summaryrefslogtreecommitdiff
path: root/Strength_of_Materials_by_Dr.R.K.Bansal/chapter4.ipynb
blob: 1bf2c1bedf3f01d0f5fe0e35fb2f213d7873e9e5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
{
 "metadata": {
  "name": "",
  "signature": "sha256:08a19915ea28ff1c8eacb09b86820e50e5a6bce0905af69520d3a90c0261cd74"
 },
 "nbformat": 3,
 "nbformat_minor": 0,
 "worksheets": [
  {
   "cells": [
    {
     "cell_type": "heading",
     "level": 1,
     "metadata": {},
     "source": [
      "Chapter 4:Strain Energy and Impact Loading"
     ]
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Problem 4.1,page no.145"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Given\n",
      "#Variable declaration\n",
      "P=60*10**3    #Load in N\n",
      "d=4*10        #diameter in mm\n",
      "L=5*10**3     #Length of rod in mm\n",
      "E=2e5         #Young's Modulus in N/sq.mm\n",
      "\n",
      "\n",
      "#Calculation\n",
      "A=(math.pi/4)*d**2           #Area in sq.mm\n",
      "V=int(A*L)                   #Volume of rod in cubic.mm\n",
      "#case (ii):stress in the rod\n",
      "sigma=round(P/A,3)           #stress in N/sq.mm\n",
      "\n",
      "#case (i):stretch in the rod\n",
      "x=round((sigma/E)*L,2)       #stretch or extension in mm\n",
      "\n",
      "#case (iii):strain energy absorbed by the rod\n",
      "U=round((sigma**2/(2*E)*V),-1)*1e-3     #strain energy absorbed by the rod in Nm\n",
      "\n",
      "\n",
      "#Result\n",
      "print \"stress in the rod =\",sigma,\"N/mm^2\"\n",
      "print \"stretch in the rod =\",x,\"mm\"\n",
      "print \"strain energy absorbed by the rod =\",U,\"N-m\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "stress in the rod = 47.746 N/mm^2\n",
        "stretch in the rod = 1.19 mm\n",
        "strain energy absorbed by the rod = 35.81 N-m\n"
       ]
      }
     ],
     "prompt_number": 1
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Problem 4.3,page no.146"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Given\n",
      "#Variable declaration\n",
      "A=10*10**2         #Area of bar in sq.mm\n",
      "L=3*10**3          #Length of bar in mm\n",
      "x=1.5              #Extension due to suddenly applied load in mm\n",
      "E=2e5              #Young's Modulus in N/sq.mm\n",
      "\n",
      "#Calculation\n",
      "sigma=int(x*E/L)            #Instantaneous stress due to sudden load in N/sq.mm     \n",
      "P=int((sigma*A)/2*1e-3)     #Suddenly applied load in kN\n",
      "\n",
      "#Result\n",
      "print \"Instantaneous stress produced by a sudden load =\",sigma,\"N/mm^2\"\n",
      "print \"Suddenly applied load =\",P,\"kN\" "
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Instantaneous stress produced by a sudden load = 100 N/mm^2\n",
        "Suddenly applied load = 50 kN\n"
       ]
      }
     ],
     "prompt_number": 2
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Problem 4.4,page no.147"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Given\n",
      "#Variable declaration\n",
      "L=2*10**3            #Length in mm\n",
      "d=50                 #Diameter in mm\n",
      "P=100*10**3          #Suddenly applied load in N\n",
      "E=200e3              #Young's Modulus in N/sq.mm\n",
      "\n",
      "#Calculation\n",
      "A=(math.pi/4)*d**2        #Area in sq.mm\n",
      "sigma=round(2*P/A,2)      #Instantaneous stress induced in N/sq.mm\n",
      "dL=(sigma*L)/E            #Elongation in mm\n",
      "\n",
      "#Result\n",
      "print \"Instantaneous stress induced =\",sigma,\"N/mm^2\"\n",
      "print \"Instantaneous elongation =\",dL,\"mm\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Instantaneous stress induced = 101.86 N/mm^2\n",
        "Instantaneous elongation = 1.0186 mm\n"
       ]
      }
     ],
     "prompt_number": 5
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Problem 4.5,page no.147"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Given\n",
      "#Variable declaration\n",
      "A=700              #Area in sq.mm\n",
      "L=1.5*10**3        #Length of a metal bar in mm\n",
      "sigma=160          #Stress at elastic limit in N/sq.mm\n",
