1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
|
{
"metadata": {
"name": "Chapter 2"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": "PHOTOGRAPHIC SURVEYING"
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": "Example 2.1, Page 215"
},
{
"cell_type": "code",
"collapsed": false,
"input": "#Finding azimuth of a,b,c\n\n# Initialization of Variable\nfrom math import pi\nfrom math import atan\nf =120.80 # focal length\na = -35.52 # elevation of A\nb =8.48 # elevation of B\nc =48.26 # elevation of C\n\n#calculation\nalphaa = atan (a/f);\nalphab = atan (b/f);\nalphac = atan (c/f);\nphi =(354+30/60) *pi /180; # azimuth o f camera\nphia =phi - alphaa -360* pi /180; # azimuth o f a\nphib = phia + alphab; # azimuth o f b\nphic = phia + alphac ; # azimuth o f c\n\n#result\nprint \" azimuth of a in ( degrees ) \",round(phia /pi *180,2)\nprint \" azimuth of b in ( degrees ) \",round(phib /pi *180,2)\nprint \" azimuth of c in ( degrees ) \",round(phic /pi *180,2)",
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": " azimuth of a in ( degrees ) 10.39\n azimuth of b in ( degrees ) 14.4\n azimuth of c in ( degrees ) 32.16\n"
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": "Example 2.2,Page 216"
},
{
"cell_type": "code",
"collapsed": false,
"input": "#Finding distance AP and AQ and reduced elevation of A\n\n#initialisation of variable\nfrom math import pi\nfrom math import atan,sin,sqrt\nf =150.0; # focal length of camera\nap =20.2 # elevation of a from p\naa1 =16.4; # distace to the right\naq =35.2 # elevation of a from q\nPQ =100.0; # distace of PQ\nRL =126.845; # r educed level of instrument\n\n#calculation\nalphap = atan (ap/f);\nalphaq = atan (aq/f);\nP=pi /3- alphap ; # angle P\nQ =40* pi /180 - alphaq ; # angle Q\nA=pi -P-Q; # angle A;\nAP=PQ* sin (Q)/sin(A);\nAQ=PQ* sin (P)/sin(A);\nPa1 = sqrt (ap **2+ f **2) ;\nAA1 = aa1 *AP/ Pa1 ;\nRLa =RL+AA1; # reduced level of A\n\n#result\nprint \" distance of AP (m) \",round(AP,2);\nprint \"distance of AQ (m) \",round(AQ,2);\nprint \" reduced level of A in (M) \",round(RLa,2)",
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": " distance of AP (m) 45.9\ndistance of AQ (m) 80.6\n reduced level of A in (M) 131.82\n"
}
],
"prompt_number": 2
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": "Example 2.3,Page 218"
},
{
"cell_type": "code",
"collapsed": false,
"input": "#finding focal length\n\n#initialisation of variable\nfrom math import pi,tan,sqrt,sin\ntheta =(44+30/60) *pi /180; # angle b/w two points\nx1 =68.24; #distance of 1st point\nx2 =58.48; #distance of 2nd point\n\n#calculation\nf=( x1+x2)/ tan ( theta ) /2+ sqrt (( x1+x2) **2/4/( tan ( theta ))\n**2+ x1*x2);\n\n#result\nprint \" focal length of lens in (mm) \",round(f,2);",
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": " focal length of lens in (mm) 156.69\n"
}
],
"prompt_number": 3
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": "Example 2.4, Page 240"
},
{
"cell_type": "code",
"collapsed": false,
"input": "#finding representative fraction\n\n#initialisation of variable\nfrom math import pi,tan,sqrt,sin\n# part 1\n\nH =1200.0;#altitude\nh =80.0; #elevation of hill\nf =15.0/100.0;\n\n#calculation\nR80 =f/(H-h);\nprint \" representative fraction of hill is ( time s) \",round(R80,5);\n\n# part 2\n#initialisation of variable\nh =300.0; #elevation of hill\n\n#calculation\nR300 =f/(H-h);\n\n#result\nprint \" representative fraction of hill is ( time s) \",round(R300,5) ;",
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": " representative fraction of hill is ( time s) 0.00013\n representative fraction of hill is ( time s) 0.00017\n"
}
],
"prompt_number": 4
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": "Example 2.5,Page 240"
},
{
"cell_type": "code",
"collapsed": false,
"input": "#finding height above sea level\n\n#initialisation of variable\nfrom math import pi,tan,sqrt,sin\nR =1.0/8000.0;\nh =1500.0;\nf =20.0/100.0;\n\n#calculation\nH=h+f/R;\n\n#result\nprint \" height above sea level in (m) \",round(H,3);",
