The answers are different than book, because of book uses rounded numbers and rounded values of \n",
        "complimentary error function whereas code used built in erfc function\n"
       ]
      }
     ],
     "prompt_number": 10
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 5.3-2, Page number 338"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Heat Conduction in the slab\n",
      "\n",
      "# Variable declaration\n",
      "x1 = .0462       #Thickness of the slab, m\n",
      "T0 = 277.6       #Uniform temperature of the slab, K\n",
      "T1 = 297.1       #Ambient temperature of the fluid, K\n",
      "h = 8.52         #Convective heat transfer coefficient, W/m2.K\n",
      "t = 5*3600       #Time, s\n",
      "rho = 998.       #Density of H2O at 4 deg C (kg/m3)\n",
      "k = 0.197        #Thermal conductivity of butter, W/m.K\n",
      "cp = 2300        #Specific heat of butter, J/kg.K\n",
      "\n",
      "    \n",
      "# Calculation\n",
      "alpha = k/(rho*cp)       #Thermal diffusivity, m2/s\n",
      "\n",
      "#PART A Calculation of temperature at the surface\n",
      "param = k/(h*x2)\n",
      "X = alpha*t/x2**2\n",
      "x = 0.0462      #Distance from surface at which temperature needs to be calculated, m\n",
      "n = x/x2\n",
      "Y = 0.25    #From fig 5.3-5 \n",
      "T = T1 - Y*(T1-T0)\n",
      "\n",
      "#Result\n",
      "\n",
      "print \"Answers to part A\"\n",
      "print \"Paramenter m for fig 5.3-5:\", round(param,3)\n",
      "print \"Abscisa X for fig 5.3-2:\", round(X,3) \n",
      "print \"Parameter n for fig 5.3-2:\", round(n,3)\n",
      "print \"Temeprature of the surface at .0462 m after 5 hour\", round(T,1), \"K\", round(T-273.2,1), \"\u00b0C\"\n",
      "\n",
      "#PART B Calculation of temperature at 25.4 mm below the surface \n",
      "param = k/(h*x2)\n",
      "X = alpha*t/x2**2\n",
      "x = 0.0208       #Distance from surface at which temperature needs to be calculated, m\n",
      "n = x/x2\n",
      "Y = 0.45    #From fig 5.3-5 \n",
      "T = T1 - Y*(T1-T0)\n",
      "\n",
      "#Result\n",
      "\n",
      "print \"Answers to part B\"\n",
      "print \"Paramenter m for fig 5.3-5:\", round(param,3)\n",
      "print \"Abscisa X for fig 5.3-2:\", round(X,3) \n",
      "print \"Parameter n for fig 5.3-2:\", round(n,3)\n",
      "print \"Temeprature of the surface at .0208 m after 5 hour\", round(T,1), \"K\", round(T-273.2,1), \"\u00b0C\"\n",
      "\n",
      "#PART C Calculation of temperature at 46.2 mm below the surface\n",
      "param = k/(h*x1)\n",
      "X = alpha*t/x1**2\n",
      "n = x/x1\n",
      "Y = 0.5     #From fig 5.3-5 \n",
      "T = T1 - Y*(T1-T0)\n",
      "\n",
      "#Result\n",
      "print \"Answers to part B\"\n",
      "print \"Paramenter m for fig 5.3-5:\", round(param,2)\n",
      "print \"Abscisa X for fig 5.3-2:\", round(X,2) \n",
      "print \"Parameter n for fig 5.3-2:\", round(n,1)\n",
      "print \"Temeprature of the surface at .0462 m after 5 hour\", round(T,1), \"K\", round(T-273.2,1), \"\u00b0C\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Answers to part A\n",
        "Paramenter m for fig 5.3-5: 0.5\n",
        "Abscisa X for fig 5.3-2: 0.724\n",
        "Parameter n for fig 5.3-2: 1.0\n",
        "Temeprature of the surface at .0462 m after 5 hour 292.2 K 19.0 \u00b0C\n",
        "Answers to part B\n",
        "Paramenter m for fig 5.3-5: 0.5\n",
        "Abscisa X for fig 5.3-2: 0.724\n",
        "Parameter n for fig 5.3-2: 0.45\n",
        "Temeprature of the surface at .0208 m after 5 hour 288.3 K 15.1 \u00b0C\n",
        "Answers to part B\n",
        "Paramenter m for fig 5.3-5: 0.5\n",
        "Abscisa X for fig 5.3-2: 0.72\n",
        "Parameter n for fig 5.3-2: 0.5\n",
        "Temeprature of the surface at .0462 m after 5 hour 287.4 K 14.2 \u00b0C\n"
       ]
      }
     ],
     "prompt_number": 21
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 5.3-3, Page number 342"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Transient Heat Conduction in a Can of Pea Puree\n",
      "\n",
      "# Variable declaration\n",
      "D = 0.0681       #Diameter of a Can, m\n",
      "T0 = 29.4        #Uniform temperature of the slab, deg C\n",
      "T1 = 115.6       #Ambient temperature of the steam, deg C\n",
      "h = 4540         #Convective heat transfer coefficient, W/m2.K\n",
      "t = 0.75*3600    #Time, s\n",
      "x = 0.0          #Centre of the Can, m\n",
      "k = 0.830        #Thermal conductivity of butter, W/m.K\n",
      "alpha = 2.007e-7 #THermal diffusivity, m2/s\n",
      "  \n",
      "# Calculation\n",
      "x1 = D/2.\n",
      "n = x/x1\n",
      "param = k/(h*x1)\n",
      "X = alpha*t/x1**2\n",
      "Y = 0.13    #From fig 5.3-8\n",
      "T = T1 - Y*(T1-T0)\n",
      "   \n",
      "#Result\n",
      "print \"Paramenter m for fig 5.3-8:\", round(param,5)\n",
      "print \"Abscisa X for fig 5.3-8:\", round(X,3) \n",
      "print \"Parameter n for fig 5.3-8:\", n\n",
      "print \"Temeprature at the centre after 0.75 hour\", round(T,1),\"\u00b0C \""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Paramenter m for fig 5.3-8: 0.00537\n",
        "Abscisa X for fig 5.3-8: 0.467\n",
        "Parameter n for fig 5.3-8: 0.0\n",
        "Temeprature at the centre after 0.75 hour 104.4 \u00b0C \n"
       ]
      }
     ],
     "prompt_number": 22
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 5.3-4, Page number 347"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Two-Dimensional Conduction in a Short Cylinder \n",
      "\n",
      "# Variable declaration\n",
      "\n",
      "D = 0.0681       #Diameter of a Can, m\n",
      "H = 0.1016       #Height of a Can, m\n",
      "T0 = 29.4        #Uniform temperature of the slab, deg C\n",
      "T1 = 115.6       #Ambient temperature of the steam, deg C\n",
      "h = 4540         #Convective heat transfer coefficient, W/m2.K\n",
      "t = 0.75*3600    #Time, s\n",
      "x = 0.0          #Centre of the Can in radial direction, m\n",
      "y = 0.0          #Centre of the Can in axial direction, m\n",
      "k = 0.830        #Thermal conductivity of butter, W/m.K\n",
      "alpha = 2.007e-7 #THermal diffusivity, m2/s\n",
      "\n",
      "# Calculation\n",
      "\n",
      "x1 = D/2.\n",
      "y1 = H/2.\n",
      "\n",
      "#Radial direction\n",
      "n = x/x1\n",
      "m = k/(h*x1)\n",
      "X = alpha*t/x1**2\n",
      "Yx = 0.13    #From fig 5.3-8\n",
      "\n",
      "print \"Prameters for Radial Direction\"\n",
      "print \"Paramenter m for fig 5.3-8:\", round(m,5)\n",
      "print \"Abscisa X for fig 5.3-8:\", round(X,4) \n",
      "print \"Parameter n for fig 5.3-8:\", n\n",
      "print \"Parameter Yx from figure 5.3-8:\", round(Yx,3)\n",
      "\n",
      "#Axial Direction\n",
      "n = y/y1\n",
      "m = k/(h*y1)\n",
      "X = alpha*t/y1**2\n",
      "Yy = 0.8     #From Fig 5.3.6\n",
      "\n",
      "print \"\\nPrameters for Axial Direction\"\n",
      "print \"Paramenter m for fig 5.3-8:\", round(m,5)\n",
      "print \"Abscisa X for fig 5.3-8:\", round(X,4) \n",
      "print \"Parameter n for fig 5.3-8:\", n\n",
      "print \"Parameter Yy from figure 5.3-8:\", round(Yy,3)\n",
      "Yxy = Yx*Yy\n",
      "Txy = T1 - Yxy*(T1-T0)\n",
      "#Result\n",
      "\n",
      "print \"\\nThe Temperature at the Centre of short cylinder:\", round(Txy,1), \"\u00b0C\"  "
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Prameters for Radial Direction\n",
        "Paramenter m for fig 5.3-8: 0.00537\n",
        "Abscisa X for fig 5.3-8: 0.4674\n",
        "Parameter n for fig 5.3-8: 0.0\n",
        "Parameter Yx from figure 5.3-8: 0.13\n",
        "\n",
        "Prameters for Axial Direction\n",
        "Paramenter m for fig 5.3-8: 0.0036\n",