      "E=2e5              #Young's Modulus in N/sq.mm\n",
      "\n",
      "\n",
      "#Calculation\n",
      "V=A*L                           #Volume of bar in sq.mm\n",
      "Pr=(sigma**2/(2*E)*V)*1e-3      #Proof resilience in N-m\n",
      "P=int(sigma*A/2*1e-3)           #Suddenly applied load in kN\n",
      "P1=int(sigma*A*1e-3)            #gradually applied load in kN\n",
      "\n",
      "#Result\n",
      "print \"Proof resilience =\",Pr,\"N-m\"\n",
      "print \"Suddenly applied load =\",P,\"kN\"\n",
      "print \"Gradually applied load =\",P1,\"kN\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Proof resilience = 67.2 N-m\n",
        "Suddenly applied load = 56 kN\n",
        "Gradually applied load = 112 kN\n"
       ]
      }
     ],
     "prompt_number": 4
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Problem 4.9,page no.154"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Given\n",
      "#Variable declaration\n",
      "P=10*10**3             #Falling weight in N\n",
      "h=30                   #Falling height in mm\n",
      "L=4*10**3              #Length of bar in mm\n",
      "A=1000                 #Area of bar in sq.m\n",
      "E=2.1e5                #Young's modulus in N/sq.mm\n",
      "\n",
      "#Calculation\n",
      "sigma=float(str((P/A)*(1+(math.sqrt(1+((2*E*A*h)/(P*L))))))[:5])\n",
      "delL=round(sigma*L/E,3)\n",
      "\n",
      "#Result                           \n",
      "print \"Instantaneous elongation due to falling weight =\",delL,\"mm\"\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Instantaneous elongation due to falling weight = 3.575 mm\n"
       ]
      }
     ],
     "prompt_number": 7
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Problem 4.10,page no.155"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "#Given\n",
      "#Variable declaration\n",
      "P=100           #Impact load in N\n",
      "h=2*10          #Height in mm\n",
      "L=1.5*1000      #Length of bar in mm\n",
      "A=1.5*100       #Area of bar in sq.mm\n",
      "E=2e5           #Modulus of elasticity in N/sq.mm\n",
      "\n",
      "#Calculation\n",
      "V=A*L           #Volume in mm^3\n",
      "#case(i):Maximum instantaneous stress induced in the vertical bar\n",
      "sigma=round((P/A)*(1+(math.sqrt(1+((2*E*A*h)/(P*L))))),2)\n",
      "#case(ii):Maximum instantaneous elongation\n",
      "delL=round(sigma*L/E,3)\n",
      "#case(iii):Strain energy stored in the vertical rod\n",
      "U=round(sigma**2/(2*E)*V*1e-3,3)\n",
      "\n",
      "#Result\n",
      "print \"NOTE:The answer in the book for instantaneous stress is incorrect.The correct answer is,\"\n",
      "print \"Maximum instantaneous stress =\",sigma,\"N/mm^2\"\n",
      "print \"Maximum instantaneous elongation =\",delL,\"mm\"\n",
      "print \"Strain energy =\",U,\"N-m\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "NOTE:The answer in the book for instantaneous stress is incorrect.The correct answer is,\n",
        "Maximum instantaneous stress = 60.3 N/mm^2\n",
        "Maximum instantaneous elongation = 0.452 mm\n",
        "Strain energy = 2.045 N-m\n"
       ]
      }
     ],
     "prompt_number": 12
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Problem 4.11,page no.155"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "#Given\n",
      "#Variable declaration\n",
      "delL=2.1          #Instantaneous extension in mm\n",
      "L=3*10**3         #Length of bar in mm\n",
      "A=5*100           #Area of bar in mm\n",
      "h=4*10            #Height in mm\n",
      "E=2e5             #Modulus of elasticity in N/sq.mm\n",
      "\n",
      "#Calculation\n",
      "V=A*L                           #Volume of bar in mm^3\n",
      "\n",
      "#case(i):Instantaneous stress induced in the vertical bar\n",
      "sigma=int(E*delL/L)         \n",
      "\n",
      "#case(ii):Unknown weight\n",
      "P=round(((sigma**2)/(2*E)*V)/(h+delL),1)    \n",
      "\n",
      "#Result\n",
      "print\"Instantaneous stress =\",sigma,\"N/mm^2\"\n",
      "print\"Unknown weight =\",P,\"N\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Instantaneous stress = 140 N/mm^2\n",