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": " height above sea level in (m) 3100.0\n"
}
],
"prompt_number": 5
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": "Example 2.6,Page 241"
},
{
"cell_type": "code",
"collapsed": false,
"input": "#finding height above sea level\n\n#initialisation of variable\nfrom math import pi,tan,sqrt,sin\nh =500.0; #elevation of point\nf =20.0/100.0; # focal length\nv =8.65/100.0; # vertical distance of photograph\nho =2000.0; # horizontal distance of photograph\nR=v/ho; # representative fraction\nh1 =800;\n\n#calculation\nH=h+f/R;\nS=(H-h1)/f /100; # scale of photograph\n\nprint \" height above sea level in (m) \",round(H,2);\nprint \" 1cm in photograph represents centimetres \",round(S,3)",
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": " height above sea level in (m) 5124.28\n 1cm in photograph represents centimetres 216.214\n"
}
],
"prompt_number": 6
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": "Example 2.7, Page 241"
},
{
"cell_type": "code",
"collapsed": false,
"input": "#finding height above sea level\n\n#initialisation of variable\nfrom math import pi,tan,sqrt,sin\nm =1.0/50000.0; #map scale\npd =10.16; # photo distance\nmd =2.54; #map distance\nf =16.0/100.0;\nh =200;\n\n#calculation\nR=pd/md*m; # representative fraction\nH=h+f/R;\n\n#result\nprint \" height above sea level in (m) \",round(H,3)",
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": " height above sea level in (m) 2200.0\n"
}
],
"prompt_number": 7
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": "Example 2.8,Page 242"
},
{
"cell_type": "code",
"collapsed": false,
"input": "#finding distance between A and B\n\n#initialisation of variable\nfrom math import pi,tan,sqrt,sin\nf =20 # f o c a l l e n g t h\nxa =2.65; # x coordinate of a\nxb = -1.92; # x coordinate of b\nya =1.36; # x coordinate of a\nyb =3.65; # y coordinate of b\nH =2500.0;\nha =500.0; # elevation of a\nhb =300.0; # elevation of b\n\n#calculation\nXa =(H-ha)/f*xa;\nXb =(H-hb)/f*xb;\nYa =(H-ha)/f*ya;\nYb =(H-hb)/f*yb;\nAB= sqrt ((Xa -Xb) **2+( Ya -Yb)**2);\n\n#result\nprint \" distance between A & B in (m) \",round(AB,3)",
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": " distance between A & B in (m) 545.213\n"
}
],
"prompt_number": 8
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": "Example 2.9,Page 243"
},
{
"cell_type": "code",
"collapsed": false,
"input": "#finding flying distance between A and B\n\n#initialisation of variable\nfrom math import pi,tan,sqrt,sin\nf =20.0 # focal length\nxa =2.65; # x coordinate of a\nxb = -1.92; # x coordinate of b\nya =1.36; # y coordinate of a\nyb =3.65; # y coordinate of b\nha =500.0; # elevation of a\nhb =300.0; # elevation of b\nABg =545.0;\nab =5.112;\n\n#calculation\nhab =ha /2+ hb /2;\nHapp =hab+ ABg *f/ab\nXa =( Happ -ha)/f*xa;\nXb =( Happ -hb)/f*xb;\nYa =( Happ -ha)/f*ya;\nYb =( Happ -hb)/f*yb;\nAB= sqrt ((Xa -Xb) **2+( Ya -Yb)**2);\nHact =ABg/AB *( Happ - hab )+ hab ;\n\n#result\nprint \" actual flying height of A & B in (m) \",round(Hact,3);",
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": " actual flying height of A & B in (m) 2499.706\n"
}
],
"prompt_number": 9
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": "Example 2.10,Page 243"
},
{
"cell_type": "code",
"collapsed": false,
"input": "#finding relief displacement\n\n#initialisation of variable\nfrom math import pi,tan,sqrt,sin\n\nf =20.0/100.0;\nSd =1.0/10000.0;\nh =250.0; # elevation\nr =6.44;\n\n#calculation\nH=f/Sd;\nd=r*h/H;\n\n#result\nprint \"relief displacement of the point in ( cm) \",round(d,3)",
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": "relief displacement of the point in ( cm) 0.805\n"
}
],
"prompt_number": 10
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": "Example 2.11,Page 244"
},
{
"cell_type": "code",
"collapsed": false,