        "Abscisa X for fig 5.3-8: 0.21\n",
        "Parameter n for fig 5.3-8: 0.0\n",
        "Parameter Yy from figure 5.3-8: 0.8\n",
        "\n",
        "The Temperature at the Centre of short cylinder: 106.6 \u00b0C\n"
       ]
      }
     ],
     "prompt_number": 16
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 5.4-1, Page number 353"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Unsteady State Conduction and the Schmidt Numerical Method\n",
      "import matplotlib.pyplot as plt\n",
      "import copy \n",
      "\n",
      "#Variable declaration\n",
      "thk = 1.0       #Thickness of slab, m\n",
      "Ti = 100.       #Initial uniform temperature of slab, \u00b0C\n",
      "Ta = 0.         #Constant Temperature of environment, \u00b0C\n",
      "alpha = 2.0e-5  #Thermal diffusivity of slab, m2/s\n",
      "ns = 5          #Number of slices\n",
      "M = 2.0         #M for Schmidt numerical method\n",
      "tmax = 6000     #Time at which temperature of the slab at various location to be calculated, s\n",
      "#Calculation and Result\n",
      "\n",
      "dx = thk/ns\n",
      "x = [0,.2,.4,.6,.8,1.]\n",
      "dt = dx**2/(alpha*M)\n",
      "ylim(-1.,110.)\n",
      "xlim(0,1.1)\n",
      "#m = tmax/dt\n",
      "t=0\n",
      "T = [Ti,Ti,Ti,Ti,Ti,Ti]\n",
      "plt.plot(x,T,'ko-',label='Initial Temperature Profile')\n",
      "T[0] = Ta\n",
      "Tcal = [0,0,0,0,0,0]\n",
      "for i in range(1,7,1):\n",
      "    t = int(dt*i)\n",
      "    for j in range(len(T)):\n",
      "        if j==0:\n",
      "            Tcal[j]= Ta\n",
      "            #print Tcal[j]\n",
      "        elif j>=1 and j<(len(T)-1):\n",
      "            Tcal[j]=(T[j-1]+T[j+1])/2.\n",
      "            #print T[j-1], T[j+1],Tcal[j]\n",
      "        else:\n",
      "            Tcal[j]=((M-2)*T[j]+2*T[j-1])/M\n",
      "            #print Tcal[j]\n",
      "    T = copy.copy(Tcal)\n",
      "    plt.plot(x,T, 'o-',label=str(i)+'th iteration Temp. Profile.')\n",
      "print \"At 6000s\"\n",
      "for i in range(1,7,1):\n",
      "    print \"Temperature of the node\",i,\"is\", round(T[i-1],2),\"\u00b0C\"\n",
      "plt.xlabel('Node number')\n",
      "plt.ylabel('Temperature, degC')\n",
      "plt.legend(loc='lower right',fontsize='small' )\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "At 6000s\n",
        "Temperature of the node 1 is 0.0 \u00b0C\n",
        "Temperature of the node 2 is 31.25 \u00b0C\n",
        "Temperature of the node 3 is 54.69 \u00b0C\n",
        "Temperature of the node 4 is 78.13 \u00b0C\n",
        "Temperature of the node 5 is 85.94 \u00b0C\n",
        "Temperature of the node 6 is 93.75 \u00b0C\n"
       ]
      },
      {
       "metadata": {},
       "output_type": "pyout",
       "prompt_number": 7,
       "text": [
        "<matplotlib.legend.Legend at 0x8a65e30>"
       ]
      },
      {
       "metadata": {},
       "output_type": "display_data",
       "png": "iVBORw0KGgoAAAANSUhEUgAAAYEAAAEKCAYAAAD0Luk/AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsnXdYVEcXh39LUbog0iwIonQUQeyRYpDEgl2ssWs0dk00\nGhOMDdTYI7YofnaNsWEsUUDF3pWuSJPeWfqW+f64uIIssGxhQeZ9nn2EuVPOXS9z5p45cw6LEEJA\noVAolCaJgrwFoFAoFIr8oEqAQqFQmjBUCVAoFEoThioBCoVCacJQJUChUChNGKoEKBQKpQmjJG8B\n6oK9vT1evXolbzEoFAqlUeHs7Izg4GCh1xrVm8CrV69ACGlSn99++03uMtB7pvdM77lx3/Pt27er\nnVcblRKgUCgUinShSoBCoVCaMFQJNHBcXFzkLUK9Q++5aUDvuWHAIoQ0mthBLBYLjUhcCoVCaRDU\nNHfSNwEKhUJpwlAlQKFQKE0YqgQoFAqlCUOVAIVCoTRhqBKgUCiUJgxVAhQKhdKEoUqAQqFQmjBU\nCVAoFEoThioBCoVCacLITAlMmzYNBgYGsLOzE5RlZ2fD3d0d5ubmGDBgAHJzcwXXNm7ciE6dOsHS\n0hI3btyQlVgUCoVCqYDMlMDUqVNx7dq1SmU+Pj5wd3dHdHQ0+vfvDx8fHwBAeHg4Tp8+jfDwcFy7\ndg1z584Fn8+XlWgUCoVCKUdmSuCrr76Cjo5OpbJLly5h8uTJAIDJkyfjwoULAICLFy9i3LhxUFZW\nhomJCTp27IjHjx8L7dfDwwNXrlyRldgNhitXrsDDwwMuLi5N5p69vbegVatvoK09DK1afQNv7y3y\nFknmjJ86DcomraDUsRWUTVph/NRp8hZJ5gz+2h3dVZXhqqqM7qrKGPy1u7xFkjlOvXqjhbUVtB26\nooW1FZx69Za3SALqNbNYWloaDAwMAAAGBgZIS0sDACQnJ6Nnz56Cem3btkVSUpLQPm7cuIGYmBgA\nwKBBg2QssXy4cuUKFi5cKLhPAF/8PXt7b8H69S/B5X56e1y/fiKALfD2XiY/wWTI+KnTcPLJWWBq\ngaDs5NmzwFTgxOFDcpRMdgz+2h3qd27hMedTMDOvO7cw+Gt3BNz8T46SyQ6nXr0RodochRv9BGUR\nv6+BU6/eePLgvhwlY5BbekkWiwUWi1Xj9eqIiYnBrl27vtgJcefOnZUUAPDl3/Pu3TcrKQAA4HKP\nYd26JfhSX4KeptwCZhZULhxdgJP/HsfFxW/kI5SMsX7yFE84lctOcwgWBN3EM0N1+QglIwiA1FZ6\niNUyQuGvv1W6Vvjrb4ieO0c+gn1GvSoBAwMDpKamwtDQECkpKdDX1wcAtGnTBomJiYJ6Hz58QJs2\nbWrs6/r16zUqii+RL/uenYWW8nhv8fSpUz3LUk+YsIWX56qg6Exh/coiYzT5PEwszoN6vvDrsUoK\n+J6nX79CSRlOCy0UmpmisKMpCs1MUWRmAhAC/M9faH2WiorMZAkODq42p/Dn1KsS8PT0xJEjR7B8\n+XIcOXIEw4YNE5SPHz8eS5YsQVJSEt6+fYvu3bvX2JeHh0eVjecvBQ8PD6EeUl/yPbdq9Q2ysqqW\n6+pykZn5pP4FkjHJ7GS0cTcWek2pVBmcpPB6lkhGvH4N+PkBp08D7v3xzaXzQBmvSrU0BQU8yYiV\ng4Dikcvh4CmbjadsNp6Uf9g8HrppasKpwqdN8+bQXrkCwnQfKSmRmXwuLi6VEtisWbOm2roy2xge\nN24cevfujaioKLRr1w6HDx/GihUr8N9//8Hc3ByBgYFYsWIFAMDa2hpjxoyBtbU1vv32W+zZs6fG\nFa+ZmRnmz58vK9HlzoIFC2BmZlap7Eu/5wkTBgFYUalMSWkC5s3rLx+BZMiTpCfocbAHOlvZA2c1\nKl88q4HRrp7yEUxalJYCJ04AffsCAwcCRkZAaChw9iyUvnKFl3Llv+0xyizo93GRj6wiUMTj4V5e\nHrYnJmJCeDjMHz1C2wcPsCY+HukcDkbp6SGwSxdk9+mD/7p0wYYOHTBcTw9tVVTAYrFg3kIH6r9X\nnoTV16yBeQudakasXxpdZjEPDw/Mnz//i7WNf+TKlSvYtWsXSkpKoKKi8sXf87BhQF7eCbx5cxRc\nbnMoKZVi3rz+X9ym8Mk3J7Hw2kIcGHIAQy2HYvzUaTgbdAlECWBxgdGuno13UzguDti/H/jrL6Bz\nZ2DuXGDIEECpssFh8NfuSL8XDHUAhQD0+7g0mE3hMj4fbwoL8SQ/X7DCf1dcDBt1dcHqvpumJqzU\n1KCkIPoa2qlXb0Tn5YClogJSUgLzFjr1uilcU2axRqcEGpG4FBG5cgVYvBh48wZo3lze0sgGPuFj\ndeBqnAw9iYtjL8LOwK72Ro0BPh+4fh3Yswd48ACYNAn4/nvAwkLektUKjxBEFhUJJvynbDZCCwvR\nQVVVMNk7aWqis4YGmtdhwm+I1DR3ys07iEIBgOJiYP58YO/eL1cBsEvZmHR+ErKLs/FoxiPoqevJ\nWyTJycwEDh1i/uNatmRW/adPA2pq8pZMKIQQvC8pwZP8fIEd/3lBAQyUleGkpQUnTU2M1ddHVw0N\naCg1rWmxad0tpcHh4wM4OgIDBshbEtkQlxsHz5Oe6NGmB86MPoNmis3kLZL4EAI8esSs+i9fZmx4\np08DTg3PeyuptJSZ7Cus8lUVFAQT/i/t28NRUxMtlZXlLarcoeYgitx49w7o2RN4+RJo21be0kif\nO/F34PW3F37u+zPmd5/feN17CwuZjd49e4CCAmDOHGDKFOYNoAGQVe6pU9GOX8bnCyb8j2Ydoy/1\nVVME6J4ApcFBCOM44uYG/PijvKWRPgefH8SqwFU4NvwY3M0aaViEiAjGvfP4ceCrrxiTz9dfA3K0\nj7O5XDwvKKi0ws/gcOCgoSGY9J00NWFS7plDYaB7ApQGx/nzQEICsGiRvCWRLlw+F8tuLMPVd1dx\nd+pdmOuay1ukusHhABcvMqv+iAhgxgzmVa1dO6kN4bthOy7t/RfKPGVwFDnw/H4glq+s+iCU8Hh4\nVVhYaZUfV1ICO3V1OGlpYZCuLrxNTGChpgaFBj7hb/fdgH8v7YWyMg8cjiIGen6PRctXylssAFQJ\nUORAYSHjDXTkCPAlmWRzinPg9bcXFFgKeDTjEbRVtOUtkuh8+AAcOMB8zM2ZVf+wYUAz6e5h+G7Y\njls+QVjP/jQBbvDZBj6fj0GLZjHmnPIJP6KoCOaqqnDS0kLvFi2wsG1b2Kiro1kj89TZ7rsBQbd8\nsHL9pxPi2zYwEZQbgiKg5iBKvbNiBTPnHDsmb0mkR1RmFDxPeWJgx4HYPGAzlBQawfqKzwcCA5lV\nf3AwMGEC495pYyOzIfsYD8D6xKoT3zJdH+j5/AprdXVYqqnBSk0dnVRVoaLYuCZ8YYxaZIdVvolV\nyjeuMsb1e/H1IgM1B1EaDBERzFmiN19QfLQbMTcw6fwkbOy/EdO6NoJQ0Dk5gL8/496posKs+v/3\nP0BDo9amdYUQgsTSUsEKn1sifMrpmK+Ln/5SAcADwAbAhvA4wo0Hvk4SuGZP0NIoXeh1JWVuPUsk\nHKoEKPUGIcAPPwCrVwOGhvKWRnIIIdj5aCd87vng3Jhz6GvcV94i1cyzZ8yq/59/gEGDgMOHgV69\nACna0zPKygQeOh/NOgDQl6jD8xRBfKZwE1miUSYcHjhITQ55UFqajNzcIOTkBCI3NxB8fgm0td1Q\nvEQNQGmV+lxOw5h+G4YUlCbBqVPMInTuXHlLIjllvDLMvTIXT5Kf4OH0h2iv3V7eIgmnuJjx5d+z\nB8jIYMw90dGAnuQH1vK4XDz7bMLP43IZl0wtLUw1MsJuIzNgXwaSdiRB11MXaUu7Y8O+bVjJXizo\nZ73mVnjO/lZieeobDicLubnBgkm/rCwN2tou0NZ2Q7t2S6GmZgUWiwU31w3YtsEHi1d+2hPYul4T\n33rOlqP0n6B7ApR6IT8fsLIC/v6bWXw2ZtIL0zHyzEi0UmuFo8OPQqOZ9M0oEvP2LWPu+d//gO7d\nGc37zTeAoqJY3RXzeHhRUCBwy3ySn48PpaWw19AQTPpOmproqKoKBRYLvGIekvckI2FTAnS+1oHJ\nbyZQM2dOE/tu2I5L+65CmasEjhIXnrO/Feod1NDgctnIy7srmPSLi9+hRYu+0NZ2g46OGzQ0uoDF\nEv79bvfdgKuX9kFJmQsuRwnfes6u101hek6AIncWL2YUwV9/yVsSyXid9hpDTw3FRLuJWOO6Bgqs\nBrRxyeUCAQGMb/+LF8C0acDs2YCpaZ264fD5CC0srGTWiS4uhpWaGuOHXz7hWwsJosYv5SPlYAri\nN8RDq4cWTH43gYZtA1SSIsDjFSM//4Fg0i8oeA0tre6CSV9T0wkKCo3DvY0qAYpcef2aOWMUFiYV\nK4TcuBB5AbMuz8LOb3dirO1YeYvzidRU4OBBYN8+wNiYWfWPGiVSMCY+IYgqKqo04b8pLISJikql\nCb+zujpUaniL4HP5SDuShrjf46Buow7TtabQdNSU5l3KHD6fAzb7iWDSz89/DA0NO2hr94eOjhu0\ntHpBUVFV3mKKBVUCFLnB5wP9+jHBJWc3DBNonSGEYMPdDdj7bC/Oe51Ht9bd5C0Ss8t+5w5j679x\nA/DyYsI5dOlSQxOCuJKSTyYdNhvP2Wy0Ulb+FF5BSwsOGhrQFDGIGuERpJ9OR9xvcWjetjlM15mi\nRZ8W0rpLmUIIDwUFrwSTfl5eCFRVzQQr/RYtvoKSkpa8xZQKVAlQ5Ia//6cow2Kao+VKMacY0y5N\nw/uc9zjvdR6tNVvLV6D8fODoUeZLJYRZ9U+aBLSoOvGmfnTNLP88ZbOhzGJ9ynylpYVumprQFePE\nHiEEmeczEftrLJQ0lWC63hQ6bg0jSUp1EEJQVBQhmPRzc4PRrJmBYNLX1naBsrKuvMWUCVQJUORC\nTg6zGRwQAHRrAIvnupKUn4Rhp4fBQtcCB4YcgKqyHE0Br14xtv4zZwB3d2by79dP4N6Z8zGIWoUJ\nv6hiusNys05rCYOoEUKQfTUbsatjAQKYrjNFy29bNtg4PcXFscjNDRRM/CxWc+jo9C+f9F3RvLmc\nlXo9QZUARS58dAXds0e+cojD46THGHF6BOZ1n4flfZbLZ5IrLWXcqfz8gPh4xp42fToK9fXx/LP8\ntqllZUwQtQor/A5SDqKWE5iD2F9iwc3jwvR3U7Qa3goshYY1+Vfnq89M+m5QVa3bJvmXAlUClHrn\n6VMms2B4OKDTsK0EVTjx5gQWXVuEvzz/whCLITIdy9fXF/suXQJfWRkKHA5me3piuZcXs8l76BDK\nHBzweu5cPLG3x5Nyj533xcWwVVevtMq3VFODoowUVd79PMSujkVJfAlM15hCf6w+WIoNY/Kv6quf\nDm1tF8Gkr6Zm2WDfUuoTqgQo9QqPx5wFmDuXCTvfWOATPlbdWoXTYadxadwl2OrbynQ8X19f+Ny6\nhdyVn/zFNTduhAeHA73vvsPTTp0QxuPBrDzd4ccJ366egqixn7MRuzoWhaGFMPnVBAbfGUBBWb4u\nsVxu/me++jEi++o3ZagSoNQr+/Yxe5d37sg19HydYJeyMfH8ROSV5OHvMX+jlVormY/ZoU8fxK5f\nX6VcfccOrNu5E05aWrDX0IB6Pe+oF4QWIO63OOQ/yEf7Ve1hNMMICs3l8x/5JfnqyxMaQI5Sb2Rk\nMLGBbt5sPAogNicWnqc80bttb5wdfVb2KSAJAR48AI/DEXq5VU4OFkkxfr+oFL0tQpx3HHJu5qDd\nj+1gddQKimrSV0CBgVdw4cJOsFilIKQ5hg1bADe3QQCq89XvDG1tN5iarmvUvvoNFaoEKFJlxQom\nInHnzvKWRDRux93G2HNjseqrVfjB6QfZ2o8LCgRpGgt4PGR26CC0mmI1ykFWlMSXIG5tHDIvZKLt\norYw32sOJU3ZTA2BgVdw8uRCTJgQIyg7ejQcGRnusLJKreCr3x/t2i0r99VvXIfOGhtUCVCkxv37\nwLVrTLjoxsD+Z/uxOmg1jo84jq87fC27gcLDGQ+fEycAZ2fEbdmCoS1awPrOHbzbuBG5P/8sqKq9\nfj1meXrKTpYKlCaXIn5DPNJPpqP1nNbo8bYHlHVka1q5cGFnJQUAAJMmfcDx4zfh5rYNVlZHv1hf\n/YYKVQIUqcDlMhvBW7YAWg38kCWXz8WS60twI+YGQqaGoJNuJ+kPUlYGXLjATP5RUcDMmcCrV7ir\noYEx4eFYYWSEBUuWYBOXi/2rVoGnrAxFDgezPD2xfPly6ctTUbSMMiT4JiD1UCoMpxmie2R3NNOT\nnQmsoq8+mx0ktI6aWgfo6Y2UmQyU6qFKgCIV9uwBWrYExjagkDrCyCnOwZi/x0CRpYiHMx5KPwVk\nYiKwfz8TKc/S8lOaRmVl/JWSgp/DwnDUygoeLVsCAJYvXy7zSf8jnBwOEv9IRLJfMvTH6sPpjROa\nt5Hs8JgwavLVV1dPBHBXSCsVqctBEQ2qBCgSk5ICrF3LeAM1ZJfsyMxIeJ70xGDzwdjkvkl6KSD5\nfGYn3M+P+RImTGB+t7YGAHD5fCx7+xb/ZmfjbteusFBTk864IsJlc5G0Mwkftn+ArqcuHJ85QtVE\nepurNfnqt2u3rJKv/ogRhjh+PLmSSejYMTOMHz9favJQ6gZ1EaVIzMSJQNu2gI+PvCWpnmvvruG7\n89/B52sf6aWAzM5mgiP5+TGpGefOBcaNq5SmMZfDgVd4OAiA09bW0BEjTo+41BTTXxIk9dUPDLyC\nixd3ASgBoIKhQ+cLvIMosoGeE6DIjOBgYPJkZu9TXV3e0lSFEILtD7dj0/1NODv6rHRSQD55wti/\nLlxgjkXPmQP07FnlNSi6qAhD3rzBty1bYouZWZXY+7JC2jH9qa9+44cqAYpM4HAAe3vGFDRihLyl\nqUoptxRzrszB85TnuDj2omQpIIuKmPyYfn5AVhaTpnHq1GoTJNzIzsakiAisNzXFjNb1E6RMWjH9\na/LVb+xx9Zsq9LAYRSZs387kMBk+XN6SVCW9MB0jTo+Avro+QqaFiJ8CMjr6U5rGXr2ANWsAD49q\n42ITQrAzKQk+CQk4a2ODftpS3ngWNuZnMf2tT1jXKaZ/9XH1qa9+U4C+CVDE4sMH5i3g4UOgY0d5\nS1OZV6mvMPTUUHzX5Tt4u3jXPQUklwtcvsyYfF6//pSm0cSkxmZlfD5+ePsWj/LzccnWFiaqsl0t\nixvTvynH1W+qNDhz0MaNG3Hs2DEoKCjAzs4Ohw8fRmFhIby8vBAfHw8TExOcOXMG2p+toqgSaDiM\nHs04v6xZI29JKnM+4jxmBczC7m93w8vWq26NU1KAAweYT/v2zEbvyJEipWnMKCvDyLAwtFRSwlEr\nK5Ezc4mDODH9aVz9pk2DUgJxcXFwc3NDREQEmjdvDi8vLwwcOBBhYWFo1aoVfvrpJ/j6+iInJwc+\nn7mbUCXQMLhxg9kLDQ0FZLzYFRlCCNbdWYf9z/fjgtcFOLZ2FLUhs7vt5wf89x9z0GHOnDrFvXhd\nUIChoaEYr6+PtaamUJChn6yoMf1pXH1KRRrUnoCWlhaUlZVRVFQERUVFFBUVoXXr1ti4cSNu374N\nAJg8eTJcXFyqKAGK/CktBebNA3bubDgKoIhThGkXpyE2NxaPZzyGkaZR7Y3y8hg7v58fE+luzhwm\nWXsdjztfzMzEjKgo7OjYEeMNDMS8g9qpLaZ/XXz1KZSK1LsSaNmyJZYuXQpjY2OoqqrCw8MD7u7u\nSEtLg0H5H5GBgQHS0tLqWzSKCGzezJiBBjUQt+4P+R8w7NQwWOlZ4faU21BRquXk6cuXjK3/7Flm\ng3fvXuCrr+p8yo0Qgo0JCdiTlIQrdnboLqNYGdXF9Ody85GXJdxX38rqOI2rTxGZelcCMTEx2L59\nO+Li4tCiRQuMHj0ax44dq1SHxWJVu2rx9vYW/Ozi4gIXFxcZSkupSGws4xH07Jm8JWF49OERRpwZ\ngQXdF+CnPj9Vv9ItKWEmfT8/Zkd79mwmyp2hoVjjFvN4mB4VhbfFxXjk6Ig2EubtFcbnMf2tzpqh\noPQR4hL/rOKr36nTn9RXn1KJ4OBgBAcHi1S33vcETp8+jf/++w8HDx4EABw9ehQPHz5EYGAggoKC\nYGhoiJSUFLi6uiIyMrKysHRPQK54ejJnoiokwpIbx14fw+Lri3HI81D1KSDfv2cy3Bw+DDg4MCaf\nQYMACTZtk0pLMSw0FB1VVXHIwgKqEiZ82e67Af9e2gtlZR44HEV83WcaBieNQXZQBvRXZ0H561Dk\nFQZTX32KRDSoPQFLS0usXbsWxcXFUFFRwc2bN9G9e3eoq6vjyJEjWL58OY4cOYJhw4bVt2iUGrh8\nmQmGefasfOXg8XlYFbgKZ8LOIGhyUNUUkDwecPUqY/J58oQ5znz/vlT8WB/n52NEaCjmtmmDn42N\nJbaxb/fdgKBbPli5ni0o2/3HRrC6HEHP2VnIVzODNov66lNki1xcRDdt2oQjR45AQUEBDg4OOHjw\nINhsNsaMGYOEhATqItrAKCoCbGwYz8mvZRh2vzbYpWxM+GcC8kvzq6aATE9nInfu2wcYGDDunWPG\nSG33+kRaGha+e4cD5uYYVs0p4boyoI8xVq5PrFK+dWMrnAuIpL76FKnRoFxEJYEqAfmwejVzcPb0\nafnJ8D7nPTxPeqKvcV/s/HYnkwKSEODePWbVf/Uq49M/Zw7gKKJ7qAjwCcEvsbE4mZ6Oi7a26Kwh\nfgyeipRllGH40Hb4cUN6lWubvVvjSnCSVMahUAAxzUFv375FWloa+vatHHArJCQERkZGMDMzk66U\nlAbJ27fMfuqrV/KT4XbcbXj97YXV/VZjrtNcsAoKgGN/MYKVljIT/59/Ajq1n5atC2wuF5MiIpDN\n5eKxgwP0mkmeeOVjTP+kG7egZZoptA6XQ6O5UOqPas/TL1q0CFpC3N60tLSwaNEimQpFaRgQwpwJ\n+PlnoE0b+ciw/9l+jPl7DI6POI4f1JzBmjePOc178yawbRsQGQksWiR1BRBbXIzeL15Ar1kz3OzS\nRWIFwGVzEb8+Ho/MHyFX4yhYW1ahR7ex2Lahsp1/63pNfOs5W6KxKJS6UO2SIy0tDZ2FnJrs3Lkz\nYmNjZSoUpWFw7hyQlAQsWFA/421Z642be3dDhcdFiaIiyr7ugEwHNl62WAGjKWuAd++AWbOAN29k\nqpXu5OZiTFgYVrZvj/lt2ki0AVwxpr+2hwpaBPihROE1HGxC0LefOcDfgI2r9kFJmQsuRwnfes7G\nouUNwP2K0mSodk+gY8eOePfundBGNV2TJXRPoP4oKACsrIDjx4F+/WQ/3pa13njpux7HCrmCsrlK\nwPBmanDv2ZPZ6PX0BGSclOVAcjJWxcbimJUVBpSngBSHz2P6G/7GRWzZZGhodIa5+V4oKjbA5AuU\nL5aa5s5qzUHdunXD/v37q5QfOHAAjlLceKM0TH7/HXB1rR8FAAA39+6upAAAYA8X2KPRDLh1i9n0\nlaEC4PL5WPj2LbYkJuJu165iKwA+l4+Uv1LwyPwRsq5kwe6SHQz2vUNUwQC0bv09LC3/RxUApUFR\nrTlo+/btGD58OI4fPy6Y9J89e4bS0lKcP3++3gSk1D9hYcz5qtDQ+htThccVWk5Ysn/zyylPAckC\n8NDBQawUkMJi+mv2Ukds7CqkvzsFO7sAaGl1l77wFIqEVKsEDA0Ncf/+fQQFBSE0NBQsFguDBw+G\nm5tbfcpHqWcIAX74AfjtN8bdvn7GJMjlc4ReK1WUradMVHkKyEG6utjcoUOdU0B+HtPffJ85dNx0\nUFaWhtevh4HFUoaj4zM0a9aq9s4oFDlQ418Yi8VCly5d0KVLF8Hv2dnZ0NTUhHI9Jsym1B8nTgD5\n+YzXZX1Qyi3F91e+R1ddYFkmsKXCwn+CmhL6fz9PZmNfL08BubFDB0w3EiHyaAU+j+lvtslMENM/\nL+8ewsK8YGQ0HSYmv9JAbpQGTa2HxUxMTJCQkACdche8nJwcGBoawtDQsN73B+jGsGzJy2M2g//5\nh4kRJGvSCtIw4swIDIkk+OlEPHaNH4trx4+gOY+LUkVGASxb7S31cQkh2PHhA3wTE3HG2hpf1TEF\nZHUx/Qkh+PBhBxISNsLS8jB0dQdKXXYKRRwkOjE8c+ZMjBo1Ch4eHgCAGzdu4O+//8bUqVOxcOFC\nPH78WPoSVwNVArJl4UImRMSBA7If62XqSww7NQxLtQdi3o9nwQoIAHr0kPm4ZXw+5kZH4zGbXecU\nkDXF9Ody2YiKmoHi4newsfmbJm2hNChqnDtJLdjY2FQps7W1JYQQ0qVLl9qaSxURxKWIyYsXhOjr\nE5KRIfuxzoWfI3qb9Mj5+4cJMTcn5NAh2Q9KCEkrLSV9nz8nQ1+/JmwOR+R2+c/yyauBr8h94/sk\n+WAy4ZXxKl0vKAgjjx5ZksjImYTLLZa22BSKxNQ0d9a662ZkZARfX1+MHTsWhBCcOXMGBgYG4PF4\nUKjjJhqlYcLnM27469YBrWS4f0kIwdo7a3Hw+UFcG3cFDrN+YxK7TJ0qu0HL+ZgCcoK+Pn4XMQXk\n5zH9bf+xhULzys98evppvH07Dx06bIKRkezvg0KRNrUqgRMnTmDNmjWC0M59+vTByZMnwePxcObM\nGZkLSJE9/v6MIpg+XXZjFHGKMOXCFCTmJ+LxzMcw3LATKC4G/vhDdoOWcyEjAzOjo7GzY0eME8Hl\nqehtEeK845BzMwftfmwHq6NWUFSrvLnL55chJuYnZGVdRufO/0FT015W4lMoMkXkKKKFhYVQV5fv\nIRe6JyB9srOZdJH//svkXZEFiXmJGHpqKGz1bbF/yH6o/HMJ+OknJt6/lMIyC4MQgg0JCdibnIx/\nbGzgVEsKyJL4EsStjUPmhUy0XdQWbRe2hZJm1XVSaWkSwsLGQFlZF5aWR6CsLN24RRSKtBHrxPBH\n7t+/D2tra1haWgIAXr16hblz50pXQorcWLkSGDVKdgrg4YeH6PlXT4yzHYcjw45AJSyKOYhw/rxM\nFUAxj4efPhUZAAAgAElEQVTxERG4mJmJRw4ONSqA0uRSRM+LxlOHp2hm2Aw93vaAyS8mQhVATk4g\nnj1zgq7uYNjaXqAKgNL4qW1DwcnJicTHxxN7e3tBmbW1tYTbFOIhgriUOvD4MSGGhoTk5Mim/yMv\njxC9TXrkctRlpiAjgxBTU0JOnJDNgOV8KCkh3Z4+JePDwkgRl1ttvdL0UvJ26VtyV+cuebv0LSlN\nL622Lp/PI3FxG8m9e4YkO/umLMSmUGRGTXOnSMcxjY2NK/2uJEGOVkrDgMdjDoT5+gJ1dJOvvW8+\nDz/f+hnnIs4haHIQbPRtAC4X8PICRo8Gxo2T7oAV+JgCcl6bNlheTQrIjzH9k/2SoT9WH05vnNC8\nTfXJ4jmcXERGTgaHkw4HhydQUWkrM/kplPqm1tnc2NgY9+7dAwCUlZVh586dsLKykrlgFNmyfz+g\npgZMmiTdfvNL8zH+3HgUcgrxeMZj6KqVp0j88UcmANyGDdIdsAIn0tKw6N07HLSwgKcQNycum4uk\nnUn4sP0DdD114fjMEaomNZ8TYLNfIixsFHR1B8LG5iwUFCRPLEOhNChqe41IT08n48aNI3p6eqRV\nq1Zk/PjxJDMzU6qvKqIigrgUEUhLI0RPj5DXr6Xb77usd8T6T2syJ2AOKeOWfbpw5AghHTsSkp0t\n3QHL4fH5ZEVMDDF98IC8ZrOrXOcWcUnClgQSoh9CwsaHkcKoQpH6TUnxJyEhrUhqqmzNVxSKrKlp\n7qQ5hpsgU6cCLVtK1zszKDYI486Nw6/Ov2KuUwXHgcePgUGDgOBgJlu9lGFzuZgYEYFcLhd/29hU\nygD2eUx/k99NoGFbe45gHq8E794tRG7ubdjanoO6uvTlplDqE7FyDM+fP79KBxXtqzt37pSiiJT6\n4t494L//gIgI6fXp98QPa26vwYmRJ+BmWiHKbGoqkwfgwAGZKIDY4mJ4hoail5YWztrYoFn54UU+\nl4+0I2mI+z0O6jbqsLtkB01HzVp6YygujkNY2CioqprC0fEJlJREa0ehNFaqVQIfA8Pdv38f4eHh\n8PLyAiEEZ8+ehY0M/qApsofLZU4G//EHoCmFuY3D42DRtUUIigtCyLQQdGzZ8dPFsjLG93T6dKD8\noKE0uZ2bi7Hh4VhpbIx55SkgK8X0b8fE9G/Rp4XIfWZlXUVk5BQYG69A27aLJEorSaE0Fmo1B/Xo\n0QMhISGC0NEcDgd9+/bFo0eP6kXAilBzkGRs3w5cuQLcuAFIOr9lFWVh9NnRUFVWxYkRJ9BC5