        "Unknown weight = 1745.8 N\n"
       ]
      }
     ],
     "prompt_number": 1
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Problem 4.13,page no.157"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "#Given\n",
      "#Variable declaration\n",
      "d=12        #Diameter of bar in mm              \n",
      "delL=3      #Increase in length in mm\n",
      "W=8000      #Steady load in N\n",
      "P=800       #Falling weight in N\n",
      "h=8*10      #Vertical distance in mm\n",
      "E=2e5       #Young's modulus in N/sq.mm\n",
      "\n",
      "#Calculation\n",
      "A=round((math.pi/4)*d**2,1)           #Area of bar in sq.mm\n",
      "L=round(E*A*delL/W,1)                 #Length of the bar in mm\n",
      "sigma=round(round(P/A,4)*float(str(1+(math.sqrt(1+round((2*E*A*h)/(P*L),2))))[:7]),4)  \n",
      "sigma=float(str(sigma)[:7])           #Stress produced by the falling weight in N/sq.mm\n",
      "\n",
      "#Result\n",
      "print \"Stress produced by the falling weight =\",sigma,\"N/mm^2\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Stress produced by the falling weight = 170.578 N/mm^2\n"
       ]
      }
     ],
     "prompt_number": 9
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Problem 4.14,page no.158"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "#Given\n",
      "#Variable declaration\n",
      "d=12.5           #Diameter of the rod in mm\n",
      "delL=3.2         #Increase in length in mm\n",
      "W=10*1000        #Steady load in N\n",
      "P=700            #Falling load in N\n",
      "h=75             #Falling height in mm\n",
      "E=2.1e5          #Young's modulus in N/sq.mm\n",
      "\n",
      "#Calculation\n",
      "A=round((math.pi/4)*d**2,2)                                 #Area of rod in sq.mm   \n",
      "L=round(E*A*delL/W,1)                                       #Length of the rod in mm\n",
      "sigma=round((P/A)*(1+(math.sqrt(1+((2*E*A*h)/(P*L))))),2)   #Stress produced by the falling weight in N/mm^2\n",
      "\n",
      "#Result\n",
      "print \"NOTE:The given answer for stress is wrong.The correct answer is,\"\n",
      "print \"Stress = %.2f N/mm^2\"%sigma"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "NOTE:The given answer for stress is wrong.The correct answer is,\n",
        "Stress = 153.42 N/mm^2\n"
       ]
      }
     ],
     "prompt_number": 10
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Problem 4.15,page no.159"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Given\n",
      "#Variable declaration\n",
      "L=1.82*1000      #Length of rod in mm\n",
      "h1=30            #Height through which load falls in mm\n",
      "h2=47.5          #Fallen height in mm\n",
      "sigma=157        #Maximum stress induced in N/sq.mm\n",
      "E=2.1e5          #Young's modulus in N/sq.mm\n",
      "\n",
      "#Calculation\n",
      "U=sigma**2/(2*E)      #Strain energy stored in the rod in N-m\n",
      "delL=sigma*L/E        #Extension of the rod in mm\n",
      "Tot_dist=h1+delL      #Total distance in mm\n",
      "\n",
      "#case(i):Stress induced in the rod if the load is applied gradually\n",
      "sigma1=round((U/Tot_dist)*L,1)\n",
      "\n",
      "#case(ii):Maximum stress if the load had fallen from a height of 47.5 mm\n",
      "sigma2=round((sigma1)*(1+(math.sqrt(1+((2*E*h2)/(sigma1*L))))),2)\n",
      "\n",
      "#Result\n",
      "print \"Stress induced in the rod = %.1f N/mm^2\"%sigma1\n",
      "print \"NOTE:The given answer for stress(2nd case) in the book is wrong.The correct answer is,\"\n",
      "print \"Maximum stress if the load has fallen = %.2f N/mm^2\"%sigma2"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Stress induced in the rod = 3.4 N/mm^2\n",
        "NOTE:The given answer for stress(2nd case) in the book is wrong.The correct answer is,\n",
        "Maximum stress if the load has fallen = 196.48 N/mm^2\n"
       ]
      }
     ],
     "prompt_number": 1
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Problem 4.17,page no.162"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Given\n",