"input": "#finding relief distance\n\n#initialisation of variable\nfrom math import pi,tan,sqrt,sin\nh =50.0; # elevation\nH =2500.0 -1250.0;\nr =6.35;\n\n#calculation\nd=r*h/H;\n\n#result\nprint \"releif displacement of the point in ( cm) \",round(d,3)",
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": "releif displacement of the point in ( cm) 0.254\n"
}
],
"prompt_number": 11
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": "Example 2.12,Page 244"
},
{
"cell_type": "code",
"collapsed": false,
"input": "#finding height of tower\n\n#initialisation of variable\nfrom math import pi,tan,sqrt,sin\nf =20.0/100.0; # focal length\nl =250; #length of line\nlp =8.5/100.0; #length of line in photograph\n\n#calculation\nH=l*f/lp; # height of camera above datum\nr =6.46; # distace of image of top o f the towe r\nd =0.46; # releif displacement\nh=d*H/r;\n\n#result\nprint \" height of tower above its base in (m) \",round(h,2)",
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": "41.89 height of tower above its base in (m) \n"
}
],
"prompt_number": 28
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": "Example 2.13,Page 267"
},
{
"cell_type": "code",
"collapsed": false,
"input": "#finding no. of photographs\n\n#initialisation of variable\nfrom math import pi,tan,sqrt,sin\nl =20/100; # length of photograph\nw =20/100; # breadth of photograph\nPl =0.6; # longitudinal lap\nPw =0.3; # side lap\ns =100*20;\n\n#calculation\nL=(1 - Pl)*s;\nW=(1 - Pw)*s;\nAr=L*W /1000/1000;\nN =100/ Ar;\nA= round (N);\n\n#result\nprint \"no . o f photographs to be taken \",A+1;\n",
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": "no . o f photographs to be taken 90.0\n"
}
],
"prompt_number": 12
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": "Example 2.14,Page 267"
},
{
"cell_type": "code",
"collapsed": false,
"input": "#finding no. of photographs\n\n#initialisation of variable\nfrom math import pi,tan,sqrt,sin\nPl =0.6; # longitudinal lap\nPw =0.3; # side lap\nL1 =10000.0;\ns =100.0*20.0;\n\n#calculation\nL2=L1;\nN1=L1 /((1 - Pl)*s) +1;\nA1= round (N1);\nif N1 -A1 <0:\n N1=A1;\nelse :\n N1=A1+1;\n\nN2=L2 /((1 - Pw)*s) +1;\nA2= round (N2);\nif N2 -A2 <0:\n N2=A2\nelse :\n N2=A2+1;\n\nN=N1*N2;\n\n#result\nprint \"no . of photographs to be taken \",N;",
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": "no . of photographs to be taken 126.0\n"
}
],
"prompt_number": 13
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": "Example 2.15,Page 268"
},
{
"cell_type": "code",
"collapsed": false,
"input": "#finding no. of photographs\n\n#initialisation of variable\nfrom math import pi,tan,sqrt,sin\nPl =0.6; # longitudinal lap\nPw =0.3; # side lap\nL1 =12500.0;\ns =100.0*20.0;\nL2 =8000.0;\n\n#calculation\nN1=L1 /((1 - Pl)*s) +1;\nA1= round (N1);\nif N1 -A1 <0:\n N1=A1;\nelse :\n N1=A1+1;\n\nN2=L2 /((1 - Pw)*s) +1;\nA2= round (N2);\nif N2 -A2 <0:\n N2=A2\nelse :\n N2=A2+1;\n\nN=N1*N2;\n\n#result\nprint \"no . of photographs to be taken \",N;",
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": "no . of photographs to be taken 119.0\n"
}
],
"prompt_number": 14
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": "Example 2.16,Page 268"
},
{
"cell_type": "code",
"collapsed": false,
"input": "#finding no. of photographs,height of datum\n\n#initialisation of variable\n#part1\nfrom math import pi,tan,sqrt,sin\nf =30.0/100.0; # focal length\nh =400.0; #elevation of datum\nr =12000.0; # ratio\ns =120.0*20.0;\nL2 =24000.0;\nL1 =30000.0;\nPl =0.6; # longitudinal lap\nPw =0.3; # side lap\n\n#calculation\nH=h+r*f;\n\n#result\nprint \" height above datum in (m) \",round(H,2);\n\n# part 2\n#calculation\nW=(1 - Pw)*s;\n\n#result\nprint \" ground width covered in each photograph (m) \",round(W,2);\n\n# part 3\nN2=L2 /((1 - Pw)*s) +1;\nA2= round (N2);\nif N2 -A2 <0:\n N2=A2\nelse :\n N2=A2+1;\n\n#result\nprint \"no . of flights required \",N2;\n\n#part 4-9\n#calculation\nAsf =L2 /(N2 -1) ; # actual spacing between flights\nSfl = Asf /600; # spacing of flight lines\ngd =(1 - Pl)*s; # ground distance\nEi=gd /55.5; # exposure interval\nEi= round (Ei);\nAgs =55.56* Ei;# adgusted ground distance\nN1=L1/ Ags +1;\nA1= round (N1);\nif N1 -A1 <0:\n N1=A1;\nelse :\n N1=A1+1;\nN=N1*N2;\n\n#result\nprint \"actual spacing in m\",Asf\nprint \"spacing of flight lines in cm\",round(Sfl,2)\nprint \"exposure interval in s\",Ei\nprint \"adjusted ground distance in m\",round(Ags)\nprint \"no . of photographs to be taken per flight line\",N1\nprint \"no . of photographs to be taken \",N;",