bPJ\ndvZsID2dSVQs5fAi+5OTsbo8BaR7y5aVY/prKcF0nSl03ET33yeEh7i4tUhJOQhr65PQ1v5KqvJS\nKPJGLHPQR3Jzc5Gfnw9dXcbLg81mIzc3V7oSUmROcjITG+jePckVQHhGODxPemK45XD4fO0DRYXP\n4uXv2weEhAAPH0pVAXD5fCyJicGN7Gzc7doVnVRVkfVvltCY/qJSVpaJiIiJ4PNL4Oj4FM2bG0pN\nXgqlMVCrElixYgUcHBzg6uoKQghu374Nb2/vehCNIk2WLQNmzQIsLCTr59+3/2LKhSnY7L4Zk+0n\nV60QEgL8+ivzrzRsTuXkcDgYEx4ORTApIMndArz4JZKJ6b+2PKZ/HbVbfv4ThIWNhr7+GJiaboCC\nAj3/Qml6iOQdlJKSgkePHoHFYqF79+4wqmMWJmlBzUHiERgITJvG5A4WN/wTIQR/PPgDWx9sxbkx\n59CrXa+qlRITmZwAhw4B33wjmdAViCwshGdoKAbr6uKXVF0k/BaP0oRSmKwxgb7Xp5j+okIIQUrK\nfsTGroa5+V7o6Y2QmqwUSkNEoqQyDQmqBOpOWRnQpQuwcaP4+7Ml3BLMDpiNN2lvcHHsRbRr0a5q\npeJi4KuvgDFjmOBwUuJaVha+i4zE1oLW6LyTjcLQQpj8agKD7wygoFx3UxOPV4To6DkoKHgOG5tz\nUFMzl5qsFEpDRaI9AUrjZts2oEMHYOhQ8dqnFqRi+OnhaKvVFnen3oV6MyGvEoQwG8GdOjEng8XE\nd8N2XNr7L5R5yuAocqA3rjeS7L7G2TPqUH6WAt2VwmP6i0pR0VuEhY2EhkYXODg8hKKifKPiUigN\nAaoEvmASEoDNm4FHj8TbDH6R8gLDTg/DNPtpWO28Ggqsaibf7duBN28k2nX23bAdt3yCsJ69UlC2\nc6sfxjfTRoffR6L1qdZVYvrXhYyMC4iOngUTkzVo3fp76v5JoZRDzUFfMCNHAp07A7/9Vve2Z8PO\nYu6/c+E3yA+jrEdVX/HmTWDiREbTtG8vtqx9jAdgfeLKKuWr2/ngbsI1sfvl87mIjV2F9PRTsLE5\nCy2t7mL3RaE0VqRqDvqYV2DevHmYN2+eZJJRZMa1a8CrV8Dx43Vrxyd8/H77dxx6cQjXJ16Hg1EN\niQbev2cUwKlTEikAAFDmKQstV+SJv/ovK0tDePhYsFjKcHR8hmbNZJg7k0JppNTZuBoZGYmQkBCY\nmpqKPWhubi5GjRoFKysrWFtb49GjR8jOzoa7uzvMzc0xYMAAehZBAkpKgHnzgF27ABUV0dsVlhVi\nzNkxuB5zHY9nPq5ZARQUMDvNq1YBLi4Sy1wMjtByjhJXrP7y8u7h6VNHtGjRD507X6UKgEKpBpGU\nQFxcHG7evAkAKCoqQvPmzTFo0CCxB124cCEGDhyIiIgIvH79GpaWlvDx8YG7uzuio6PRv39/+Pj4\niN1/U2fTJsYM9O23ordJyEtA38N9od5MHUGTg2CoUcOhKUKYKHSOjoy2kQBCCDaEvkc/7tfYqbyn\n0rX1mlvhObsON1HeX2LidoSGjoCFxX6Ymq4BiyX+2wSF8sVTWwjSffv2kW7dupEOHToQQgiJiooi\nbm5udYtjWoHc3FxiampapdzCwoKkpqYSQghJSUkhFhYWVeqIIG6TJyaGEF1dQuLjRW9zL+EeMdpi\nRDbf20z4fH7tDdavJ6R7d0KKi8UXlBBSyOWSCU/ekIMOd8jzaWHEZ+020tt4AHFuPZD0Nh5AfNZv\nq1N/HE4+CQ0dQ548cSBFRe8lko1C+ZKoae6sdVbt3LkzKSkpqZRe0tbWVmxhXrx4Qbp3706mTJlC\nunbtSmbMmEEKCgqItra2oA6fz6/0u0BYqgRqhM8nZNAgQjZuFL2N/wt/ordJjwREBYjWICCAkNat\nCfnwQTwhy0ksLiY9Qh6TY73vkTcTwwifJ4LyqYGCgjDy6JEliYycSbhcyZQThfKlUdPcWevGcPPm\nzdG8+afUe1wuVyL3Oi6Xi+fPn2P37t1wcnLCokWLqph+WCxWtWNUDFnh4uICFynYo78ULl0CYmKA\nf/6pvS6Pz8Pym8txIfICgqcEw1rPuvZGUVGMGejCBaBNG7HlfJSfj9Ev3mDH78owb9cCVoctwVIQ\n/5lKSzuFd+/mo0OHTTAymip2PxTKl0JwcDCCg4NFq1ybBlm2bBlZt24dMTc3Jzdu3CDDhg0jK1eu\nFFsjpaSkEBMTE8Hvd+/eJQMHDiSWlpYkJSWFEEJIcnIyNQfVkcJCQtq3J+TWrdrr5hbnkoHHBxJX\nf1eSWShilrjcXEIsLAg5cEAiOY+mpBCD4LvkxqBn5M2wN4RXxhO7Lx6vlERHLyAPHnQg+fkvJJKL\nQvmSqWnurHVj2NfXF3p6erCzs8O+ffswcOBArFu3TmwNZWhoiHbt2iE6OhoAcPPmTdjY2GDIkCE4\ncuQIAODIkSMYJoMY9F8y69cDvXoBbm4113uX/Q69/uoFkxYmuD7x+qccwDXB5zOuoP37AzNmiCUf\njxCsiInBbzGx+Ge3Fgz4SrA+ZS1W6AcAKC1NwsuXrigpiYWj41NoatqL1Q+F0tSp8bAYl8uFra0t\nIiMjpTroq1evMGPGDJSVlcHMzAyHDx8Gj8fDmDFjkJCQABMTE5w5cwba2tqVhaWHxYQSFQX06QO8\nfg20bl19vcDYQIw7Nw7ezt6Y4zRH9AFWrwZu32YOhjWre6L1fC4XEyIiUFDGwbYdzYFkDuwu20FR\nVTyvnZycQERETESbNvNhbLwcrOpOMlMoFAASBpAbOnQodu7cifYSHgaSBlQJVIUQYMAAYOBAYPHi\n6uvtebIHv9/+HSdHnoSrqavoA5w7ByxZAjx5Aujr11m+98XF8HzzBn21tLBwK1ASWYzOVztDUb3u\nCoAQPhISNiEpaQesrI5BR6d/nfugUJoiEp0Yzs7Oho2NDbp37w718jjELBYLly5dkq6UFLE4exZI\nSwMqpISuBIfHwYKrC3A7/jbuTbsHs5Zmonf+5g3w/ffM8WMxFEBwTg7Ghodjdfv2GLCpGOw3bHS+\nIZ4C4HByERk5GRxOOhwcnkBFpW2d+6BQKFWpVQmsXbu2PuSgiAGbzSzST50ClIT8T2YVZWHU2VFQ\nV1bHwxkPodVcS/TOs7OZE8HbtzOHwurIvuRk/BobixNWVjDxyUHOvTx0udUFSpp1j1nIZr9EWNgo\n6OoOhI3NWSgo1N0kRaFQhEMDyDVili0DMjMBf/+q18LSw+B5yhMjrUZiY/+NVVNA1gSXyxw37tIF\n2LKlTjJx+HwsfvcOt3JzccnWFkq+acg8nwn7IHso6wqPD1QTqalHEBOzDB077oSBwbg6t6dQKBKa\ngzQ0NAQ++2VlZeBwONDQ0EB+fr50paTUidBQ4H//Y/79nIDoAEy9OBV/DPgD33X5ru6dr1jBhISu\nY+iObA4HY8LCoKyggIcODsjdlIS0Mxmwvy2aAggMvIILF3aCxSoFn6+M7t0VYW4eB3v7YKir29T9\nPigUSq3UqgQKCgoEP/P5fFy6dAkPHz6UqVCUmiEE+OEHwNu7sqmeEILN9zdjx6MduDT2kvAUkLVx\n/Dhw/jyzESzMxlQNEeUpIIfq6sLXzAzJ2z4g9XAq7G/bo5l+7eabwMArOHlyISZMiBGUHT6sDiOj\nw1QBUCgyRCxzkL29PV6+fCkLeWqEmoMYjh4FduxgQvgrllt5SrglmHV5FkLTQ6tPAVkbz54xuYGD\nggBbW5GbXc3KwuTISGzq0AFTjIyQ9GcSErckwv6OPVTaiRbGdMECD4wYcaNK+fnzHtixQ/x8AhQK\nRUJz0Llz5wQ/8/l8PHv2DKqqqtKTjlIncnOB5cuZyA0fFUAKOwXDTw+HcQvj6lNA1kZaGjB8OLBv\nn8gKgBCCrR8+4I/ERFywtUXvFi2Q8lcKEnwTYH9bdAUAACxWSTVXqiunUCjSoFYlcPnyZcGegJKS\nEkxMTHDx4kWZC0YRzurVwJAhQPfyBFnPkp9h+OnhmOEwA6v7rRYvrlNZGTB6NDB5MjBihEhNSvl8\nfB8djRdsNh46OMBYRQWpx1IR+2ss7IPsoWoq+kKhrCwT+flh1VytQ0IECoVSZ2pVAjNmzEDfvn0r\nld27dw/6YviNUyTj+XPmXEBY+Xx5JuwMfvj3B+wdtBcjrUeK3/GiRYC2NrBmjUjV08rKMCI0FEbN\nmuGegwPUFRWRfjYd7398jy63ukDNXE3kofPznyAsbDTc3Z1x/PirSnsCx46ZYfz4ag5AUCgUqVDr\nnoCDgwOeP39eqaxr16548eKFTAUTRlPeE+Dzgd69gZkzganT+PAO9saRV0dwcexF2BtKEDfnwAFg\n61Zmg0Gr9nMEL9hsDAsNxRRDQ/xmYgIFFguZFzMRNSsKXW50gUYXDZGGJYQgJWU/YmNXw9x8L/T0\nRiAw8AouXtwFxgSkgqFD58PNTfzkRRQKhUGsPYEHDx7g/v37SE9Px9atWwUdsNls8Pl82UhKqZZD\nhwAFBWDMhEKMPvsdUtgpeDzjMQw0DMTv9P59Jj3k3bsiKYBzGRn4Pjoaezp1wujyN8Gsq1mImhkF\nu3/tRFYAPF4RoqPnoKDgObp2DYGamjkAwM1tEJ30KZR6plolUFZWBjabDR6PBzabLSjX0tLC33//\nXS/CURiyspi5+vD5eHzlPxRdjbrixIgTaK7UvPbG1ZGUxOwD+PsDFhY1ViWEYG18PA6mpOB6585w\n0NQEAOTcykHkd5GwvWQLrW6inUYuKnqLsLCR0NDoAgeHh1BUFGMTm0KhSI1azUFxcXEwMTGpJ3Fq\npimZg7w3+GL3qX3gKvBRkq8AUzMP5H1zEUt7LcWSXkskSuyDkhLA2ZkJC/HzzzVWLeLxMCUyEoml\npThvYwPD8gRDuXdzETYiDDZ/20DbWbvGPj6SkXEB0dGzYGKyBq1bfy/ZPVAoFJGRKIpoeno6Nm3a\nhPDwcBQXFws6DAwMlL6ktdBUlID3Bl+sP+MD7vDcT4X/AeOdp+D4+sOSdU4IMG0aUFgInD7NnAyu\nhsSSEgwNDYWtujr2m5tDpdwnNe9hHkI9Q2F1wgotv25Z65B8PhexsauQnn4KNjZnoaXVXbJ7oFAo\ndaKmubPWQOwTJkyApaUl3r9/D29vb5iYmKBbt25SF5Lyid2n9lVWAADgDlwPuCN557t2MW5Ghw/X\nqAAe5uWh5/PnGKevjyOWlgIFwH7ORujQUFgethRJAZSVpeH1a3cUFLyAo+MzqgAolAZGrUogKysL\nM2bMQLNmzeDs7IzDhw/L5S2gKcFVEL7xzmXxJOs4KAjYsIE5aaZevS3+f6mp8AwNxT5zc/xobCww\n2xS8KcDrga9hvtccuoNqz0iWl3cPT586okWLfujc+SqaNWslmfwUCkXq1HpOoFl5JilDQ0MEBASg\ndevWyMnJkblgTRklvnDdrETEy8QFAIiLA8aNY2IDmZoKrcIjBD+/f49zGRkIsreHTQVFURhZiNce\nr9FpRyfoDdercShCCD582IGEhI2wtDwMXd2B4stNoVBkSq1K4JdffkFubi7++OMPzJ8/H/n5+di2\nbVt9yNZkmTd2NtZc+hX4tkxQpnReG/O8ZonXYWEhswm8YgWTJ1gI+VwuxoeHo5DPx2NHR+gqf4r6\nWfSuCK/dX6ODTwfoe9V8SJDLZSMqagaKi9/BweEhVFWFKxwKhdIwqFEJ8Hg8REdHY/DgwdDW1kZw\ncHA9idW0aWXXG3itAp1/WoPPIlAiipjnNQveK5fXvTNCgOnTmdwACxcKrRJTngLSWVsbOzp2hLLC\npzeRkvgSvPr6Fdqvbg/D7wxrHKqwMBxhYSPRosVX6Nr1HhQVacgHCqXBQ2qhW7dutVWpN0QQt9FT\nWFxGmi+2JYsOnJZOhz4+hHTrRkhRkdDLgdnZxCAkhPz54UOVa8WJxeRBhwckcWdircOkpp4kISGt\nSHLyIYlFplRGR0eHAKAf+hH5o6OjU+kZAqqfO2t1EV28eDE4HA68vLygrq4OQghYLBYcHBxqaiYT\nmoKL6FCfrQhJu4qMP25AQUFCP/qrV4EZM5iQEG2r5uT1S0rCmrg4nLC2hpuOTqVrpamleOn8EkYz\njWC8zLjaIfj8MsTE/IisrADY2PwNTc2ukslMqUJTeO4p0uXzZ0aicwIuLi5CD/UEBQVJKGbd+dL/\nGJ5GJ6H7oS74d9Q9fNOt5lO8tfL2LdCnD5Mgpk+fSpc4fD4WvXuHoPIUkB3VKgd8K8sow0uXl9Af\npw+TX0yqHaK0NAlhYWOgrKwLS8sjUFbWqbYuRXy+9OeeIn2kqgQaEl/6H4PxkrFop2GGe7+vl6yj\n/HygZ09mD2D27EqXsjgcjA4Lg6qCAk5YW6PFZ9nDONkcvOr/Ci0HtUSHdR2qHSInJxARERPQps18\nGBuvAItVq7cxRUy+9OeeIn3qogRq/ctNTU3F9OnT8c033wAAwsPD8ddff0lJVMpHNp+7hWTFh7i4\ndJVkHfH5wKRJQL9+VRRAeGEhejx7BkdNTVyys6uiALh5XLz+5jW0+2vDdK1wrx5C+IiP90FExARY\nWh5F+/YrqQKoZ65cuQIPDw+4uLjAw8MDV65ckVr9uLg4jB49utrr169fx4ULFwAA+/fvF5QvXrwY\nJSXCEwAFBwfjxx9/FPxeUlICV1dXuLq6QktLS/Bzbm6u0Pb1xYEDB6Tan6amJlxdXdGtWzdcvXpV\npDYvX75Ejx49sGzZMvj6+iIuLq7K9yd1atuU8vDwIKdOnSJ2dnaEEELKysqIjY1NXfa1pIYI4jZK\n8gpKSLMlFmTlkQuSd/bbb4T06UNIaWml4iuZmUQvJIT4p6QIbcZhc8iz3s9I1A9RhM/nC61TVpZD\nXr/2JM+e9STFxbVvFlOkQ8XnPiAggJiZmVXaBDQzMyMBAQFC29a1fmxsLBk1apRIconqNBIcHEyW\nLVsmUR/Sorpnm5C6yVJTP5/39+HDhypzZnXtN2zYQM6fP1+prKbvrzo+nytrmjtrXcJlZmbCy8sL\niuVhA5SVlaFUhwTklNoZvW0rtPkdsW6Sp2QdnT/PxJz++2+g/JAfIQRbEhIwIyoKF21tMdmwqpsn\nr4iH0CGhULdWR6ednYTuAbHZL/HsWTeoqLSHvf1tqKhU3WimyJ6dO3ciJiamUllMTAx27dollfoV\ncXFxwdKlS+Hs7Iz585nkPv7+/vjzzz+xd+9eREVFwc3NDUFBQXB1dUVhYSHevHkDFxcX9O7dW9CG\niGDKev/+Pb755hu4urpiyZIlgrFGjBgBT09PODs749SpU3B3d0f//v3B5XIRHByMAQMGwNPTE927\nd0doaCgA4Nq1a+jXrx/69OmDU6dOAQCmTJmCefPmwcPDA+np6XB3d4eLiwsGDBgANpsNPz+/KvdT\nVFQEABg9ejTi4+Ph7++PsWPHwtPTE9euXYO/v79gnJr2SNu0aYOioiLEx8ejX79+GDt2LHx9fREU\nFIRevXqhV69eOHr0KCIiIrB//378+uuvOHDgAKZOnYqwsMoZ94Tdm8TUplGcnZ1JZmYmsbe3J4QQ\n8uDBA9KvX786aSVpIYK4jY6Q0DjCWt6SBL+Kkayj0FBCWrUi5PFjQVExl0u+Cw8nXZ88IQnFxUKb\ncYu55OWAlyR8Ujjhc4WvTlJS/ElISCuSmnpCMhkpYlHxuXd2dpaKC6Gzs7PQsSq+Cbi4uJC7d+8S\nQgjp1asXycvLI/7+/mT37t2EkMorZxcXF1JYWEiKKzxnQ4cOJW/fvhXpTWD06NHk/fv3hBBC5syZ\nQ54+fUr8/f3JrFmzCCGErFy5kixdupQQQsjixYtJYGAgCQ4OJn379iWEEBIREUE8PT0JIYT06dOH\ncDgcwuVySZ8+fQiPxyNTpkwhhw59cl8uKneZ3rZtGzlw4EC190MIIaNGjSJxcXHE39+fTJo0iRBC\nSGZmJvnmm28IIYQUFBQQFxeXau8tPDycODk5kbi4OGJmZkY4HA4hhJCePXuSrKwswuFwSLdu3Uhx\ncTHx9vYmV65cIYQQMmXKFBIaGlrp+xN2b8L4fK6sae6sdUn/xx9/YMiQIXj//j169+6NjIwMmk9A\niow+uAguOgvh3Ln6TdhayclhTgT/8Qfg5AQASC0txfCwMLRt3hx3u3aFumLVkBP8Mj7CR4dDSVsJ\nFocswFKs/AbA45Xg3buFyM29DXv7YKir24gvI0UqNG8uPIeEh4cHrl27JrT8xo0bVcpVVEQ7yNe1\nK+Py26ZNG5Fs9u/fv8eyZctQVFSE9+/fIzk5WaRxIiMjMW3aNABAQUEBPDw8AAB2dnYAgNatW0ND\nQ0MgS05ODnR1dQXyWVpaIiUlBRkZGYiOjoa7uzsAIC8vDxkZGQAAp/K/jYKCAsyePRtJSUnIzs4W\nugdS8W2YVHiT+dhHTEwMwsLC4OrqCoCxmHxOVFQUXF1doaSkBD8/PwBAly5dBJYUHo+Hli2ZIIwd\nO3YUfFekmjcnYfeWmZkpcarfWpWAo6Mj7ty5g6ioKBBCYGFhAeUKIQUo4rPmxL/IVAjFP0tOit8J\njweMHQsMHgx89x2ATykgpxkZYXX79lAQYt7hc/kIHxcOKAJWx6ygoFTZMlhcHIewsFFQVTWFo+Nj\nKCmJljSGIlsWLFiAmJiYSiYeMzMzgelF0vqfU91k+Pm1j9f37t2LpUuXon///hg6dKjIXk2WlpbY\nsmULjI2ZMyk8Hg/Hjh2rNufEx35fvnwJgJlwW7dujVatWsHS0hI3btyAsrIyuFyuYNL92NeNGzfQ\noUMHHD9+HFu3bhUkzao4lo6ODhITE2FmZlbJJKNQfprezMwMnTt3RkBAAACAy+VWkdHCwqKSmSgu\nLk7Q/mNfWVlZ0NLSwtu3b9G6desav6Oa7k0Sau2huLgYe/bsQUhICFgsFr766ivMmTNH5JUERTjZ\n+cVY93w+vLv/CW0NCb7LlSsBLhfYvBkAcDY9HXPfvoVfp04YVc0KgfAIIr+LBL+YD9vztlBQrqwA\nsrKuIjJyCoyNV6Bt20U0+UsDYtAgJv3mrl27UFJSAhUVFcyfP19QLml9FotV6//3x+sWFhYYNWoU\nliz5lORoyJAhWLhwISwtLQUHSz/+W1Nfvr6++P7771FSUgJFRUUcOnSo0vXPf/5IixYtMGTIEKSl\npeHQoUNgsVj45Zdf4O7uDgUFBejr6wts5x/b9+zZExs2bMCLFy9gYGCA9u3bV7mfuXPnYvTo0bCx\nsYFhhX20j33o6upi7NixcHZ2hqKiIuzs7LBjxw6h91bdd7thwwYMGjQILBYL8+fPF8ypwu7zY9uK\n96anp4fTp08L/V7rQq3nBEaPHg0tLS1MnDgRhBCcOHECeXl5OHv2rMSD15UvyV/axdsbb/PfIGnr\nOfE7OXmSyTv5+DH4urr4PS4Oh1NTccHWFl3LU0B+DuETRE2PQkliCewu20FR9ZOZiBAe4uLWIiXl\nIKytT0Jb+yvxZaNIjS/puZcmt2/fRkBAADaXL4Aon6jLOYFa3wTCwsIQHh4u+N3NzQ3W1tYSC8nj\n8dCtWze0bdsWly9fRnZ2Nry8vBAfHw8TExOcOXMG2tqipS1sbAS+jMGdkt14MPOF+J28eAEsWADc\nuoVCHR1MDgtDclkZHjk4CFJAfg4hBNFzo1EcU4zOVztXUgBlZZmIiJgIPr8Ejo5P0bx5zcHiKJSG\nAHF0+ZcAACAASURBVH1LlZxaXUQdHBzw4MEDwe8PHz6Eo6OjxAPv2LED1tbWgv9EHx8fuLu7Izo6\nGv3794ePj4/EYzRE+HyCsUfm4xvNH9HDqp14nWRkAMOHA3v2IMHcHH1fvICGoiKC7O1rVADvFr9D\nwcsC2AXYQVH9kwLIz3+CZ8+6QUOjM7p0uUkVAKVR4OzsjE2bNslbjMZPtX5D5VhYWBAWi0WMjY1J\n+/btCYvFIpaWlsTW1lZwgKyuJCYmkv79+5PAwEAyePBgwTipqamEEEJSUlKIhYVFlXYiiNvg+enw\nP6TZYivCLiqtvbIwysoIcXYm5Oefyb3cXGJ07x7ZkpBQ4+EVPp9P3v30jjxxeELKcsoqlScl7SUh\nIXokPf2cePJQZM6X8NxT6pfPn5manqFazUHC3M4kZfHixdi8eTPy8/MFZWlpaTAwMAAAGBgYIC0t\nTerjypv0nEL8EbYIm7/yh4ZqM/E6WbIEUFfHkXnz8GNoKPwtLTFQt+ZUj3Fr4pB9NRv2QfZQ1mY8\nu3i8IkRHz0FBwXN07RoCNTVz8eShUCiNmlqVgImJCXJycpCYmFjJDUrcUNIBAQHQ19dH165dq01S\nU5OHgre3t+BnFxcXuLi4iCWHPBi6dR3a8vtg8XBX8To4dAi8//7D8nPncCEhAcH29rCuIVcwAMRv\njEfG6QzYB9tDWZdRAEVFbxEWNhIaGl3g4PAQioo190GhUBofFefKGqntteKXX34hbdu2Jf369SMu\nLi6Cj7j8/PPPpG3btsTExIQYGhoSNTU1MnHiRGJhYUFSyuPaJCcnf3HmoCuPIghruS558S5ZvA4e\nPCC5xsZk4L17xO3FC5JZVlZrk4StCeRhx4ekJKlEUJaefp6EhOiRDx/2iBT/hCJ/6vO5z8vLI05O\nTkRDQ4OEhoYKyvfv3y/4efLkyZWufY6Pjw+JjY0lcXFx5MaNGxLJk5ubS86cOSP4ffbs2WL1Exsb\nK5i7NDU1iYuLCxkwYIBEstXG5MmTiZOTE+nVqxf5/vvvRW7n6elJ3NzcyJMnT4ifnx8hhBBHR8c6\njf35M1PTM1Tr09WpUydSWiqm/boWgoODBXsCP/74I/Hx8SGEELJx40ayfPnyKvUbqxLg8fhEZ6Eb\nGeazTeQ2Pj4+xLR3b9Le2ZmY9uxJlpmbE6ubN8kPUVGkrJqj4hX58OcH8sDkASmOLy6XgUPevfuJ\n3L9vTPLyHol9L5T65/PnPiDgNhkwYBVxdv6NDBiwigQE3K6xfV3qczgckpGRIQhZ8JGKIRU+v1Yd\nQUFBIgc+qy78QV0C2olKfQWtmzJlCgkLCyOEEPLtt9+S+/fvC65Vd7/Jyclk6NChVcrrKnNdlECt\n5iAbGxvk5OQI7PXS5qPZZ8WKFRgzZgz++usvgYvol8Kig6dRrJCJk4vniVTf19cXPrduIXf9p7wC\nW/bvx7AXL7C7mkTxFUk5lIIEnwTYB9tDxVgFZWVpCA8fCxZLGY6Oz9CsWSux74UiX65cuYOFC68j\nJubTsxETw4QfHzSon8T1lZSU0KpV5efj/PnzguBqM2fOBADs3r0bMTExUFdXx/nz5yvVnzp1KpYt\nW4a9e/fi/v37ePbsGc6dO4eLFy/i0KFD4PF4WLduHVxdXeHi4oIePXrgxYsXOHbsGMaOHQsulwsD\nAwOcPn0afn5+uH37Ntzc3PDnn39i0qRJePr0KT58+IApU6aAw+Ggc+fO2LVrF/z9/XH58mVwOByk\npqbi0qVLlQ56fc7Tp0/x008/gcvlYujQoVi6dCm8vb0RExODrKwsNGvWDIMHD8bx48dhYGCAU6dO\nwd/fHxcuXACHwwGbzcapU6dqPekLAPb29khMTMTPP/8suN9z585hwoQJyM/Ph5GREf73v/9h4cKF\nuH//PkaOHIkFCxZUOQeRmZmJmTNnVmpT8RSyWNSmUR4/fkyMjIyIu7s7GTx4MBk8eDAZMmRInbSS\ntBBB3AZHYnoeUfixNfG7EiJyG9PevQmCgqp8OvTuXWvb1GOp5F7re6Qwigl+lZsbQu7da0Pev/+V\n8Plcse+DIj8qPvcDBqwiAKny8fD4RWjbutb/SG1vAkePHiWEEOLl5UVev34ttG3FwGfVBVxzcXEh\ngYGBhBAmTD2XyzyjCxcuJP/99x+Ji4ur9CbwUY4ffviBXL9+nRBCyPTp08mdO3eIv78/mT59OiGE\nED8/P7Jz506h9/axj/79+/+/vbuPq/n+/zj+ONUpF2GxzVxtJiaki1Eu1yVKDcUmMhQybGKbDbPf\nl9lXrjZGsw3fucyY60wkusCIEjIyF5G5jJBcVOqcz++P1lnHOdU5dN37frud2/I57885r3c7fd7n\n8/m8P8+PlJ6eLkmSJPXp00dKTU2VZsyYIQUFBUmSJEm+vr5ScHCwJEmS5O3tLV26dElatWqVNGTI\nEEmSJCk8PFwKDAws9neYm5srOTo6SomJiWr9nT9/vrR06VJJkiTpm2++kdasWaPW34J7Uvk1f/bZ\nZ6r1586dK23evFnrez+7rSxq21nsnsCwYcOYMmUKlpaWqhFHXKChu34LZ9BC6sUYj27FN/6HspBs\nJkUxmU23N90meVIy1vusqdmqJlevfs/ff8/GwmIlDRp46FW3UDFlZ2v/k92zxxDtf5ba22dlaQYK\nPquov/P84LZmzZpx//79Yl+rqMC1/FC2tLQ0xo4dS3p6Ojdu3KBDhw60atWq0NfLX8/Ozo4LFy5g\naGiIjY2Nqq6EhIQiazp16hReXl4ApKenc/XqVQCsrKyAvNC6/AC7/NA6+HdSTMeOHTWiIp7l7+9P\nrVq18PT0VL1uwRC60aNHq5YdOnQIBwfNvbOCkpKSiIuLY+bMmWRlZTF06NAi2+ui2EHA1NSUwMDA\nF36j6mjLH39yQhHC6Y9P67WeQU6O1uWGhSwHSNuRxoWPL2AdYY1JayVJSYPIzLzI228foWZN7XcJ\nEyofExPNoDIANzcF2mZzu7nloiVElBo1FMW+l/RM7EBBRQXL5ZPL5SgUee/TokWLQgPX8r9crl+/\nnj59+jBy5EgCAwNRKpVqr1FQy5YtOXr0KO7u7sTHx+Pn50dycrKqLinvfGeR/bOxsWHz5s3UrVsX\npVKJgYGBqr6ifh8nTuRd6X/s2LFCB6l8q1at0khYyO9vfh9sbW2Ji4vjrbeKn6bdpk0bvL296d69\nO6A9uE5fxR5Meuedd5g6dSqxsbEcP35c9RCKplRKjNg8Dp+GX9P2Df2iXgc6OSFbulRt2UuzZjG6\nr/abztwNv8u5Uedov7M9spZ/c/y4PUZG9bC1PSQGgComMLAX5ubqtyA1N/+S8eN7lkh7AA8PDyIi\nIggICGDNmjUAODs74+XlRWhoqEb7wgLP2rdvT0JCAj4+PsjlclXgmouLC5MmTdJYx9XVlUWLFuHl\n5cWdO3eQyWQ0atSIzMxMBg4cyMWLF1XvNXnyZObPn4+DgwMmJiaqjWL+80VNMy+YUtC/f39cXFzw\n9PRU3R6zuNC6p0+f0rt3b2bNmsUXX3wBwJgxY7S+V1EDUUBAAGFhYTg5OXHmzBkGDRqkFranrQ/T\npk1j4cKFuLq64urqSmJiIqmpqbpPB9Wi2AA5Jycnrb+Iou6kU1oqU5BWwJLV/HrxB+7PO4KxvPhd\n73xPHj6ke2gojY4c4a8TJ1DI5Rjm5DC6b18mT56s0f5+1H2SfJKwDLUky3w3Fy+Op0WLeTRq5F+S\n3RHK0bOf+7CwAwQH7yUry5AaNRSMH99T60ne520vFG716tU8evSIjz76qLxLKZI+AXLFDgIVSWUZ\nBC7fvE/LhW1Z0WsHw3vY6byepFTywYoVyIC1I0YgK+asf/of6ZzxPkObTa2422QWd+/upF27zdSp\nY/uCPRAqksryua8OVq9ezePHjxk3blx5l1KkEh0Ebt26xbRp07h+/Trh4eEkJSURGxvLyJEjS7Zq\nHVSWP4b2kz9CiYIzc3/Wa71v165lPfBH//7ULOZK4IyjGfzZ509arqvH9QYfIpc3wMJiNXK52QtU\nLlREleVzL1Qc+gwCxZ4T8PPzo1evXqpbn7Vq1YqFCxeWUKlVT0hkAklsYceEIL3W2xMRwXempmzr\n1q3YAeDh8Yf82fdPmqy+TXLtnjRo4Iml5XYxAAiCoLdCB4H8s85paWn4+Phg+M89auVyeYnc0qwq\nylUoGbNzHMObBmHeuL7O61386y+GPXnCb/Xr83qLou81/OjPRyR6nsRsZTg36o3DwmItb7zxJTLZ\nC14wIghCtVTolsPe3h7ImyJacE7vkSNHqFevXulXVgn5Bf8PAwxZNs5P53Uepqfjdfw40zMzcXB0\nLLLt478ek+h9iBorZ5H12j7efjue+vV7vGDVgiBUZ4UOAvnHj7777jv69evHpUuX6Nq1K0OHDmXx\n4sVlVmBlce5qGr/e/IrlXj9iZKjbt3KlQsHwzZvp8uQJY318imz75OITTozYBD+NoZ75W9jY7KdG\njaYlUbogqMTFxdG1a1ccHR3x9fVVHRFYvny5qo2fn5/azdefNXfuXFJSUrhy5Qp79+59oXqevZVt\nYVMxi5OSkoKzszPOzs7UrVsXZ2dn3NzcXqi24vj5+WFvb0/Xrl0ZO3aszuv169cPV1dXjh07xs8/\n551X7NixY2mVWfjFYnfu3GHBggVIkoS3tzceHh5IkoSJiQmRkZFYW1uXWlGVUd/FU7A2GoyPo43O\n68xau5ZbcjnrBw7UmAn0/dwgdu34GblcwdNsQzqbtqTXzERatf+Bhg0Hl3T5QiUStjeMxb8uJlvK\nxkRmQqBvIJ49td84Xt/2r7/+OtHR0ZiYmPDll18SGhrKgAEDWLZsmSo3qLjEgPypzDExMURERNCz\nZ+HXJOTLv1jrWffv32fjxo28//77AKqNor6aN2+umtZuZ2dXJlPcZTKZ6mIxDw8PYmNj6dKlC1B4\nf2/evIlMJiMyMhL4d+NfmikNhQ4CCoWChw8faix/8uRJqRVTWS3bHctF2S4uf3JW53V27NrFsjp1\niLO3x6RmTbXnvp8bRHTkHL6c9e/vf9nP10g4Pp53eogBoDoL2xvGhCUTSLZNVi1LXpL3s7YNu77t\nCwauGRsbY2hoyPbt20WAXHUMkLOxsSk0cKi8FFFuucnMzpFqTrSRxv0UovM6SadOSa9s3y4dKRAt\nW1DPrs2k6Gg0Hr26vl5SZQuVSMHPfS+/XhIz0Hi4+btpXVff9vlSUlKkLl26qALdRIBcNQ6QE4r2\nwaKfMOElgkf76tQ+PS2NfklJzDUwoNM/u4bPksu157oYyV88J0So3LKlbK3L91zag+xrLYcMLgPN\nNRdnKbMKfY+MjAyGDRvG6tWrVbMCnyUC5KpBgNy+ffte+MWrulOXbrH17ky2++zHwKD4Y3aK3Fx8\nQ0NxlyT8R40qtF1urvbXys0RY3Z1ZyIz0brcrYUb4dM1E+TcUtyIQDNBroZBDa2vk5uby6BBg5g+\nfbraBlgEyFXDALkGxdy8XACvJZ9jZ+RP385ti28MfLVmDVkGBnxXxOidde8uPRye8uMi9djoBbPq\n0Lvvhy