summaryrefslogtreecommitdiff
path: root/Strength_Of_Materials_by_S_S_Bhavikatti/chapter_03.ipynb
blob: d6656ff063550e40d4e2400e34d0204c9d3df7a3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
{
 "metadata": {
  "name": "chapter 03.ipynb"
 },
 "nbformat": 3,
 "nbformat_minor": 0,
 "worksheets": [
  {
   "cells": [
    {
     "cell_type": "heading",
     "level": 1,
     "metadata": {},
     "source": [
      "Chapter 3:Shear Force And Bending Moment Diagrams in Statically Determinate Beams"
     ]
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 3.3.1,Page No.100"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "import numpy as np\n",
      "%matplotlib inline\n",
      "\n",
      "#Initilization of Variables\n",
      "\n",
      "L_AC=L_CD=1 #m #Length of AC & CD\n",
      "L_DB=1.5 #m #Lengh of DB\n",
      "L=3.5 #m #Length of Beam\n",
      "F_B=10 #KN #Force at pt B\n",
      "F_C=F_D=20 #KN #Force at pt C & D\n",
      "\n",
      "#Calculations\n",
      "\n",
      "R_A=F_C+F_D+F_B #KN #Force at support A \n",
      "\n",
      "#Shear Force Calculations\n",
      "\n",
      "#S.F At pt B\n",
      "V_B1=0  #KN \n",
      "V_B2=F_B #KN\n",
      "\n",
      "#S.F At pt D\n",
      "V_D1=V_B2 #KN\n",
      "V_D2=V_D1+F_D #KN\n",
      "\n",
      "#S.F At pt C \n",
      "V_C1=V_D2 #KN\n",
      "V_C2=V_D2+F_C #KN\n",
      "\n",
      "#S.F At Pt A\n",
      "V_A1=V_C2 #KN\n",
      "V_A2=V_C2-R_A #KN\n",
      "\n",
      "#Bending Moment Calculations\n",
      "\n",
      "#B.M At Pt B\n",
      "M_B=0 #KN.m\n",
      "\n",
      "#B.M AT Pt D\n",
      "M_D=F_B*L_DB #KN.m\n",
      "\n",
      "#B.M At pt C\n",
      "M_C=F_B*(L_DB+L_CD)+F_D*L_CD #KN.m\n",
      "\n",
      "#B.M At pt A\n",
      "M_A=F_B*L+F_D*(L_CD+L_AC)+F_C*L_AC\n",
      "\n",
      "#Result\n",
      "print \"The Shear Force and Bending Moment Diagrams are the results\"\n",
      "\n",
      "#Plotting the Shear Force Diagram\n",
      "\n",
      "X1=[0,0,L_DB,L_DB,L_CD+L_DB,L_CD+L_DB,L_CD+L_DB+L_AC,L_CD+L_DB+L_AC]\n",
      "Y1=[V_B1,V_B2,V_D1,V_D2,V_C1,V_C2,V_A1,V_A2]\n",
      "Z1=[0,0,0,0,0,0,0,0]\n",
      "plt.plot(X1,Y1,X1,Z1)\n",
      "plt.xlabel(\"Length x in m\")\n",
      "plt.ylabel(\"Shear Force in kN\")\n",
      "plt.show()\n",
      "\n",
      "#Plotting the Bendimg Moment Diagram\n",
      "\n",
      "Y2=[M_B,M_D,M_C,M_A]\n",
      "X2=[0,L_DB,L_DB+L_CD,L_AC+L_CD+L_DB]\n",
      "Z2=[0,0,0,0]\n",
      "plt.plot(X2,Y2,X2,Z2)\n",
      "plt.xlabel(\"Length in m\")\n",
      "plt.ylabel(\"Bending Moment in kN.m\")\n",
