summaryrefslogtreecommitdiff
path: root/Strength_Of_Materials_by_S_S_Bhavikatti/chapter_10.ipynb
blob: ec32f67addfbb7bc0dbed8251d59a15ea32b1714 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
{
 "metadata": {
  "name": "chapter 10.ipynb"
 },
 "nbformat": 3,
 "nbformat_minor": 0,
 "worksheets": [
  {
   "cells": [
    {
     "cell_type": "heading",
     "level": 1,
     "metadata": {},
     "source": [
      "Chapter 10:Theory of Failures"
     ]
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example No.10.10.1,Page No.401"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "import numpy as np\n",
      "\n",
      "#Initilization of Variables\n",
      "\n",
      "P_e=300 #N/mm**2 #Elastic Limit in tension\n",
      "FOS=3  #Factor of safety\n",
      "mu=0.3 #Poissoin's ratio\n",
      "P=12*10**3 #N Pull \n",
      "Q=6*10**3 #N #Shear force\n",
      "\n",
      "#Calculations\n",
      "\n",
      "#Let d be the diameter of the shaft\n",
      "\n",
      "#Direct stress\n",
      "#P_x=P*(pi*4**-1*d**3)**-1\n",
      "#After substituting values and further simplifying we get\n",
      "#P_x=48*10**3\n",
      "\n",
      "#Now shear stress at the centre of bolt\n",
      "#q=4*3**-1*q_av\n",
      "#After substituting values and further simplifying we get\n",
      "#q=32*10**3*(pi*d**2)**-1\n",
      "\n",
      "#Principal stresses are\n",
      "#P1=P_x*2**-1+((P_x*2**-1)**2+q**2)**0.5\n",
      "#After substituting values and further simplifying we get\n",
      "#p1=20371.833*(d**2)**-1\n",
      "\n",
      "#P2=P_x*2**-1-((P_x*2**-1)**2+q**2)**0.5\n",
      "#After substituting values and further simplifying we get\n",
      "#P2=-5092.984*(d**2)**-1\n",
      "\n",
      "#q_max=((P_x*2**-1)**2+q**2)**0.5\n",
      "\n",
      "#From Max Principal stress theory\n",
      "#Permissible stress in Tension\n",
      "P1=100 #N/mm**2 \n",
      "d=(20371.833*P1**-1)**0.5\n",
      "\n",
      "#Max strain theory\n",
      "#e_max=P1*E**-1-mu*P2*E**-1\n",
      "#After substituting values and further simplifying we get\n",
      "#e_max=21899.728*(d**2*E)**-1\n",
      "\n",
      "#According to this theory,the design condition is\n",
      "#e_max=P_e*(E*FOS)**-1\n",
      "#After substituting values and further simplifying we get\n",
      "d2=(21899.728*3*300**-1)**0.5  #mm\n",
      "\n",
      "#Max shear stress theory\n",
      "#e_max=shear stress at elastic*(FOS)**-1\n",
      "#After substituting values and further simplifying we get\n",
      "d3=(12732.421*6*300**-1)**0.5 #mm\n",
      "\n",
      "#Result\n",
      "print\"Diameter of Bolt by:Max Principal stress theory\",round(d,2),\"mm\"\n",
      "print\"                   :Max strain theory\",round(d2,2),\"mm\"\n",
      "print\"                   :Max shear stress theory\",round(d3,2),\"mm\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Diameter of Bolt by:Max Principal stress theory 14.27 mm\n",
        "                   :Max strain theory 14.8 mm\n",
        "                   :Max shear stress theory 15.96 mm\n"
       ]
      }
     ],
     "prompt_number": 1
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example No.10.10.2.Page No.402"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "import numpy as np\n",
      "\n",
      "#Initilization of Variables\n",
      "\n",
      "M=40*10**6 #N-mm #Bending moment\n",
      "T=10*10**6 #N-mm #TOrque\n",
      "mu=0.25 #Poissoin's ratio\n",
      "P_e=200 #N/mm**2 #Stress at Elastic Limit\n",
      "FOS=2\n",
      "\n",
      "#Calculations\n",
      "\n",
      "#Let d be the diameter of the shaft\n",
      "\n",
      "#Principal stresses are given by\n",
      "\n",
      "#P1=16*(pi*d**3)**-1*(M+(M**2+T**2)**0.5)\n",
      "#After substituting values and further simplifying we get\n",
      "#P1=4.13706*10**8*(d**3)**-1     ............................(1)\n",
      "\n",
      "#P2=16*(pi*d**3)**-1*(M-(M**2+T**2)**0.5)\n",
      "#After substituting values and further simplifying we get\n",
      "#P2=-6269718*(pi*d**3)**-1       ..............................(2)\n",
      "\n",