9Ur1D5BfoGYn7CXG2Z+XFzxg8eXyLt169fT1xcHN988w3Ozs6qmTkiQO5f1S5AriKpSJfP\nLwrdz2d/fMC1qWd5rb5pse03hobyRU4O8d268UqjRlrbZD9IJ267EyY5lhxKsyD89+UYyXPJzTGi\nd98PmTj5y5LuhlAJaATI7Q0jeH0wWcosahjUYPzg8cXODtKnvVA4ESBXzirKIPAkK4f6X9ryseUM\nvh3xXrHtExMS6HH9OnsbN8amkPm+Tx8+JG6zC/Lc5tiN2IBBIcdiheqnonzuhWoaIFeRVJQ/hndn\nf8uR23u5/V14secC0m7dwu7gQebI5fj8cxLqWTlPHnN0Q0+MFK9g778FAxHLIRRQUT73QuWhzyAg\ntjZ6ij93jV0P5rDng9hiB4DcnBwG7t6NjyThM2KE9jZZWcSt98BQqoud3yYxAAiCUKZE6pie+i/9\nlG4mY+nZoehZAQCT1qzBRJKYNWyY1ucVOU+JC+kDGGI3NBRDuXEJVysIglA08bVTD7M3RnDLIJ6T\nn60qtu3qzZvZZWrKURcXDLV8u1fm5hK32htJlkUn3wiMTLRP/RMEQShNYk9ARxmPs5l+9GOm2iym\nQd1aRbaNi41lkrEx29u0weyVVzSeVyoUxK8aiMIgDbtBuzF6JjZCEMpLamoq3bp1UwWs3b17FxAB\ncs+jsgTIVbwchiKUZ7k9Zv5XajixT7Htbl69KjXdvFnavnOn1ucVCoV0dLmPdGClrZT94EFJlylU\nQc9+7vfv3ClN69VLmu7oKE3r1UvaX8hn7XnaKxQK1c+rVq2SZs+eLUmSZmzE6dOni627YOxBcQq+\nb0GXL19Wi40oCQX7Upr8/PykM2fOSJIkSb1795YOF4iJKay/N27ckPr166exXN+an/3MFLXtFIeD\ndPDH6RQiHy9g/4hjRbbLzsxkQGQkoySJfgMGaDyvVCpJWDmCLHkS9n33Y1y3bmmVLFRRB8LC2DNh\nArOS/w2Em/bPzw6emnP/9W1fMIwsIyMDMzMzESBXxQPkxOEgHbz/ywRcan/CO+3fLLJd4Lp1vJqT\nw/9puSJYqVRyYtVYMo2PYucZSQ0zcStIQX8RixerbdABZiUnszc4uETaAyQmJtKpUyd++OEHfH19\n8fLyonXr1kRFRTF4cF6Kbbdu3YiIiMDExIQ///xT6+uMHTsWHx8foqKiUCqV/Pbbbxw4cICIiAhm\nzpwJ5E1ddHd3JyIiAjMzM/bu3cuBAwdo0qQJUVFRjBs3DkdHR6KiomjTpo3a1b5ffPEF+/fvJzMz\nk4MHDyKTyTAzM2PHjh2MGDFC7TCSNlOmTGHbtm0cOHCA/fv3c/v2bWQyGW3btmXXrl3Url2brKws\noqOjefr0KZcvX0Ymk2FqakpYWBjTpk1j7ty5Rb6HJEkoFAoOHz6MhYWFWn+XLl3Ku+++S0xMDO3a\ntWPDhg3Mnz8fR0dHtmzZonVK55w5cwgMDCQyMhIrKyuNAfh5iEGgGP8J2cldg7Ns/fTzItv9vGED\nf9SuzZr33tN6oVfimk94ZBJFx17R1HxZ8zyBIOjCKFt7gJzhnj0gk2k8jCI0c4MADLMKD5Cztrbm\n6NGj/Pe//1VtrJ/1IgFy7777bqEBcgMGDMDJyYldu3Zx8+bNIl/v2QA5QC1Arri68gPknJ2duXr1\n6nMFyOW/b2H8/f1xdXUtNEBOWx+KkpSUxPTp03F2dmbbtm2kpqYWu05xxOGgItzLyGT2yUBmdv6Z\nurULn71z8MABpteowSELC+q89JLG84mrvyDDZAcdHA5Sq2Hhu6eCUJzcQmaRKdzcIFwzQC7XzQ20\nDASKGtoD5HJycpDL83Kr6tatS/Y/g44IkKuGAXICeH03m9eUHZj6fq9C21y9fBmfu3dZU6sWLS0s\nNJ7/M2Q66TXW83a3KEybiNtBCi+mV2Ag08zVA+G+NDen53jtgXD6tj958qQq5G3BggWqgDQRIPcv\nESBXjsry8vm9CRdw29SFo/4nsWutfeOd+fgx72zdykBJ4gstF4SdWR9EmuESbDrGUK9F8ReXCYI2\nz37uD4SFsTc4GMOsLBQ1atBz/HitJ3mft71QOBEgV87KahBQKiVe/aw3nV9xZeeX2s8FSEolw1as\nQAGsGzFC4x7Bf21awC2DeVi3j8bsrTalXrNQdYnsoIpDBMiVgKtXrzJs2DDVmfjRo0cTGBjIvXv3\n8PHx4cqVKzRv3pyNGzfy0jPH18vqj+HzFVsIPv0f7gWdpFYNudY2C0NCWAMc6tePWnXqqD13fuuP\n3GA67S320aCtdanXK1RtYhAQ9KXPIFDm5wTkcjkLFy7kzJkzHDlyhCVLlnD27FnmzJlDz549OX/+\nPK6ursyZM6esSwPg1r1HLDz7CXMclhQ6AOyLjGRe7dps79xZYwC4GPo/bsj+g6X5bjEACIJQ4ZX5\nIPDaa6+ppnGZmprSpk0brl+/zo4dOxg+fDgAw4cPZ/v27WVdGgD9FnxDM8mBiV5OWp+/dP48Hzx8\nyHozM95o2VL9uV0hXJMm0/b133nZuhQv8xYEQSgh5TpFNCUlhRMnTtCpUydSU1Np2LAhAA0bNiyR\n+a/62nEkifjcFZwcp/3il0cPHuAVH89XMhlOz9wbICViI3/njKf1a9t4tYP2G8gLgiBUNOU2RfTR\no0cMGDCARYsWUeeZQypFTe8qLUqlxPANH9G/wf9h1UJzLr+kVOK/aRMdMzP5aNAgtef+jgolJfND\n3mqwkUadncqoYkEQhBdXLoNATk4OAwYMYOjQoXj98426YcOG3Lp1C4CbN2/y6quval13xowZqkdM\nTEyJ1TR+2XqyZemETNB+1n/22rVcNTbmpyFD1GYCXTu4m0sP/WhZL4TG3XuWWD2CUJiwqCjcAgNx\nmjABt8BAwqKiSrQ95F24VfBvUKSI6q+8U0QLbiuLpFc0XQlQKpXS0KFDpYkTJ6ot//zzz6U5c+ZI\nkiRJs2fPliZPnqyxbmmVeyU1XTL4vLG0dNdhrc/v3L1barJli3T9yhW15TcOR0rR21+SUvZuKZW6\nBEGS1D/3OyMjJfNRoySio1UP81GjpJ2RkVrX1be9JElSbm6u5O3tLXXo0EG1TKSI6q+ypIiW+Z7A\noUOHCAkJITo6GltbW2xtbQkPD2fKlCns3buXt956i6ioKKZMmVJmNfVbOJ2WUm9G99Y8lv/X6dP4\nZ2ezqWFDGr/+ump5avxBzqW+xxvGS3ijR/8yq1Wo3hZv307ykCFqy5KHDCFYy5W8z9Me8vYCBg4c\nqDoku23bNlWK6Pr164G8FNFevXrh7e2tsb6/vz9nzpzh559/5rfffsPFxYX79++zatUqHBwc6Nat\nG9HR0QA4OTkxefJk3N3duX37Ni4uLjg4OPD++++jVCrVUkTPnj2r+kZ87do1evTogaOjI+P/ufp5\n1apVDBgwgL59+2Jvb686slCYY8eOqd7vu+++A/K+PQ8dOhQPDw+8vLz43//+h7OzM4P+OQS8atUq\nvLy88PT0xMHBgRs3bhT5HvnyU0QL9vfhw4f07dsXJycnBg8eTE5OjlqK6P79+/n8c/XrlNLS0vD2\n9sbV1ZUPPvgApVKp0/sXpcwHge7du6NUKjl58iQnTpzgxIkTuLu7U79+ffbt28f58+eJiIjQuEag\ntGw8kEiicj07AjWnpD64dw+v06eZnZ1Nl27dVMtvnzjK2eteNDNcwJu9fcukTkEAyC7kXNmeBw+Q\nxcRoPCIyMrS2Lyw+TqFQsGnTJnx8fFTLvL29RYpoFU4RrdYBcrkKJaO2jsO3+Te0bvay2nNKhYIP\ntm2jhyQxctQo1fK008dJSvGkiSwI8z5+ZVyxUN2ZFHLBj1u9eoQ7OWku37oVbTmi2uPjICQkRG0v\noDAvkiIKFJoiOnbsWNLT07lx4wYdOnQoNKBNWwKnoaGhWopoQkJCkTXlp4gCpKenP1eK6KJFi4p8\nD39/f2rVqlVoiujo0aNVyw4dOoSDg0ORr5eUlERcXBwzZ84kKyuLoVpi6/VVrQPkRv+4GqUsl1Xj\nR2k89581a8gwNGRhgV/yvb/+5PS53jRS/IdWXh+WZamCAECglxfm69apLTMPCWF8v34l0v7s2bOs\nWbOG3r17c+HCBSZOnAiUXIpodHQ00dHRqiRO0EwRjYmJwd3dXacUUYD4+HhVAqe+KaKhoaFER0eT\nkJBAhw4dimyf/3r6pojGxMSoHdZ5NkUU0CtFNCgoiOjoaGJjY1WDyIuotnsCyTfusfraVFa/G4aR\nofpYuHnHDtbWqUN8167I/4nufXDxHKdO9+JVxWe09gksj5IFAU8XFwCCt20ji7xv9ON9fVXLX7R9\nwSv17e3t+f7774F/U0T9/f011ikqRXTq1Kn4+PiwbNkyVYqooaEhVlZWqtfO5+rqytChQ/n999+p\nWbOmRopoUFCQWoro8OHDCQoKon379nTv3l0tSlqfFFGlUomJiYnq0IquKaKPHz9WnSMZM2aMaiZP\nQUUNRAEBAQwZMoQNGzbw2muvMXXqVK5du1ZsimhAQADTp08HYN68eTRt2pSffvrpuZNEq22AXLvJ\nYzHAgD/nLlFb/ueJE7hcvcqeRo14+5/dtgcpFzkZ50SDnA+xHPJ/JfL+gqArkR1UcVTFFNFquSew\nem88f0nbufhJktryu6mpeF24wCK5XDUAPLx2hZNHXDHLGY7lUDEACEJ1V9YXspa2arcn8DRHgdkX\nnfFt+THLPxquWp6bk0PvtWuxkSTmjxwJwOOb1zkW8w71sr2x8fvuhd5XEJ6X2BMQ9FWhU0TLm1/w\ncoykGiwdq34TmMlr1mAAzPknxO7J7VQSIl2ok9kb6+HflkOlgiAIpa9aHQ46+/cdNqT+h03vRWJg\n8O8u3dotWwitU4c4JycMjYzIuneXY+Eu1Mp5Bxv/4Cq3+ycIgpCvWg0C/YInYyv/gAHd26uWHTt6\nlE/lcqLNzan/6qtkP0gn/ndXauTY8vaIZarpXIIgCFVRtdnC/RR2iGQiCP1khmpZ6vXrDLh6laUy\nGZY2Njx9+JD4rT0xftqKjv6rxQAgVEhRYVEEugUywWkCgW6BRIUVHQinT/uUlBReeeUVVdja3bt3\nAREg9zzKO0BOZ3qlEpWz5y03MztHqjHRShq/dL1qWXZmptR95Urp/1askCRJkp4+fiQd/KWLFLus\nr6TIySmRegWhJBT83EfujJRGmY+SoolWPUaZj5Iid2oPhNO3fWGBbSJATn8iQK4C8f1+CTWll/l+\n1L95KBNDQqivUDBj2DBys7KIW++BobIudn6bMDCqVkfJhEpk++LtDElWD4QbkjyE0GDtgXD6tgdU\n8QXTpk0DRICcCJCr5E4m32T7vf8S4rtEdTJ4+W+/EV27Nmv790dSKogL6QMYYjc0FEO5cfkWjvLr\nHgAAELNJREFULAhFkGVrn6TwYM8DYmQxGo+MCO0BcoUlyDVu3Jjk5GQOHDjA7du32bp1qwiQEwFy\nlZvXj5PoVGsUHvYWABw6eJBpNWrwR6tWmNapw9FV/ZBkWXTyjcDon4gIQaioJBPtc73rudXDKdxJ\nY/lWt63okyBnbPzvl6D+/ftz5MgR+vfXjEoXAXJVJ0CuSg8CC7ZFc83gD+I+zbsy+PqVKwy8c4dV\ntWrRsnVr4le+j8IgDXufSIxq1iznagWheF6BXqxLXqd2iCfEPATf8dojzfVt/+jRI0xNTQE4cOAA\n7dq1A0ouQG7nzp0A5Obmqto9GyA3cuRIAgMDdQqQc3d3Jz4+Hj8/P7XsIEnHALnNmzdTt25dlEol\nBgYGqvq0kZ4zQK5t27Zqy54NkLO1tdUrQM7b25vu3bsD6r/H51VlDwc9ynzK1IMf8Vm773nVrDZZ\nT57gvX8/4x89wr1XL46tHMJToxTs39uLcW3T8i5XEHTi4unC4EWD2ea2jW2O29jmtg3fRb64eGoP\nhNO3/R9//EHHjh1xcHDg5s2b+PrmDRb5AXKhWm5GU1SAXEJCAj4+PsjlclWAnIuLC5MmTdJYx9XV\nlUWLFuHl5cWdO3c0AuQuXryoFiA3f/58HBwcMDExUW0UnydAzsXFBU9PT7KysjT6U1SA3KxZs/ji\niy+AwmctFTUQBQQEEBYWhpOTE2fOnGHQoEFIklRsgNzChQtxdXXF1dWVxMREUlNTnzs8DqpwbITH\nrHkcS4vh1ndhyJDwX7GCTOBXPz+Orx5FptFx7Pvup4aZWekWLQgvSMRGVBwiQK6SOHr2KuEP57Fv\n+FEMDGQsXvcrJ2vW5KCnJyfXfESm8VHseh8QA4AgCHqragkCVXJPoOmn79GyriUxM2YQFRWFb0YG\nR9q14/6hH8iQ78Kux0FqNXytDCoWhBcn9gQEfVXrPYFZv+0h1eAEpz5dy+Xz5/HNyODXunV5cHg5\nGSY76OAgBgBBEIR8VWoQSH+UxddxH/NVh2BMyME7Pp6pwCuPTnCvxnre7nIA0yZNy7tMQRCECqNK\nDQIDFsznZaUl/xnkzuAVK7ABetRKJU3+P2w6xlDn9TfLu0RBEIQKpcpMET1w6jLRTxaxadT3zA0J\n4ZKxMZNq3eeOSTBWNvuo16Lo+byCUFlERYURGOjGhAlOBAa6ERUVVqLtY2Ji6NGjBy4uLqopocuW\nLVM9LwLkdFNZAuSqzJ7A+ysD6dngMzKu/UWwqSm/PzxPWo3vaG+xD7O32pR3eYJQIqKiwli/fgJD\nhiSrlq1bl/ezi4vnC7fPzMxkwYIF7N69G7lcrlq+fPly1dWtxc2OmTx5MpA3mERERNCzZ89i+5V/\nsdaz7t+/z8aNG3n//fcBtN7MXRfNmzdX5RXZ2dmpfi5NMplMdbGYh4cHsbGxdOnSBSi8vzdv3kQm\nkxEZGQn8u/EvzRlJVWJPYNraHaQbXGCupwfDs7JYf+tPMup+i6X5bhq0tS7v8gShxGzfvlhtgw4w\nZEgyoaHBJdI+NjaWmjVr0qdPH/r3709qaqoIkBMBchVb2oMnzEucwEzbefj+lcRP54+ibLyYtq//\nzsvWpZjBLQjlQCbL1rr8wYM9xMTINB4ZGdqCg6CwBLnU1FQuXrzIzp07CQgIYMaMGSJATgTIVWxe\n3wXRSGHP4ew7jEk9T4N2y2jdcBuvduhS3qUJQomTJO0hh/XqueHkFK6xfOtWN/RJkDMzM6Nbt24Y\nGRnh4uLC7NmztbYTAXJVJ0CuUu8J7Dl2nsNPf+a9Vs5YpF3Gqt0y3mqwkUadncq7NEEoFV5egaxb\nZ662LCTEnH79xpdIezs7O86ePQvAyZMnMTfPW7ekAuSio6OJjo5WhbCBZoBcTEwM7u7uOgXIAcTH\nx6vC1/QNkAsNDSU6OpqEhAQ6dOhQZPvnDZCLiYlRO6zzbIAcoFeAXFBQENHR0cTGxqoGkRdRafcE\nlEoJ35CPGWw6jvu59xlusYSW9UJo3L34k1CCUFnln8zdti2YvEM6NfD1Ha/1JO/ztG/QoAHe3t44\nOjpiYGDAihUrgH8D5Pz9/TXWKSpAburUqfj4+LBs2TJVgJyhoSFWVlZ8//33auu4uroydOhQfv/9\nd2rWrKkRIBcUFKQWIDd8+HCCgoJo37493bt3V0sR1SdATqlUYmJiojq0omuA3OPHj1XnSMaMGaP1\npHVxAXJDhgxhw4YNvPbaa0ydOpVr164VGyAXEBDA9OnTAZg3bx5Nmzblp59+eu4QuUobG/HpL5vY\nnfgD7S36Ma7JN7xZ+xfe6KGZey4IlZ2Ijag4qmKAXKU8HHTj7kNWn56GTct3Gdv4G94wXiIGAEEQ\nyoQIkCtF4eHhTJw4EYVCwahRo1TzjfPlj2advpxEu9q1Gdo2mNeNFmDex698ChaEMiD2BAR9Vco9\nAYVCwccff0x4eDhJSUmsX79edYKqoNDDZ2gvZfBBmx9orJwlBgBBEIQXUGEGgbi4OFq2bEnz5s1V\ndyHSdhejeR93waLWOho8/pzWA3S/FFsQBEHQVGEGgevXr9OsWTPVv5s2bcr169c12s1a8JDDR3MZ\n8W1IWZZXbmJiYsq7hDIn+qzOzMxMNVNEPMRDl4eZHjfMqjCDgEym+8mWwElPkeX+XYrVVBxig1g9\nFNXne/fuqea9V6XH9OnTy72Gqtrne/fu6fzZqzDXCTRp0kR1xR7A1atXadpUM/t/1aq8/96+l01M\nTAxOTk5lU6AgCEIlERMTo/OXqQozCHTs2JELFy6QkpJC48aN+e2331QXYhTk55f339PxJmIAEARB\n0MLJyUlt+/j1118X3liqQHbt2iW99dZbkrm5uRQUFKTxvLk5EoiHeIiHeIiHPg9HR8dCt7sV6joB\nQRAEoWxVmBPDgiAIQtkTg4AgCEI1ViEHgfDwcCwsLGjVqlWhN20IDAykVatWWFtbq8XSVlbF9Xnd\nunVYW1tjZWVFt27dOHXqVDlUWbJ0+f8MeVHBRkZGbN26tQyrKx269DkmJgZbW1ssLS2rxOSH4vqc\nlpaGu7s7NjY2WFpasip/CmAlNWLECBo2bKi6F4E2FWr7VWpneZ9Tbm6uZG5uLl2+fFl6+vSpZG1t\nLSUlJam1CQsLk3r37i1JkiQdOXJE6tSpU3mUWmJ06fPhw4el9PR0SZIkaffu3dWiz/ntnJ2dJU9P\nT2nz5s3lUGnJ0aXP9+/fl9q2bStdvXpVkiRJunPnTnmUWmJ06fP06dOlKVOmSJKU19/69etLOTk5\n5VFuiThw4IB0/PhxydLSUuvzFW37VeH2BHSJj9ixYwfDhw8HoFOnTqSnp5Oamloe5ZYIXfrcpUsX\n6tWrB+T1+dq1a+VRaonRNSYkODiY9957j1deeaUcqixZuvT5119/ZcCAAaprZF5++eXyKLXE6NLn\nRo0akZGRAUBGRgYNGjTAyKjCzF7X2zvvvFPkFbsVbftV4QYBXeIjtLWpzBtFXSMz8v3yyy94eHiU\nRWmlRtf/z6GhoYwdm5cRpc9V5RWRLn2+cOEC9+7dw9nZmY4dO7J27dqyLrNE6dLngIAAzpw5Q+PG\njbG2ti72lo2VXUXbflW44VbXP3TpmZmtlXkDoU/t0dHRrFixgkOHDpViRaVPlz5PnDiROXPmIJPJ\nVJfDV2a69DknJ4fjx48TGRnJkydP6NKlC507dy72NoYVlS59DgoKwsbGhpiYGJKTk+nZsyeJiYnU\nqVOnDCosHxVp+1XhBgFd4iOebXPt2jWaNGlSZjWWNF0jM06dOkVAQADh4eF6BURVRLr0OSEhgUGD\nBgF5Jw93796NXC6nb9++ZVprSdGlz82aNePll1+mZs2a1KxZEwcHBxITEyvtIKBLnw8fPsy0adMA\nMDc358033+TcuXN07NixTGstKxVu+1WuZyS0yMnJkVq0aCFdvnxZys7OLvbEcGxsbLmfWHlRuvT5\nypUrkrm5uRQbG1tOVZYsXfpckJ+fn7Rly5YyrLDk6dLns2fPSq6urlJubq70+PFjydLSUjpz5kw5\nVfzidOnzJ598Is2YMUOSJEm6deuW1KRJE+nu3bvlUW6JuXz5sk4nhivC9qvC7QkYGRnxww8/4Obm\nhkKhYOTIkbRp04alS5cC8OGHH+Lh4cGuXbto2bIltWvXZuXKleVc9YvRpc8zZ87k/v37quPjcrmc\nuLi48iz7hejS56pGlz5bWFjg7u6OlZUVBgYGBAQE0LZt23Ku/Pnp0ucvv/wSf39/rK2tUSqVzJs3\nj/r165dz5c9v8ODB7N+/n7S0NJo1a8bXX39NTk4OUDG3XyI2QhAEoRqrcLODBEEQhLIjBgFBEIRq\nTAwCgiAI1ZgYBARBEKoxMQgIgiBUY2IQEARBqMbEICBUCQYGBkyaNEn172+//bbo+6pqYWpqWtJl\nPRc/Pz+2bNlS3mUI1YQYBIQqwdjYmG3btnH37l3g+bJYKkr+1IvUkZubW4KVCNWBGASEKkEulzN6\n9GgWLlyo8VxKSgouLi5YW1vTo0cPVW7L5cuX6dKlC1ZWVnz11Vdq68yfPx97e3usra2ZMWOG1vc0\nNTXlq6++wsbGhi5dunD79m1A85t8/h5GTEwMjo6OeHl5YW5uzpQpU1i7di329vZYWVlx6dIl1Tr7\n9u3Dzs6O1q1bExYWBoBCoeDzzz9X1bVs2TLV677zzjv069ePdu3aPedvUKiuxCAgVBnjxo1j3bp1\nqmz6fOPHj8ff35/ExESGDBlCYGAgABMmTOCjjz7i1KlTNG7cWNU+IiKCixcvEhcXx4kTJ0hISODg\nwYMa75ef8nny5EkcHBxYvnw5oPlNvuC/T506xdKlSzl79ixr164lOTmZuLg4Ro0aRXBwMJCXMHnl\nyhXi4+MJCwtjzJgxZGdn88svv/DSSy8RFxdHXFwcy5cvJyUlBYATJ06wePFizp079+K/SKFaEYOA\nUGXUqVOHYcOGsXjxYrXlR44cwdfXF4APPviAP/74A8hLrxw8eLBqeb6IiAgiIiKwtbWlQ4cOnDt3\njosXL2q8n7GxMZ6engB06NBBtUEuip2dHQ0bNsTY2JiWLVvi5uYGgKWlpWp9mUzGwIEDAWjZsiUt\nWrTgr7/+IiIigjVr1mBra0vnzp25d++eqi57e3veeOMNXX9VgqBS4QLkBOFFTJw4kbfffht/f3+1\n5fpGZE2dOpXRo0cX2UYul6t+NjAwUB2PNzIyQqlUAqBUKnn69KmqnYmJido6+f8uuL42+XsTP/zw\nAz179lR7LiYmhtq1a+vSLUHQIPYEhCrFzMyMgQMH8ssvv6g2nF27dmXDhg0ArFu3DgcHBwC6deum\ntjyfm5sbK1as4PHjx0DenaDu3Lmjcw3NmzcnISEByLuVYH6CpK4kSWLTpk1IkkRycjKXLl3CwsIC\nNzc3fvzxR9Vgcf78eZ48eaLXawvCs8QgIFQJBY+7f/bZZ6Slpan+HRwczMqVK7G2tmbdunWq2xcu\nWrSIJUuWYGVlxY0bN1Sv0bNnT3x9fVUnjQcOHMijR4+KfE+ZTKb6d0BAAPv378fGxoYjR46oTT0t\nbOZPwfVlMhmvv/469vb2eHh4sHTpUoyNjRk1ahRt27bl7bffpn379owdO5bc3Fy1dQVBXyJKWhAE\noRoTewKCIAjVmBgEBEEQqjExCAiCIFRjYhAQBEGoxsQgIAiCUI2JQUAQBKEaE4OAIAhCNSYGAUEQ\nhGrs/wHG815QFkaRdwAAAABJRU5ErkJggg==\n",
       "text": [
        "<matplotlib.figure.Figure at 0x8959210>"
       ]
      }
     ],
     "prompt_number": 7
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 5.4-2, Page number 356"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Unsteady-State Conduction Using the Digital Computer  \n",
      "\n",
      "import copy \n",
      "\n",
      "#Variable declaration\n",
      "thk = 1.        #Thickness of slab, m\n",
      "Ti = 100.       #Initial uniform temperature of slab, \u00b0C\n",
      "Ta = 0.         #Constant Temperature of environment, \u00b0C\n",
      "alpha = 2.0e-5  #Thermal diffusivity of slab, m2/s\n",
      "ns = 20         #Number of slices\n",
      "M = 2.0         #M for Schmidt numerical method\n",
      "tmax = 6000     #Time at which temperature of the slab at various location to be calculated, s\n",
      "\n",
      "#Calculation and Result\n",
      "dx = thk/ns\n",
      "x = range(21)\n",
      "dt = dx**2/(alpha*M)\n",
      "m = tmax/dt\n",
      "\n",
      "t=0\n",
      "T = [Ti,Ti,Ti,Ti,Ti,Ti,Ti,Ti,Ti,Ti,Ti,Ti,Ti,Ti,Ti,Ti,Ti,Ti,Ti,Ti,Ti]\n",
      "T[0] = Ta\n",
      "Tcal = [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]\n",
      "\n",
      "for i in range(1,96,1):\n",
      "    t = int(dt*i)\n",
      "    for j in range(len(T)):\n",
      "        if j==0:\n",
      "            Tcal[j]= Ta\n",
      "            #print Tcal[j]\n",
      "        elif j>=1 and j<(len(T)-1):\n",
      "            Tcal[j]=(T[j-1]+T[j+1])/2.\n",
      "            #print T[j-1], T[j+1],Tcal[j]\n",
      "        else:\n",
      "            Tcal[j]=((M-2)*T[j]+2*T[j-1])/M\n",
      "            #print Tcal[j]\n",
      "    T = copy.copy(Tcal)\n",
      "    #plt.plot(x,T, 'o-',label=str(i)+'th iteration Temp. Profile.')\n",
      "print \"At 6000s\"\n",
      "\n",
      "for i in range(1,22,4):\n",
      "    print \"Temperature of the node\",i,\"is\", round(T[i-1],2),\"\u00b0C\"\n",
      "\n",
      "print 'The difference in the answers is due to rounding error'"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "At 6000s\n",
        "Temperature of the node 1 is 0.0 \u00b0C\n",
        "Temperature of the node 5 is 31.81 \u00b0C\n",
        "Temperature of the node 9 is 58.72 \u00b0C\n",
        "Temperature of the node 13 is 77.81 \u00b0C\n",
        "Temperature of the node 17 is 88.64 \u00b0C\n",
        "Temperature of the node 21 is 92.08 \u00b0C\n",
        "The difference in the answers is due to rounding error\n"
       ]
      }
     ],
     "prompt_number": 25
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 5.4-3, Page number 357"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Unsteady-State conduction with Convective Boundary Conditions\n",
      "\n",
      "import copy \n",
      "\n",
      "#Variable declaration\n",
      "thk = 1.0       #Thickness of slab, m\n",
      "Ti = 100.       #Initial uniform temperature of slab, \u00b0C\n",
      "Ta = 0.         #Constant Temperature of environment, \u00b0C\n",
      "alpha = 2.0e-5  #Thermal diffusivity of slab, m2/s\n",
      "ns = 5          #Number slices\n",
      "h = 25.0        #Covective coefficient, W/m2K\n",
      "k = 10.0        #Thermal conductivity of slab, W/mK\n",
      "M = 2.0         #M for Schmidt numerical method\n",
      "tmax = 6000     #Time at which temperature of the slab at various location to be calculated, s\n",
      "\n",
      "#Calculation and Result\n",
      "\n",
      "dx = thk/ns\n",
      "N = h*dx/k\n",
      "M = 2*N+2\n",
      "M =round(M+1)\n",
      "dt = dx**2/(alpha*M)\n",
      "m = tmax/dt\n",
      "T = [Ti,Ti,Ti,Ti,Ti,Ti]\n",
      "Tcal = [0,0,0,0,0,0]\n",
      "x = range(6)\n",
      "\n",
      "for i in range(1,13,1):\n",
      "    for j in range(len(T)):\n",
      "        if j==0:\n",
      "            Tcal[j]= (1/M)*(2*N*Ta+(M-(2*N+2))*T[j]+2*T[j+1])\n",
      "        elif j>=1 and j<(len(T)-1):\n",
      "            Tcal[j]=(1/M)*(T[j+1]+(M-2)*T[j]+T[j-1])\n",
      "        else:\n",
      "            Tcal[j]=(1/M)*((M-2)*T[j]+2*T[j-1])\n",
      "    T = copy.copy(Tcal)\n",
      "    print 'i:%3d and time %5d s'%(i,i*dt)\n",
