1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
|
{
"metadata": {
"name": "",
"signature": "sha256:a847652c7729f38097f73bfa8bb0c1fa136b92fa8a1c23926acab13f8bc56911"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Chapter 2:Elastic Constants"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Problem 2.1,page no.60"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from __future__ import division\n",
"import math\n",
"\n",
"#Given\n",
"#Variable declaration\n",
"L=4*(10**3) #Length of the bar in mm\n",
"b=30 #Breadth of the bar in mm\n",
"t=20 #Thickness of the bar in mm\n",
"P=30*(10**3) #Axial pull in N\n",
"E=2e5 #Young's modulus in N/sq.mm\n",
"mu=0.3 #Poisson's ratio\n",
"\n",
"#Calculation\n",
"A=b*t #Area of cross-section in sq.mm\n",
"long_strain=P/(A*E) #Longitudinal strain \n",
"delL=long_strain*L #Change in length in mm\n",
"lat_strain=mu*long_strain #Lateral strain\n",
"delb=b*lat_strain #Change in breadth in mm\n",
"delt=t*lat_strain #Change in thickness in mm\n",
"\n",
"#Result\n",
"print \"change in length =\",delL,\"mm\"\n",
"print \"change in breadth =\",delb,\"mm\"\n",
"print \"change in thickness =\",delt,\"mm\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"change in length = 1.0 mm\n",
"change in breadth = 0.00225 mm\n",
"change in thickness = 0.0015 mm\n"
]
}
],
"prompt_number": 2
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Problem 2.2,page no.61"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Given\n",
"#Variable declaration\n",
"L=30 #Length in cm\n",
"b=4 #Breadth in cm\n",
"d=4 #Depth in cm\n",
"P=400*(10**3) #Axial compressive load in N\n",
"delL=0.075 #Decrease in length in cm\n",
"delb=0.003 #Increase in breadth in cm\n",
"\n",
"#Calculation\n",
"A=(b*d)*1e2 #Area of cross-section in sq.mm\n",
"long_strain=delL/L #Longitudinal strain\n",
"lat_strain=delb/b #Lateral strain\n",
"mu=lat_strain/long_strain #Poisson's ratio\n",
"E=int((P)/(A*long_strain)) #Young's modulus\n",
"\n",
"#Result\n",
"print \"Poisson's ratio =\",mu\n",
"print \"Young's modulus = %.e N/mm^2\"%E\n",
"\n",
"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Poisson's ratio = 0.3\n",
"Young's modulus = 1e+05 N/mm^2\n"
]
}
],
"prompt_number": 2
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Problem 2.3,page no.63"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Given\n",
"#Variable declaration\n",
"L=4000 #Length of the bar in mm\n",
"b=30 #Breadth of the bar in mm\n",
"t=20 #Thickness of the bar in mm\n",
"mu=0.3 #Poisson's ratio\n",
"delL=1.0 #delL from problem 2.1\n",
"\n",
"#Calculation\n",
"ev=(delL/L)*(1-2*mu) #Volumetric strain \n",
"V=L*b*t #Original volume in mm^3\n",
"delV=ev*V #Change in volume in mm^3\n",
"F=int(V+delV) #Final volume in mm^3\n",
"\n",
"#Result\n",
"print \"Volumetric strain =\",ev\n",
"print \"Final volume =\",F,\"mm^3\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Volumetric strain = 0.0001\n",
"Final volume = 2400240 mm^3\n"
]
}
],
"prompt_number": 3
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Problem 2.4,page no.63"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from __future__ import division\n",
"#Given\n",
"#Variable declaration\n",
"L=300 #Length in mm\n",