      "plt.show()"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The Shear Force and Bending Moment Diagrams are the results\n"
       ]
      },
      {
       "metadata": {},
       "output_type": "display_data",
       "png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEPCAYAAABP1MOPAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAGkFJREFUeJzt3XtwVOXhxvHnhAA1QLhnY8HfhOFOUBIupmrFxZggUGIg\nEMtYGkEGRwatnWkRO45ipTZMbZXSmV4cBqlaK5UpxBuCxUVFEKSxtKUKIoEAySqGlGsmt/f3B2U1\nJptNlpy98H4/Mzuzl7NnH8+afTjnPRfHGGMEALBWQrQDAACiiyIAAMtRBABgOYoAACxHEQCA5SgC\nALBcotsfkJaWpuTkZHXq1EmdO3fWrl27VFVVpdtvv12HDx9WWlqa1q1bp169erkdBQDQAtfXCBzH\nkc/nU2lpqXbt2iVJKi4uVk5Ojvbv36/s7GwVFxe7HQMAEERENg19/Zi1kpISFRUVSZKKioq0YcOG\nSMQAALQgImsEt9xyi8aPH6+nn35akuT3++XxeCRJHo9Hfr/f7RgAgCBcHyPYvn27rrzySn3++efK\nycnRiBEjmrzuOI4cx3E7BgAgCNeL4Morr5Qk9e/fXzNmzNCuXbvk8XhUWVmp1NRUVVRUKCUlpdn7\nhgwZooMHD7odDwAuK4MHD9Ynn3zSrve4umno3LlzOn36tCTp7Nmz2rx5s66++mrl5eVp7dq1kqS1\na9cqPz+/2XsPHjwoY0zc3h555JGoZ7AxO/mjf5PiO3+8L/9w/gHt6hqB3+/XjBkzJEn19fW64447\nlJubq/Hjx6uwsFCrV68O7D4KAIgOV4tg0KBB+vDDD5s936dPH7355ptufjQAoI04stglXq832hHC\nFs/ZJfJHnzfaAS5J/C//9nPMhY16McdxHMVoNACtcByJP93oCee3kzUCALAcRQAAlqMIAMByFAEA\nWI4iAADLUQQAYDmKAAAsRxEAgOUoAgCwHEUAAJajCADAchQBAFiOIgAAy1EEAGA5igAALEcRAIDl\nKAIAsBxFAACWowgAwHIUAQBYjiIAAMtRBABgOYoAACxHEQCA5SgCALAcRQAAlqMIAMByFAEAWI4i\nAADLUQQAYDmKAAAsRxEAgOUoAgCwHEUAAJZzvQgaGhqUmZmp6dOnS5KqqqqUk5OjYcOGKTc3V9XV\n1W5HAAC0wvUiWLlypUaNGiXHcSRJxcXFysnJ0f79+5Wdna3i4mK3IwAAWuFqERw9elSvvfaaFixY\nIGOMJKmkpERFRUWSpKKiIm3YsMHNCACAEFwtgh/+8If6xS9+oYSELz/G7/fL4/FIkjwej/x+v5sR\nAAAhJLo141deeUUpKSnKzMyUz+drcRrHcQKbjFqybNmywH2v1yuv19uxIQEgzvl8vqC/sW3lmIvb\nbDrYT37yEz377LNKTExUTU2NTp06pZkzZ2r37t3y+XxKTU1VRUWFJk2apI8++qh5MMeRS9EAuMhx\nJP50oyec307XiuCrtm3bpieeeEIvv/yylixZor59++qBBx5QcXGxqqurWxwwpgiA+EQRRFc4v50R\nO47g4iagpUuXasuWLRo2bJi2bt2qpUuXRioCAKAFEVkjCAdrBEB8Yo0gumJ6jQAAEJsoAgCwHEUA\nAJajCADAchQBAFiOIgAAy1EEAGA5igAALEcRAIDlKAIAsBxFAACWowgAwHIUAQBYjiIAAMtRBABg\nOYoAACxHEQCA5SgCALAcRQAAlqMIAMByicFemDRpUovPO44jSdq6das7iQAAEeWYIJe7/+CDD76c\n6H8//jt37tSKFSuUkpLS5HVXgjmOgkQDEMMcR+JPN3rC+e0MWgRf5fP5tHz5cp0/f14PPfSQpkyZ\nEnbINgejCIC4RBFEVzi/nUE3DUnSpk2b9LOf/UxdunTRQw89FHRzEQAgfgVdI5gwYYI+//xz/ehH\nP9J11113YeL/bSKSpLFjx7objDUCIC6xRhBdHbppyOv1Bmbakrfeeqt96dqJIgDiE0UQXa6METQ2\nNiohoelepjU1NfrGN77R/oTtCUYRAHGJIoiucH47Qx5HsGDBgiaPz5w5o6lTp7YvGQAgZoUsggED\nBmjRokWSpJMnTyo3N1dz5851PRgAIDLatPvoj3/8Y506dUp79uzR0qVLNWvWLPeDsWkIiEtsGoqu\nDh0jWL9+fZOZPvbYY5owYYJuvfVWOY6jmTNnXnri1oJRBEBcogiiq0OL4M4772yyx5AxpsnjNWvW\nhBmzjcEoAiAuUQTR5dqRxdFAEQDxiSKILlf2GgIAXN4oAgCwnGtFUFNTo6ysLGVkZGjUqFF68MEH\nJUlVVVXKycnRsGHDlJubq+rqarciAADaIOQYQU1NjdavX6+ysjLV19dfeJPj6OGHHw4583Pnzikp\nKUn19fX69re/rSeeeEIlJSXq16+