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": " height above datum in (m) 4000.0\n ground width covered in each photograph (m) 1680.0\nno . of flights required 16.0\nactual spacing in m 1600.0\nspacing of flight lines in cm 2.67\nexposure interval in s 17.0\nadjusted ground distance in m 945.0\nno . of photographs to be taken per flight line 33.0\nno . of photographs to be taken 528.0\n"
}
],
"prompt_number": 15
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": "Example 2.17,Page 301"
},
{
"cell_type": "code",
"collapsed": false,
"input": "#finding error in height \n\n#initialisation of variable\nfrom math import pi,tan,sqrt,sin\nf =150.0/1000.0; # focal length\nr =20000.0; #ratio\nPl =0.6; # longitudinal lap\nl =23.0/100.0; # l e n g t h\nw =23.0/100.0; # width\n\n#calculation\nB=(1 - Pl)*l*r; # base length\nH=f*r;\nh =0;\ndh =(H-h) **2/ B/f *0.1/1000;\n\n#result\nprint \" error in height in (m) \",round(dh,3)",
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": " error in height in (m) 3.261\n"
}
],
"prompt_number": 16
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": "Example 2.18,Page 302"
},
{
"cell_type": "code",
"collapsed": false,
"input": "#finding parallax height of the chimney\n\n#initialisation of variable\nfrom math import pi,tan,sqrt,sin\nH =600.0;\nf =150.0/1000.0;\nb =6.375/100.0;\nh1 =0.0;\nh2 =120.0; # height of chimney\n\n#calculation\ns=H/f;\nB=s*b; # datum elevation\np1=B*f *1000/(H-h1);\np2=B*f *1000/(H-h2);\ndelp =p2 -p1;\ndelh =H* delp /1000/( b+ delp /1000) ;\n\n#result\nprint \" parallax height of the chimney in (m)\",round(delh,3)",
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": " parallax height of the chimney in (m) 120.0\n"
}
],
"prompt_number": 17
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": "Example 2.19,Page 303"
},
{
"cell_type": "code",
"collapsed": false,
"input": "#finding difference in elevation \n\n#initialisation of variable\nfrom math import pi,tan,sqrt,sin\nB =200.0;\nf =120.0;\np2 =52.52; # parallax for top pole\np1 =48.27; # parallax for bottom pole\n\n#calculation\ndelh =(p2 -p1)/p2/p1*B*f;\n\n#result\nprint \" difference in elevation of two points in (m) \",round(delh,3)\nprint \"there is again a miscalculation in the step of calculating elevation thus there is a change in the answer\"",
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": " difference in elevation of two points in (m) 40.234\nthere is again a miscalculation in the step of calculating elevation thus there is a change in the answer\n"
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
"source": "Example 2.20,Page 303"
},
{
"cell_type": "code",
"collapsed": false,
"input": "#finding difference in elevation \n\n#initialisation of variable\n# part 1\ndelp =1.48/1000.0;\nH =5000.0;\nh =500.0;\nb =90.0/1000.0; #mean principal base\n\n#calculation\ndh =(H-h) **2* delp /((H-h)* delp +b*H);\n\n#result\nprint \" difference in height between two points in(m) \",round(dh,3)\n\n# part 2\n#variable decleration\ndelp =15.5/1000.0;\n\n#calculation\ndh =(H-h) **2* delp /((H-h)* delp +b*H);\n\n#result\nprint \" difference in height between two points in(m) \",round(dh,3)",
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": " difference in height between two points in(m) 65.629\n difference in height between two points in(m) 603.896\n"
}
],
"prompt_number": 14
},
{
"cell_type": "code",
"collapsed": false,
"input": "",
"language": "python",
"metadata": {},
"outputs": []
}
],
"metadata": {}
}
]
}
|