"b=50 #Width in mm\n",
"t=40 #Thickness in mm\n",
"P=300*10**3 #Pull in N\n",
"E=2*10**5 #Young's modulus in N/sq.mm\n",
"mu=0.25 #Poisson's ratio\n",
"\n",
"#Calculation\n",
"V=L*b*t #Original volume in mm^3\n",
"Area=b*t #Area in sq.mm \n",
"stress=P/Area #Stress in N/sq.mm \n",
"ev=(stress/E)*(1-2*mu) #Volumetric strain \n",
"delV=int(ev*V) #Change in volume in mm^3 \n",
"\n",
"#Result\n",
"print \"Change in volume =\",delV,\"mm^3\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
" Change in volume = 225 mm^3\n"
]
}
],
"prompt_number": 5
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Problem 2.7,page no.69"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"\n",
"#Given\n",
"#Variable declaration\n",
"L=5*10**3 #Length in mm\n",
"d=30 #Diameter in mm\n",
"P=50*10**3 #Tensile load in N\n",
"E=2e5 #Young's modulus in N/sq.mm\n",
"mu=0.25 #Poisson's ratio\n",
"\n",
"#Calculation\n",
"V=int(round((math.pi*d**2*L)/4,-2)) #Volume in mm^3 \n",
"e=P*4/(math.pi*(d**2)*E) #Strain of length\n",
"delL=round(e*L,3) #Change in length in mm\n",
"lat_strain=round(mu*round(e,7),7) #Lateral strain \n",
"deld=lat_strain*d #Change in diameter in mm\n",
"delV=round(V*(0.0003536-(2*lat_strain)),2) #Change in volume in mm^3\n",
"\n",
"#Result\n",
"print \"Change in length =\",delL,\"mm\"\n",
"print \"Change in diameter =\",deld,\"mm\"\n",
"print \"Change in volume =\",delV,\"mm^3\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Change in length = 1.768 mm\n",
"Change in diameter = 0.002652 mm\n",
"Change in volume = 624.86 mm^3\n"
]
}
],
"prompt_number": 7
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Problem 2.10,page no.79"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Given\n",
"#Variable declaration\n",
"E=1.2e5 #Young's modulus in N/sq.mm\n",
"C=4.8e4 #Modulus of rigidity in N/sq.mm\n",
"\n",
"#Calculation\n",
"mu=(E/(2*C))-1 #Poisson's ratio \n",
"K=int(E/(3*(1-2*mu))) #Bulk modulus in N/sq.mm\n",
"\n",
"#Result\n",
"print \"Poisson's ratio =\",mu\n",
"print \"Bulk modulus = %.0e N/mm^2\"%K\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Poisson's ratio = 0.25\n",
"Bulk modulus = 8e+04 N/mm^2\n"
]
}
],
"prompt_number": 8
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Problem 2.11,page no.79"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Given\n",
"#Variable declaration\n",
"A=8*8 #Area of section in sq.mm\n",
"P=7000 #Axial pull in N\n",
"Ldo=8 #Original Lateral dimension in mm\n",
"Ldc=7.9985 #Changed Lateral dimension in mm\n",
"C=0.8e5 #modulus of rigidity in N/sq.mm\n",
"\n",
"#Calculation\n",
"lat_strain=(Ldo-Ldc)/Ldo #Lateral strain\n",
"sigma=P/A #Axial stress in N/sq.mm\n",
"mu=round(1/((sigma/lat_strain)/(2*C)-1),3) #Poisson's ratio\n",
"E=round((sigma/lat_strain)/((sigma/lat_strain)/(2*C)-1),-1) #Modulus of elasticity in N/sq.mm\n",
"\n",
"#Result\n",
"print \"Poisson's ratio =\",mu\n",
"print \"Modulus of elasticity = %.4e N/mm^2\"%E\n",
"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Poisson's ratio = 0.378\n",
"Modulus of elasticity = 2.2047e+05 N/mm^2\n"
]
}
],
"prompt_number": 9
},
{
"cell_type": "code",
"collapsed": false,
"input": [],
"language": "python",
"metadata": {},
"outputs": []
}
],
"metadata": {}
}
]
}
|