      "#q_max=(P1-P2)*2**-1\n",
      "#After substituting values and further simplifying we get\n",
      "#q_max=2.09988*10**8*(d**3)**-1\n",
      "\n",
      "#Max Principal stress theory\n",
      "#P1=P_e*(FOS)**-1\n",
      "#After substituting values and further simplifying we get\n",
      "d=(4.13706*10**8*2*200**-1)**0.33333 #mm \n",
      "\n",
      "#Max shear stress theory\n",
      "#q_max=shear stress at elastic limit*(FOS)**-1\n",
      "#After substituting values and further simplifying we get\n",
      "d2=(2.09988*10**8*4*200**-1)**0.33333\n",
      "\n",
      "#Max strain energy theory\n",
      "#P_3=0\n",
      "#P1**2+P2**2-2*mu*P1*P2=P_e**2*(FOS)**-1\n",
      "#After substituting values and further simplifying we get\n",
      "d3=(8.62444*10**12)**0.166666\n",
      "\n",
      "#Result\n",
      "print\"Diameter of shaft according to:MAx Principal stress theory\",round(d,2),\"mm\"\n",
      "print\"                              :Max shear stress theory\",round(d2,2),\"mm\"\n",
      "print\"                              :Max strain energy theory\",round(d3,2),\"mm\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Diameter of shaft according to:MAx Principal stress theory 160.52 mm\n",
        "                              :Max shear stress theory 161.33 mm\n",
        "                              :Max strain energy theory 143.2 mm\n"
       ]
      }
     ],
     "prompt_number": 2
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example No.10.10.3,Page No.403"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "import numpy as np\n",
      "\n",
      "\n",
      "#Initilization of Variables\n",
      "\n",
      "f_x=40 #N/mm**2 #Internal Fliud Pressure\n",
      "d1=200 #mm #Internal Diameter\n",
      "r1=d1*2**-1 #mm #Radius\n",
      "q=300 #N/mm**2 #Tensile stress\n",
      "\n",
      "#Calculations\n",
      "\n",
      "#From Lame's Equation we have,\n",
      "\n",
      "#Hoop Stress\n",
      "#f_x=b*(x**2)**-1+a    ..........................(1)\n",
      "\n",
      "#Radial Pressure\n",
      "#p_x=b*(x**2)**-1-a      .........................(2)\n",
      "\n",
      "#the boundary conditions are\n",
      "x=d1*2**-1 #mm \n",
      "#After sub values in equation 1 and further simplifying we get\n",
      "#40=b*100**-1-a           ..........................(3)\n",
      "\n",
      "#Max Principal stress theory\n",
      "#q*(FOS)**-1=b*100**2+a           ..................(4)\n",
      "#After sub values in above equation and further simplifying we get\n",
      "\n",
      "#From Equation 3 and 4 we get\n",
      "a=80*2**-1\n",
      "#Sub value of a in equation 3 we get\n",
      "b=(f_x+a)*100**2\n",
      "\n",
      "#At outer edge where x=r_0 pressure is zero\n",
      "r_0=(b*a**-1)**0.5 #mm\n",
      "\n",
      "#thickness\n",
      "t=r_0-r1 #mm\n",
      "\n",
      "#Max shear stress theory\n",
      "P1=b*(100**2)**-1+a #Max hoop stress\n",
      "P2=-40 #pressure at int radius (since P2 is compressive)\n",
      "\n",
      "#Max shear stress\n",
      "q_max=(P1-P2)*2**-1\n",
      "\n",
      "#According max shear theory the design condition is\n",
      "#q_max=P_e*2**-1*(FOS)**-1\n",
      "#After sub values in equation we get and further simplifying we get\n",
      "#80=b*(100**2)**-1+a\n",
      "#After sub values in equation 1 and 3 and further simplifying we get\n",
      "b2=120*100**2*2**-1\n",
      "\n",
      "#from equation(3)\n",
      "a2=120*2**-1-a\n",
      "\n",
      "#At outer radius r_0,radial pressure=0\n",
      "r_02=(b2*a2**-1)**0.5\n",
      "\n",
      "#thickness\n",
      "t2=r_02-r1\n",
      "\n",
      "#Result\n",
      "print\"Thickness of metal by:Max Principal stress theory\",round(t,2),\"mm\"\n",
      "print\"                     :Max shear stress thoery\",round(t2,2),\"mm\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Thickness of metal by:Max Principal stress theory 41.42 mm\n",
        "                     :Max shear stress thoery 73.21 mm\n"
       ]
      }
     ],
     "prompt_number": 3
    }
   ],
   "metadata": {}
  }
 ]
}