flixZohUrVujkyZMqLi5uHowxAiAuMUYQXa6MEdx2220qKSlR\n586d1b17d3Xv3l3dunVr08yTkpIkSbW1tWpoaFDv3r1VUlKioqIiSVJRUZE2bNjQrsAAgI7V6mmo\nJenYsWN64403wpp5Y2Ojxo4dq4MHD+qee+5Renq6/H6/PB6PJMnj8cjv94c1bwBAxwi5RnD99ddr\n79694c08IUEffvihjh49qrfffrvZGUsdxwl6dlMAQGSEXCN45513tGbNGg0aNEhdu3aVdOEHvD3l\n0LNnT02bNk179uyRx+NRZWWlUlNTVVFRoZSUlKDvW7ZsWeC+1+sNnBobaE2fPtLJk9FOYa/evaOd\nwC4+n08+n++S5hFysLisrKzF59PS0lqd8YkTJ5SYmKhevXrp/Pnzmjx5sh555BG98cYb6tu3rx54\n4AEVFxerurqawWJ0KAYrYbMOvVTlqVOnlJycrOTk5LDCVFRUqKioSI2NjWpsbNTcuXOVnZ2tzMxM\nFRYWavXq1UpLS9O6devCmj8AoGMEXSOYNm2aXn31VaWlpTXbju84jj799FN3g7FGgDCxRgCbca4h\nQBQB7Ma5hgAA7UYRAIDlKAIAsFybiuDisQSS9Pnnn+vQoUOuhgIARE7IweJly5Zpz549+vjjj7V/\n/34dO3ZMhYWF2r59u7vBGCxGmBgshs1cGSz+61//qo0bNwZONDdgwACdPn06vIQAgJgTsgi6du2q\nhIQvJzt79qyrgQAAkRWyCGbPnq27775b1dXV+sMf/qDs7GwtWLAgEtkAABHQpgPKNm/erM2bN0uS\nJk+erJycHPeDMUaAMDFGAJu5cmTxoUOHlJqaqiuuuEKSdP78efn9/pAnnbtUFAHCRRHAZq4MFs+a\nNUudOnX68g0JCZo1a1b70wEAYlLIImhoaFCXLl0Cj7t27aq6ujpXQwEAIidkEfTr108bN24MPN64\ncaP69evnaigAQOSEHCP45JNPdMcdd+j48eOSpIEDB+rZZ5/VkCFD3A3GGAHCxBgBbNahF6aRLmwW\n+t3vfqf3338/cBBZjx49wk8IAIg5rRZBp06d9O6778oYQwEAwGUq5MXrMzIydNttt2n27NlKSkqS\ndGHVY+bMma6HAwC4L2QR1NTUqE+fPtq6dWuT5ykCALg8cKlKXHYYLIbNXDmgrLy8XDNmzFD//v3V\nv39/FRQU6OjRo2GHBADElpBFMG/ePOXl5en48eM6fvy4pk+frnnz5kUiGwAgAkJuGhozZoz+8Y9/\nhHyuw4OxaQhhYtMQbObKpqG+ffvq2WefVUNDg+rr6/Xcc89xZDEAXEZCrhGUlZXp3nvv1c6dOyVJ\n119/vVatWqX/+7//czcYawQIE2sEsFmHnoZ6586d+ta3vtUhwcJBESBcFAFs1qGbhu65557A/euu\nuy78VACAmBZyjEC6cFAZAODyFPTI4oaGBlVVVckYE7j/VX369HE9HADAfUHHCNLS0uQ4jiTJGBO4\nL13YBvXpp5+6G4wxAoSJMQLYzJVrFkcLRYBwUQSwmSvHEQAALm8UAQBYjiIAAMu1WgT19fUaPnx4\npLIAAKKg1SJITEzUiBEjdPjw4UjlAQBEWMgrlFVVVSk9PV3XXnutunXrJunCqHRJSUnImZeXl+v7\n3/++PvvsMzmOo4ULF+q+++5TVVWVbr/9dh0+fFhpaWlat26devXqden/NQCAdgu5+6jP52vxea/X\nG3LmlZWVqqysVEZGhs6cOaNx48Zpw4YNWrNmjfr166clS5ZoxYoVOnnypIqLi5sGY/dRhIndR2Gz\nmD+OID8/X4sXL9bixYu1bds2eTweVVZWyuv16qOPPmoajCJAmCgC2MyV4wh27NihCRMmqHv37urc\nubMSEhKUnJzc7nBlZWUqLS1VVlaW/H6/PB6PJMnj8cjv97d7fgCAjhGyCBYvXqw//elPGjp0qGpq\narR69WotWrSoXR9y5swZFRQUaOXKlerRo0eT1xzHaXL6CgBAZIUcLJakoUOHqqGhQZ06ddK8efOU\nkZHRbJt+MHV1dSooKNDcuXOVn58vSYFNQqmpqaqoqFBKSkqL7122bFngvtfrbdO4BADYxOfzBR3L\nbauQYwQTJ07Uli1btGDBAl155ZVKTU3V2rVr23TNYmOMioqK1LdvXz355JOB55csWaK+ffvqgQce\nUHFxsaqrqxksRodhjAA2c2WwuKysTB6PR7W1tXryySd16tQpLVq0SEOGDAk583fffVcTJ07UNddc\nE9j88/Of/1zXXnutCgsLdeTIkaC7j1IECBdFAJu5ttfQuXPnVF5eHtGjjCkChIsigM1c2WuopKRE\nmZmZmjx5siSptLRUeXl54SUEAMSckEWwbNkyvf/+++rdu7ckKTMz0/WL0gAAIidkEXTu3LnZ9vuE\nBE5aCgCXi5C/6Onp6Xr++edVX1+vAwcO6N5779X1118fiWwAgAgIWQSrVq3Sv//9b3Xt2lVz5sxR\ncnKynnrqqUhkAwBEANcsxmWHvYZgs3B+O0MeWfzxxx/riSeeUFlZmerr6wMftHXr1vBSAgBiSsg1\ngmuuuUb33HOPxo4dq06dOl14k+No3Lhx7gZjjQBhYo0ANnPlgLJx48Zpz549lxQsHBQBwkURwGYd\nWgRVVVUyxmjVqlXq37+/Zs6cqa5duwZe79Onz6WlDRWMIkCYKALYrEOLIC0tLejpoR3Hcf2gMooA\n4aIIYLOYv0JZe1AECBdFAJt16LmGdu/erYqKisDjtWvXKi8vL3DxeQDA5SFoESxcuDAwJvD2229r\n6dKlKioqUnJyshYuXBixgAAAdwU9jqCxsTEwIPziiy/q7rvvVkFBgQoKCjRmzJiIBQQAuCvoGkFD\nQ4Pq6uokSW+++aYmTZoUeO3igWUAgPgXdI1gzpw5uummm9SvXz8lJSXpxhtvlCQdOHCg2dlIAQDx\nq9W9hnbs2KHKykrl5uaqW7dukqT9+/frzJkzGjt2rLvB2GsIYWKvIdiM3UcBUQSwmyuXqgQAXN4o\nAgCwHEUAAJajCADAchQBAFiOIgAAy1EEAGA5igAALEcRAIDlKAIAsBxFAACWowgAwHIUAQBYjiIA\nAMtRBABgOYoAACxHEQCA5Vwtgvnz58vj8ejqq68OPFdVVaWcnBwNGzZMubm5qq6udjMCACAEV4tg\n3rx52rRpU5PniouLlZOTo/379ys7O1vFxcVuRgAAhOD6NYvLyso0ffp0/fOf/5QkjRgxQtu2bZPH\n41FlZaW8Xq8++uij5sG4ZjHCxDWLYbO4uGax3++Xx+ORJHk8Hvn9/khHAAB8RWI0P9xxHDmO08rr\ny77yyPu/G9C63r2jnQCIHJ/PJ5/Pd0nziHgRXNwklJqaqoqKCqWkpASd1phlkQsGAHHI6/XK6/UG\nHj/66KPtnkfENw3l5eVp7dq1kqS1a9cqPz8/0hEAAF/h6mDxnDlztG3bNp04cUIej0c//elPddtt\nt6mwsFBHjhxRWlqa1q1bp169ejUPxmAxALRbOL+dru81FC6KAADaLy72GgIAxBaKAAAsRxEAgOUo\nAgCwHEUAAJajCADAchQBAFiOIgAAy1EEAGA5igAALEcRAIDlKAIAsBxFAACWowgAwHIUAQBYjiIA\nAMtRBABgOYoAACxHEQCA5SgCALAcRQAAlqMIAMByFAEAWI4iAADLUQQAYDmKAAAsRxEAgOUoAgCw\nHEUAAJajCADAchQBAFiOIgAAy1EEAGA5igAALEcRAIDlolYEmzZt0ogRIzR06FCtWLEiWjEAwHpR\nKYKGhgYtXrxYmzZt0r59+/TCCy/oP//5TzSiuMbn80U7QtjiObtE/mgjf/yJShHs2rVLQ4YMUVpa\nmjp37qzvfve72rhxYzSiuCae/2eK5+wS+aON/PEnKkVw7NgxXXXVVYHHAwcO1LFjx6IRBQCsF5Ui\ncBwnGh8LAGiJiYIdO3aYyZMnBx4//vjjpri4uMk0gwcPNpK4cePGjVs7boMHD273b7JjjDGKsPr6\neg0fPlx/+9vf9M1vflPXXnutXnjhBY0cOTLSUQDAeolR+dDERP3mN7/R5MmT1dDQoLvuuosSAIAo\nicoaAQAgdkT1yOK2HFR23333aejQoRozZoxKS0sjnLB1ofL7fD717NlTmZmZyszM1PLly6OQsmXz\n58+Xx+PR1VdfHXSaWF72ofLH8rKXpPLyck2aNEnp6ekaPXq0fv3rX7c4Xax+B23JH6vfQU1NjbKy\nspSRkaFRo0bpwQcfbHG6WF32bcnf7mV/SaO+l6C+vt4MHjzYHDp0yNTW1poxY8aYffv2NZnm1Vdf\nNVOmTDHGGLNz506TlZUVjagtakv+t956y0yfPj1KCVv39ttvm7///e9m9OjRLb4ey8vemND5Y3nZ\nG2NMRUWFKS0tNcYYc/r0aTNs2LC4+v+/Lflj+Ts4e/asMcaYuro6k5WVZd55550mr8fysjcmdP72\nLvuorRG05aCykpISFRUVSZKysrJUXV0tv98fjbjNtPWgOBOjW95uvPFG9e7dO+jrsbzspdD5pdhd\n9pKUmpqqjIwMSVL37t01cuRIHT9+vMk0sfwdtCW/FLvfQVJSkiSptrZWDQ0N6tOnT5PXY3nZS6Hz\nS+1b9lErgrYcVNbSNEePHo1Yxta0Jb/jOHrvvfc0ZswYTZ06Vfv27Yt0zLDF8rJvi3ha9mVlZSot\nLVVWVlaT5+PlOwiWP5a/g8bGRmVkZMjj8WjSpEkaNWpUk9djfdmHyt/eZR+VvYakth9U9vVWi5WD\n0dqSY+zYsSovL1dSUpJef/115efna//+/RFI1zFiddm3Rbws+zNnzmjWrFlauXKlunfv3uz1WP8O\nWssfy99BQkKCPvzwQ/33v//V5MmT5fP55PV6m0wTy8s+VP72LvuorREMGDBA5eXlgcfl5eUaOHBg\nq9McPXpUAwYMiFjG1rQlf48ePQKrcFOmTFFdXZ2qqqoimjNcsbzs2yIeln1dXZ0KCgr0ve99T/n5\n+c1ej/XvIFT+ePgOevbsqWnTpumDDz5o8nysL/uLguVv77KPWhGMHz9eBw4cUFlZmWpra/Xiiy8q\nLy+vyTR5eXn64x//KEnauXOnevXqJY/HE424zbQlv9/vD/yrYteuXTLGtLgtLxbF8rJvi1hf9sYY\n3XXXXRo1apTuv//+FqeJ5e+gLflj9Ts4ceKEqqurJUnnz5/Xli1blJmZ2WSaWF72bcnf3mUftU1D\nwQ4q+/3vfy9JuvvuuzV16lS99tprGjJkiLp166Y1a9ZEK24zbcn/0ksv6be//a0SExOVlJSkP//5\nz1FO/aU5c+Zo27ZtOnHihK666io9+uijqqurkxT7y14KnT+Wl70kbd++Xc8995yuueaawB/x448/\nriNHjkiK/e+gLflj9TuoqKhQUVGRGhsb1djYqLlz5yo7Oztufnvakr+9y54DygDAclyqEgAsRxEA\ngOUoAgCwHEUAAJajCADAchQBAFiOIkBcaek0DB3pqaee0vnz5zv8815++eWgp1oHoo3jCBBXevTo\nodOnT7s2/0GDBumDDz5Q3759I/J5QCxgjQBx7+DBg5oyZYrGjx+viRMn6uOPP5Yk3XnnnfrBD36g\nG264QYMHD9b69eslXThz46JFizRy5Ejl5uZq2rRpWr9+vVatWqXjx49r0qRJys7ODsz/oYceUkZG\nhq677jp99tlnzT7//vvv12OPPSZJeuONN3TTTTc1m+aZZ57Rvffe22quryorK9OIESM0b948DR8+\nXHfccYc2b96sG264QcOGDdPu3bsvfcEBF4V5XQQgKrp3797suZtvvtkcOHDAGHPhIiI333yzMcaY\noqIiU1hYaIwxZt++fWbIkCHGGGP+8pe/mKlTpxpjjKmsrDS9e/c269evN8YYk5aWZr744ovAvB3H\nMa+88ooxxpglS5aY5cuXN/v8c+fOmfT0dLN161YzfPhw8+mnnzab5plnnjGLFy9uNddXHTp0yCQm\nJpp//etfprGx0YwbN87Mnz/fGGPMxo0bTX5+fshlBbRV1M41BHSEM2fOaMeOHZo9e3bgudraWkkX\nTht88ayYI0eODFxY5N1331VhYaEkBc7nHkyXLl00bdo0SdK4ceO0ZcuWZtNcccUVevrpp3XjjTdq\n5cqVGjRoUKuZg+X6ukGDBik9PV2SlJ6erltuuUWSNHr0aJWVlbX6GUB7UASIa42NjerVq1fQa8p2\n6dIlcN/8bzjMcZwm55o3rQyTde7cOXA/ISFB9fX1LU63d+9e9e/fv9nFiYJpKdfXde3atclnX3xP\nazmAcDBGgLiWnJysQYMG6aWXXpJ04Ud17969rb7nhhtu0Pr162WMkd/v17Zt2wKv9ejRQ6dOnWpX\nhsOHD+tXv/qVSktL9frrr2vXrl3NpmmtbIBoowgQV86dO6errroqcHvqqaf0/PPPa/Xq1crIyNDo\n0aNVUlISmP6rV5W6eL+goEADBw7UqFGjNHfuXI0dO1Y9e/aUJC1cuFC33nprYLD46+//+lWqjDFa\nsGCBfvnLXyo1NVWrV6/WggULApungr032P2vvyfY41i6WhbiH7uPwkpnz55Vt27d9MUXXygrK0vv\nvfeeUlJSoh0LiArGCGCl73znO6qurlZtba0efvhhSgBWY40AACzHGAEAWI4iAADLUQQAYDmKAAAs\nRxEAgOUoAgCw3P8DfIlLuPJXvGsAAAAASUVORK5CYII=\n",
       "text": [
        "<matplotlib.figure.Figure at 0x5fcc2d0>"
       ]
      },
      {
       "metadata": {},
       "output_type": "display_data",
       "png": "iVBORw0KGgoAAAANSUhEUgAAAYgAAAEPCAYAAABY9lNGAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XlYlOXeB/DvoGApCC6Xw6XowRcjGEA2j3jCZcjQxA1N\nsc0o1/fyNevUm9miWacCT5tmp9WN0lcxPSmkolZCBxWlQK2DS6EoKqCJKIiIwPP+MYeR0Rlm41lm\n5vu5Lq4Dsz2/Hjr8uu/7+9yPShAEAURERLdxk7sAIiJSJjYIIiIyig2CiIiMYoMgIiKj2CCIiMgo\nNggiIjJKtAYxbdo0qNVqhIWF6R+rrKxEfHw8AgMDMWLECFRVVemfS0lJwT333IOgoCDs2rVLrLKI\niMhCojWIp556CllZWQaPpaamIj4+HidOnMDw4cORmpoKACgqKkJ6ejqKioqQlZWFOXPmoKmpSazS\niIjIAqI1iCFDhqBLly4Gj2VkZCA5ORkAkJycjC1btgAAtm7dikceeQTu7u7w9/dHv379cPDgQbFK\nIyIiC0i6BlFRUQG1Wg0AUKvVqKioAACcP38efn5++tf5+fnh3LlzUpZGRES3kW2RWqVSQaVStfo8\nERHJp72UB1Or1SgvL4evry/KysrQo0cPAECvXr1QWlqqf93Zs2fRq1evO97fr18/FBcXS1YvEZEz\nCAgIwO+//271+yQdQYwbNw5paWkAgLS0NCQmJuof37BhA+rr63Hq1Cn89ttvGDhw4B3vLy4uhiAI\nDvv12muvyV4D65e/DtbveF+OXLsgCDb/h7VoI4hHHnkEOTk5+OOPP9C7d2+88cYbWLBgAZKSkrBy\n5Ur4+/tj48aNAACNRoOkpCRoNBq0b98eH3/8MaeYiIhkJlqDWL9+vdHHv/vuO6OPv/zyy3j55ZfF\nKoeIiKzEK6klpNVq5S7BLqxfXqxfPo5cuz1UgiA4zA2DVCoVHKhcIiJFsPVvJ0cQRERkFBsEEREZ\nxQZBRERGsUEQEZFRbBBERE5s/37b38sGQUTkpE6eBCZOtP39bBBERE7o8mVg9Gjg1Vdt/wxeB0FE\n5GTq64FRo4D+/YEPPrD9bycbBBGRExEEYPp04NIl4J//BNq1s/1vp6TbfRMRkbhSU4HDh4GcHF1z\nsAcbBBGRk0hPBz75BMjLAzw97f88TjERETmB/fuB8eOB3buB8HDD57gXExGRi2qOs65Zc2dzsAcb\nBBGRA2sZZ01IaNvP5hQTEZGDuj3OagpjrkRELsRYnNUUxlyJiFxIW8ZZTWGDICJyMG0dZzWFU0xE\nRA6ktTirKYy5EhE5ObHirKawQRAROQAx46ymcIqJiEjhLI2zmsKYKxGRE7ImzmoKY65ERE5Iijir\nKWwQREQKJVWc1RROMRERKZAtcVZTGHMlInISUsdZTWGDICJSEDnirKZwiomISCHsjbOawpgrEZED\na4s4qymMuRIROTA546ymsEEQEclM7jirKZxiIiKSUVvGWU1hzJWIyMEoJc5qiiwNIiUlBSEhIQgL\nC8Ojjz6KGzduoLKyEvHx8QgMDMSIESNQVVUlR2lERJJQUpzVFMmnmEpKSnD//ffj6NGj6NChA6ZM\nmYKEhAT8+9//Rvfu3TF//nwsWbIEly9fRmpqqmGxnGIiIicgVpzVFIeZYurcuTPc3d1RW1uLhoYG\n1NbWomfPnsjIyEBycjIAIDk5GVu2bJG6NCIi0QkC8N//rVuMfvdduatpneQNomvXrnj++efRp08f\n9OzZEz4+PoiPj0dFRQXUajUAQK1Wo6KiQurSiIhE1xxnXbdOOXFWUySPuRYXF2Pp0qUoKSmBt7c3\nJk+ejLVr1xq8RqVSQaVSGX3/4sWL9d9rtVpotVoRqyUiajtSxVmzs7ORnZ1t9+dIvgaRnp6O3bt3\nY8WKFQCAr776Cnl5efjhhx+wZ88e+Pr6oqysDHFxcTh27JhhsVyDICIHJUWc1RSHWYMICgpCXl4e\nrl+/DkEQ8N1330Gj0WDs2LFIS0sDAKSlpSExMVHq0oiIRKH0OKspslwo9/e//x1paWlwc3NDVFQU\nVqxYgerqaiQlJeHMmTPw9/fHxo0b4ePjY1gsRxBE5GAuXwbuuw+YOxf4n/+RpwZu1kdEpDBSx1lN\nYYMgIlIQMXdntZZoaxCZmZmIjIxEly5d4OXlBS8vL3Tu3NmmIomIXIUjxVlNMTuCCAgIwDfffIPQ\n0FC4ucm7dRNHEETkCNLTgRde0MVZe/aUuxoR7wfh5+eHkJAQ2ZsDEZEj2L8fePppXZxVCc3BHmZH\nEHl5eVi0aBHi4uLg4eGhe5NKheeee06SAlviCIKIlOzkSSA2Fli5Ulkb8Ik2gli4cCG8vLxQV1eH\n+vp6m4ojInJ2zbuzLlyorOZgD7MjiNDQUPz6669S1dMqjiCISImUEmc1RbQUU0JCAnbu3GlTUURE\nzs6Rdme1ltkRhKenJ2pra+Hh4QF3d3fdm1QqXL16VZICW+IIgoiUJiUF2LQJyMlR1v2kWxJtDaKm\npsamgoiInJ1Uu7PKhVdSExHZQM7dWa0l6W6ukZGRtryNiMgpOOrurNbiCIKIyArNu7M+/TQwZ47c\n1ViGm/UREYlM6XFWU9q8QfTt27fVg508edLqg9mLDYKI5KKk3Vmt1eYppvz8fIMPb2pqQnp6Ot59\n911ERUXZViURkYNq3p01J8exmoM9TDaI7t27AwCamprw5Zdf4p133kFERAS2b98OjUYjWYFERHJz\n9jirKSYbRH19PVatWoUPPvgAgwcPxtatW9GvXz8payMikp0z7c5qLZNrEH5+fmjfvj2eeeYZ9OnT\nByqVCgAgCAJUKhUmTpwoaaEA1yCISFpK3Z3VWm2+SP3kk0/qP9iY1atXW30we7FBEJFUHDHOaopo\nMde6ujrcddddBo9dunQJ3bp1s/pg9mKDICIpOGqc1RTRrqSeOHEibt68qf+5rKwM8fHxVh+IiMgR\nOPPurNYy2yAmTJiApKQkNDY2oqSkBCNHjkRqaqoUtRERSa45zrpunevEWU0xu5vrzJkzcePGDYwf\nPx6nT5/Gp59+itjYWClqIyKSlKvGWU0x2SDee+89ALfmrkpLSxEeHo68vDwcOHBAlntSExGJxZXj\nrKaYbBDV1dUGCaYJEyZApVLx/hBE5HRcZXdWa3GzPiJyac4UZzWFu7kSEVnJ2eKsprBBEBFZwZF3\nZ7WWaPekJiJyRq64O6u1zDaICxcu4IsvvkBJSQkaGhoA6LrRqlWrRC+OiEgMjLNaxmyDGD9+PIYO\nHYr4+Hi4uemuqzO1PxMRkdIxzmo5s2sQEREROHTokFT1tIprEERkD2fZndVaou3FNGbMGGzbts2m\nooiIlOLyZWD0aGDhQtdqDvYwO4Lw9PREbW0tPDw84O7urnuTSoWrV69KUmBLHEEQkS1cJc5qimgj\niJqaGjQ1NaGurg7V1dWorq62uzlUVVVh0qRJCA4OhkajwYEDB1BZWYn4+HgEBgZixIgRqKqqsusY\nREQAd2e1h8kRxNGjRxEcHIyCggKjb4yKirL5oMnJyRg2bBimTZuGhoYGXLt2DW+99Ra6d++O+fPn\nY8mSJbh8+fIdu8ZyBEFE1kpJATZt0sVZXTWx1OYXys2cORNffPEFtFqt0dTSnj17rK8SwJUrVxAZ\nGYmTJ08aPB4UFIScnByo1WqUl5dDq9Xi2LFjhsWyQRCRFdLTgRde0MVZXTmx5DBXUh86dAizZ8+G\nRqPB4cOHER0djaVLl8LPzw+XL18GoLvvddeuXfU/64tlgyAiC+3fD4wfr4uzuvoGfKKtQbS1hoYG\nFBQUYM6cOSgoKECnTp2MTiXxWgsishV3Z20bkm+14efnBz8/P/z5z38GAEyaNAkpKSnw9fVFeXk5\nfH19UVZWhh49ehh9/+LFi/Xfa7VaaLVaCaomIkfBOCuQnZ2N7Oxsuz9Hls36hg4dihUrViAwMBCL\nFy9GbW0tAKBbt2548cUXkZqaiqqqKi5SE5FVXD3OaopoaxDDhw/H999/b/Yxaxw+fBgzZsxAfX09\nAgICsHr1ajQ2NiIpKQlnzpyBv78/Nm7cCB8fH8Ni2SCIyARX2p3VWm2+m+v169dRW1uLixcvorKy\nUv/41atXce7cOduq/I/w8HDk5+ff8fh3331n1+cSketq3p31xx/ZHNqKyQbx2WefYdmyZTh//jyi\no6P1j3t5eWHu3LmSFEdEZImWu7N26iR3Nc7D7BTThx9+iHnz5klVT6s4xUREt2Oc1TxRr4PYt2+f\nwf0gAOCJJ56w+mD2YoMgopZcdXdWa4l2R7nHH38cJ0+eREREBNq1mNiTo0EQETVjnFV8ZkcQwcHB\nKCoqUsSFaxxBEBHAOKu1RLuSOjQ0FGVlZTYVRUTU1rg7q3TMTjFdvHgRGo0GAwcORIcOHQDoulFG\nRoboxRER3Y5xVumYbRDNW1u0HKIoYbqJiFwP46zSsijFVFJSgt9//x0PPPAAamtr0dDQgM6dO0tR\nnwGuQRC5LsZZbSfaGsTnn3+OyZMnY/bs2QCAs2fPYsKECdZXSERkI+7OKg+zDeIf//gHcnNz9SOG\nwMBAXLhwQfTCiIgAxlnlZLZBdOjQQb84Deju58A1CCKSQn09MGkS8OCDwJw5clfjesw2iGHDhuGt\nt95CbW0tdu/ejcmTJ2Ps2LFS1EZELoxxVvmZXaRubGzEypUrsWvXLgDAyJEjMWPGDFlGEVykJnId\nKSnApk26OCsTS/ZxmHtS24MNgsg1pKcDL7ygi7P27Cl3NY5PtBRTZmYmIiMj0aVLF3h5ecHLy0uW\niCsRuYb9+4GnnwYyM9kc5GZ2BBEQEIBvvvkGoaGhcHMz209ExREEkXPj7qziEG0E4efnh5CQENmb\nAxE5N8ZZlcfsCCIvLw+LFi1CXFwcPDw8dG9SqfDcc89JUmBLHEEQOSfuziou0e4HsXDhQnh5eaGu\nrg719fU2FUdEZArjrMpltkGUlZVh9+7dUtRCRC6Iu7Mql9mFhYSEBOzcuVOKWojIxTTvzpqZyWsd\nlMjsGoSnpydqa2vh4eEBd3d33ZtUKly9elWSAlviGgSR8+DurNLhhXJE5DAYZ5WWaIvUALB161b8\n+OOPUKlUGDZsGPdiIiKbMc7qOMyOIBYsWID8/Hw89thjEAQBGzZswIABA5CSkiJVjXocQRA5NsZZ\n5SHaFFNYWBgOHTqEdv+JFzQ2NiIiIgK//PKLbZXagQ2CyHEJAjB9OnDpEvDPfzKxJCXRrqRWqVSo\nqqrS/1xVVcX7QRCR1ZrjrP/3f2wOjsLsGsRLL72EqKgoaLVaAEBOTg5SU1PFrouInMjGjbo4a14e\n46yOxKIU0/nz55Gfnw+VSoWBAwfC19dXitruwCkmIsfS0KC7r8NHHwG7djHOKpc2X4MoKCgw+Ln5\nZc3TS1FRUVYfzF5sEESOo7gYePxx3RYaa9YAvXrJXZHravMG4ebmhtDQUHTr1s3oG/fs2WP1wezF\nBkGkfIKgu77hpZeAV1/V3duBm0HLq82vg3j//ffx9ddfo2PHjpgyZQomTJgALy8vu4okIud28SIw\ncyZw+jSQnQ2EhMhdEdnD7BpEcXEx0tPTsWXLFvzpT3/CK6+8goiICKnqM8ARBJFybd8OzJgBPPEE\n8PrrQIcOcldEzUS7kjogIADjx49HbW0t1q5di+PHj8vWIIhIea5dA/73f4EdO4ANG4ChQ+WuiNqK\nyRFEcXExNmzYgK1bt6JPnz6YMmUKxowZg7vvvlvqGvU4giBSlvx83UJ0TAywfDng7S13RWSMKIvU\nYWFhSExMROfOnQ0O0hZ3lGtsbMSAAQPg5+eHzMxMVFZWYsqUKTh9+jT8/f2xceNG+Pj4GBbLBkGk\nCC3jqx99BEyeLHdF1Jo2v5J60aJFmDhxItzc3FBTU4OamhpUV1fr/9dey5Ytg0aj0cdmU1NTER8f\njxMnTmD48OG8GI9IoYqLgSFDdDf4KShgc3Bmsmz3ffbsWTz55JN45ZVX8P777yMzMxNBQUHIycmB\nWq1