      "#Variable declaration\n",
      "L=4*10**3     #Length of bar in mm\n",
      "A=2000        #Area of bar in sq.mm\n",
      "P1=3000       #Falling weight in N(for 1st case)\n",
      "h1=20*10      #Height in mm(for 1st case)\n",
      "P2=30*1000    #Falling weight in N(for 2nd case)\n",
      "h2=2*10       #Height in mm(for 2nd case)\n",
      "E=2e5         #Young's modulus in N/sq.mm\n",
      "\n",
      "#Calculation\n",
      "V=A*L             #Volume of bar in mm^3\n",
      "\n",
      "#case(i):Maximum stress when a 3000N weight falls through a height of 20cm\n",
      "sigma1=round(((math.sqrt((2*E*P1*h1)/(A*L)))),1)\n",
      "\n",
      "#case(ii):Maximum stress when a 30kN weight falls through a height of 2cm\n",
      "sigma2=round((P2/A)*(1+(math.sqrt(1+((2*E*A*h2)/(P2*L))))),2)\n",
      "\n",
      "#Result\n",
      "print\"Maximum stress induced(when a weight of 3000N falls through a height of 20cm)=\",sigma1,\"N/mm^2\"\n",
      "print\"Maximum stress induced(when a weight of 30kN falls through a height of 2cm)=\",sigma2,\"N/mm^2\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Maximum stress induced(when a weight of 3000N falls through a height of 20cm)= 173.2 N/mm^2\n",
        "Maximum stress induced(when a weight of 30kN falls through a height of 2cm)= 188.85 N/mm^2\n"
       ]
      }
     ],
     "prompt_number": 2
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Problem 4.18,page no.163"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "from __future__ import division\n",
      "import math\n",
      "\n",
      "#Given \n",
      "#Variable declaration\n",
      "A=6.25*100     #Area in sq.mm\n",
      "W=10*10**3     #Load in N\n",
      "V=(40/60)      #Velocity in m/s\n",
      "L=10000        #Length of chain unwound in mm\n",
      "E=2.1e5        #Young's modulus in N/sq.mm\n",
      "g=9.81         #acceleration due to gravity\n",
      "\n",
      "#Calculation\n",
      "K_E=round(((W/g)*(V**2))/2,1)*1e3          #K.E of the crane in N mm\n",
      "sigma=round(math.sqrt(K_E*E*2/(A*L)),2)    #Stress induced in the chain in N/sq.mm\n",
      "\n",
      "#Result\n",
      "print \"Stress induced in the chain due to sudden stoppage =\",sigma,\"N/mm^2\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Stress induced in the chain due to sudden stoppage = 123.37 N/mm^2\n"
       ]
      }
     ],
     "prompt_number": 3
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Problem 4.19,page no.164"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Given\n",
      "#Variable declaration\n",
      "W=60*10**3      #Weight in N\n",
      "V=1             #Velocity in m/s\n",
      "L=15*10**3      #Free length in mm\n",
      "A=25*100        #Area in sq.mm\n",
      "E=2e5           #Young's modulus in N/sq.mm\n",
      "g=9.81          #acceleration due to gravity\n",
      "\n",
      "#Calculation\n",
      "K_E=((W/g)*(V**2))/2*1e3                  #Kinetic Energy of the cage in N mm\n",
      "sigma=round(math.sqrt(K_E*E*2/(A*L)),2)   #Maximum stress in N/sq.mm\n",
      "\n",
      "#Result\n",
      "print\"Maximum stress produced in the rope =\",sigma,\"N/mm^2\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Maximum stress produced in the rope = 180.61 N/mm^2\n"
       ]
      }
     ],
     "prompt_number": 4
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Problem 4.20,page no.166"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Given \n",
      "#Variable declaration\n",
      "tau=50       #Shear stress in N/sq.mm\n",
      "C=8e4        #Modulus of rigidity in N/sq.mm\n",
      "\n",
      "#Calculation\n",
      "ste=(tau**2)/(2*C)    #Strain energy per unit volume in N/sq.mm\n",
      "\n",
      "#Result\n",
      "print\"Strain energy per unit volume =\",ste,\"N/mm^2\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Strain energy per unit volume = 0.015625 N/mm^2\n"
       ]
      }
     ],
     "prompt_number": 5
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [],
     "language": "python",
     "metadata": {},
     "outputs": []
    }
   ],
   "metadata": {}
  }
 ]
}