      "    for i in range(len(T)):\n",
      "        print \"Temperature of the node\",i+1,\"is\", round(T[i],2),\"\u00b0C\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "i:  1 and time   500 s\n",
        "Temperature of the node 1 is 75.0 \u00b0C\n",
        "Temperature of the node 2 is 100.0 \u00b0C\n",
        "Temperature of the node 3 is 100.0 \u00b0C\n",
        "Temperature of the node 4 is 100.0 \u00b0C\n",
        "Temperature of the node 5 is 100.0 \u00b0C\n",
        "Temperature of the node 6 is 100.0 \u00b0C\n",
        "i:  2 and time  1000 s\n",
        "Temperature of the node 1 is 68.75 \u00b0C\n",
        "Temperature of the node 2 is 93.75 \u00b0C\n",
        "Temperature of the node 3 is 100.0 \u00b0C\n",
        "Temperature of the node 4 is 100.0 \u00b0C\n",
        "Temperature of the node 5 is 100.0 \u00b0C\n",
        "Temperature of the node 6 is 100.0 \u00b0C\n",
        "i:  3 and time  1500 s\n",
        "Temperature of the node 1 is 64.06 \u00b0C\n",
        "Temperature of the node 2 is 89.06 \u00b0C\n",
        "Temperature of the node 3 is 98.44 \u00b0C\n",
        "Temperature of the node 4 is 100.0 \u00b0C\n",
        "Temperature of the node 5 is 100.0 \u00b0C\n",
        "Temperature of the node 6 is 100.0 \u00b0C\n",
        "i:  4 and time  2000 s\n",
        "Temperature of the node 1 is 60.55 \u00b0C\n",
        "Temperature of the node 2 is 85.16 \u00b0C\n",
        "Temperature of the node 3 is 96.48 \u00b0C\n",
        "Temperature of the node 4 is 99.61 \u00b0C\n",
        "Temperature of the node 5 is 100.0 \u00b0C\n",
        "Temperature of the node 6 is 100.0 \u00b0C\n",
        "i:  5 and time  2500 s\n",
        "Temperature of the node 1 is 57.71 \u00b0C\n",
        "Temperature of the node 2 is 81.84 \u00b0C\n",
        "Temperature of the node 3 is 94.43 \u00b0C\n",
        "Temperature of the node 4 is 98.93 \u00b0C\n",
        "Temperature of the node 5 is 99.9 \u00b0C\n",
        "Temperature of the node 6 is 100.0 \u00b0C\n",
        "i:  6 and time  3000 s\n",
        "Temperature of the node 1 is 55.35 \u00b0C\n",
        "Temperature of the node 2 is 78.96 \u00b0C\n",
        "Temperature of the node 3 is 92.41 \u00b0C\n",
        "Temperature of the node 4 is 98.05 \u00b0C\n",
        "Temperature of the node 5 is 99.68 \u00b0C\n",
        "Temperature of the node 6 is 99.95 \u00b0C\n",
        "i:  7 and time  3500 s\n",
        "Temperature of the node 1 is 53.31 \u00b0C\n",
        "Temperature of the node 2 is 76.42 \u00b0C\n",
        "Temperature of the node 3 is 90.45 \u00b0C\n",
        "Temperature of the node 4 is 97.05 \u00b0C\n",
        "Temperature of the node 5 is 99.34 \u00b0C\n",
        "Temperature of the node 6 is 99.82 \u00b0C\n",
        "i:  8 and time  4000 s\n",
        "Temperature of the node 1 is 51.54 \u00b0C\n",
        "Temperature of the node 2 is 74.15 \u00b0C\n",
        "Temperature of the node 3 is 88.59 \u00b0C\n",
        "Temperature of the node 4 is 95.97 \u00b0C\n",
        "Temperature of the node 5 is 98.89 \u00b0C\n",
        "Temperature of the node 6 is 99.58 \u00b0C\n",
        "i:  9 and time  4500 s\n",
        "Temperature of the node 1 is 49.96 \u00b0C\n",
        "Temperature of the node 2 is 72.11 \u00b0C\n",
        "Temperature of the node 3 is 86.83 \u00b0C\n",
        "Temperature of the node 4 is 94.86 \u00b0C\n",
        "Temperature of the node 5 is 98.33 \u00b0C\n",
        "Temperature of the node 6 is 99.23 \u00b0C\n",
        "i: 10 and time  5000 s\n",
        "Temperature of the node 1 is 48.54 \u00b0C\n",
        "Temperature of the node 2 is 70.25 \u00b0C\n",
        "Temperature of the node 3 is 85.15 \u00b0C\n",
        "Temperature of the node 4 is 93.72 \u00b0C\n",
        "Temperature of the node 5 is 97.69 \u00b0C\n",
        "Temperature of the node 6 is 98.78 \u00b0C\n",
        "i: 11 and time  5500 s\n",
        "Temperature of the node 1 is 47.26 \u00b0C\n",
        "Temperature of the node 2 is 68.55 \u00b0C\n",
        "Temperature of the node 3 is 83.57 \u00b0C\n",
        "Temperature of the node 4 is 92.57 \u00b0C\n",
        "Temperature of the node 5 is 96.97 \u00b0C\n",
        "Temperature of the node 6 is 98.23 \u00b0C\n",
        "i: 12 and time  6000 s\n",
        "Temperature of the node 1 is 46.09 \u00b0C\n",
        "Temperature of the node 2 is 66.98 \u00b0C\n",
        "Temperature of the node 3 is 82.06 \u00b0C\n",
        "Temperature of the node 4 is 91.42 \u00b0C\n",
        "Temperature of the node 5 is 96.19 \u00b0C\n",
        "Temperature of the node 6 is 97.6 \u00b0C\n"
       ]
      }
     ],
     "prompt_number": 29
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 5.5-1, Page number 361"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "# Chilling Dressed Beef\n",
      "\n",
      "#Variable Declaration\n",
      "\n",
      "rho = 1073.                 #Density of a beef, kg/m3\n",
      "cp = 3480.                  #Specific heat of Beef, J/(kg.K)\n",
      "k = 0.498                   #Thermal conductivity of beef, W/(m.K)\n",
      "thk = 0.203                 #Thickness of beef slab, m\n",
      "Ti = 37.8                   #Initial beef temperature, deg C\n",
      "Tf = 1.7                    #Uniform fluid temeperature, deg C\n",
      "T = 10.                     #Temperature of the centre, deg C\n",
      "h = 39.7                    #Convective heat Transfer coefficient, W/(m2.K)\n",
      "x = 0\n",
      "#Calculation\n",
      "\n",
      "alpha = k/(rho*cp)          #Thermal diffusivity of beef slab, m2/s\n",
      "x1 = thk/2                  #Centre of slab, m\n",
      "n = x/x1\n",
      "m = k/(h*x1)\n",
      "Y = (Tf-T)/(Tf-Ti)\n",
      "X = 0.90               \n",
      "t = X*x1**2/alpha\n",
      "#Result\n",
      "print \"The parameter to be used in association with Fig. 5.3-6\"\n",
      "print \"n: \", n\n",
      "print \"m: \", round(m,4)\n",
      "print \"Y: \", round(Y,4)\n",
      "print \"Time required to attend 10\u00b0C: \", round(t,1),\"s OR\", round(t/3600,1), \"hr\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The parameter to be used in association with Fig. 5.3-6\n",
        "n:  0.0\n",
        "m:  0.1236\n",
        "Y:  0.2299\n",
        "Time required to attend 10\u00b0C:  69522.3 s OR 19.3 hr\n"
       ]
      }
     ],
     "prompt_number": 19
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 5.5-2, Page number 364"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Freezing of Meat \n",
      "\n",
      "#Variable Declaration\n",
      "\n",
      "rho = 1057.                 #Density of a meat, kg/m3\n",
      "cp = 3480.                  #Specific heat of Beef, J/(kg.K)\n",
      "k = 1.038                   #Thermal conductivity of meat, W/(m.K)\n",
      "a = 0.0635                  #Thickness of beef slab, m\n",
      "Tf = 270.4                  #Initial meat temperature, deg C\n",
      "T1 = 244.3                  #Uniform air blast temeperature, K\n",
      "h = 17.0                    #Convective heat Transfer coefficient, W/(m2.K)\n",
      "Lambdafw = 335000           #Latent heat of fusion of for Water, J/kg\n",
      "\n",
      "#Calculations\n",
      "\n",
      "Lambdameat = 0.75*Lambdafw\n",
      "t = Lambdameat*rho/(Tf-T1)*(a/(2*h)+a**2/(8*k))\n",
      "\n",
      "#Results\n",
      "print \"Latent heat of freezing of meat:\", round(Lambdameat/1000,1), \"kJ/kg\"\n",
      "print 'Time required for freezing:%4.3e s OR %3.2f'%(t,t/3600)"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Latent heat of freezing of meat: 251.3 kJ/kg\n",
        "Time required for freezing:2.394e+04 s OR 6.65\n"
       ]
      }
     ],
     "prompt_number": 33
    }
   ],
   "metadata": {}
  }
 ]
}