GeXk5tFotjh07ZlgsRxBEsmF81XGJut13W/vrX/+Kd955x+CmQxUVFVCr1QAAtVqNiooKOUoj\nIiMYX3VNkvf/b7/9Fj169EBkZKTJjqZSqbghIJFCbN+u2yIjKEi3lxKbg+uQfASxb98+ZGRkYPv2\n7airq8PVq1cxdepU/dSSr68vysrK0KNHD6PvX7x4sf57rVar30SQiNoW46uOKzs7G9nZ2XZ/jtk1\niPfee89g/kqlUsHb2xvR0dF2Xw+Rk5ODd999F5mZmZg/fz66deuGF198EampqaiqqrpjoZprEETS\nYHzVuYh2P4iff/4Zn376Kc6fP49z587hs88+w44dOzBz5kwsWbLEpmJbap5KWrBgAXbv3o3AwED8\n8MMPWLBggd2fTUTWaWgA/vY3YMwY4M03gS+/ZHNwZWZHEEOGDMGOHTvg6ekJAKipqUFCQgKysrIQ\nHR2No0ePSlIowBEEkZi4+6rzEm0EcfHiRXh4eOh/dnd3R0VFBTp27Ii77rrL6gMSkbIIArBiBTBo\nEPDww8DOnWwOpGN2kfqxxx5DTEwMEhMTIQgCMjMz8eijj+LatWvQaDRS1EhEImF8lVpj0YVy+fn5\n2Lt3L1QqFWJjYzFgwAAparsDp5iI2s62bbrmwN1XnV+b78XUUmNjI8rLy9HQ0KBfVO7Tp4/1VdqJ\nDYLIfi3jq2lpwLBhcldEYhPtSurly5fj9ddfR48ePdCuXTv947/88ovVByMiebWMrx4+zIQStc7s\nCCIgIAAHDx40eetRKXEEQWQb7r7q2kQbQfTp00e/3TcROZ6W8dWCAiaUyHJmG0Tfvn0RFxeH0aNH\n6+OubXE/CCISF3dfJXtZNILo06cP6uvrUV9fr79hEBEpF+Or1BZkuR+ErbgGQWQe46t0uzZfg3jm\nmWewbNkyjB071ujBMjIyrD4YEYmnZXx1/XrGV8l+JhvE1KlTAQDPP/+8ZMUQkW0YXyUxcIqJyIEx\nvkqWaPMpprCwsFYPduTIEasPRkRth/FVEpvJBpGZmQkA+PjjjwHoppwEQcC6deukqYyIjGJ8laRi\ndoopIiIChw4dMngsMjIShYWFohZmDKeYyNW1jK+uXcv4KllGtPtBCIKA3Nxc/c979+7lH2kiGWzb\nBoSHA0FBQF4emwOJz+yFcqtWrcJTTz2FK1euAAB8fHywevVq0QsjIh3GV0kuFqeYmhuEt4z5OU4x\nkatpGV9dvpzxVbKNaJv11dXVYfPmzSgpKUFDQ4P+YIsWLbK+SiKySHN8dflyXXw1KUnuisgVmW0Q\n48ePh4+PD6Kjo3kPaiIJtIyvFhYyvkryMTvFFBoail9//VWqelrFKSZyZoyvklhEm2K67777cOTI\nEfTv39+mwojIPO6+SkpkdgQRHByM33//HX379kWH/2wLKdeV1BxBkDPi7qskNtFGEDt27LCpICJq\nHeOrpHRmZzj9/f1RWlqKPXv2wN/fH506deJ/xRPZKT8fiIrSNYnDh9kcSJnMTjEtXrwYP//8M44f\nP44TJ07g3LlzSEpKwt69e6WqUY9TTOToGF8lOYg2xfTNN9+gsLAQ0dHRAIBevXqhurra+gqJXBzj\nq+RozE4xdejQAW4tsnbXrl0TtSAiZyMIwIoVwKBBwMMPAzt3sjmQYzA7gpg8eTJmz56NqqoqfP75\n51i1ahVmzJghRW1EDo/xVXJkFu3FtGvXLuzatQsAMHLkSMTHx4temDFcgyBHwvgqKYWtfzutuuXo\nxYsX0b17d6hUKqsP1BbYIMgRtIyvpqUxoUTya/P7Qezfvx9arRYTJ05EYWEhQkNDERYWBrVazWsj\niExgfJWcickRRHR0NFJSUnDlyhXMnDkTWVlZGDRoEI4dO4aHH374jrvMSYEjCFIqxldJydo85trY\n2IgRI0YAABYtWoRBgwYBAIKCgmSbYiJSIsZXyVmZnGJq2QS4zTfRnRhfJWdncoqpXbt26NixIwDg\n+vXruPvuu/XPXb9+XX/zIGuVlpbiiSeewIULF6BSqTBr1izMmzcPlZWVmDJlCk6fPg1/f39s3LgR\nPj4+hsVyiokUojm+WlICrFvH+CopmyQpprZQXl6O8vJyREREoKamBtHR0diyZQtWr16N7t27Y/78\n+ViyZAkuX76M1NRUw2LZIEgBmuOrU6cCb7zB+Copn8M0iNslJiZi7ty5mDt3LnJycqBWq1FeXg6t\nVotjx44ZvJYNguTE+Co5qjaPuUqhpKQEhYWFiImJQUVFBdRqNQBArVajoqJCztKIDDC+Sq7I7FYb\nYqmpqcFDDz2EZcuWwcvLy+A5lUplMim1ePFi/fdarRZarVbEKsnVMb5Kjig7OxvZ2dl2f44sU0w3\nb97EmDFjMGrUKDz77LMAdPHZ7Oxs+Pr6oqysDHFxcZxiIlm1jK+uWcOEEjkuh5liEgQB06dPh0aj\n0TcHABg3bhzS0tIAAGlpaUhMTJS6NCIAjK8SNZN8BJGbm4uhQ4eif//++mmklJQUDBw4EElJSThz\n5gxjriSbixeBGTN0u68yvkrOwmFTTNZggyAxMb5Kzkq0O8oRObuW8dX165lQImoma8yVSG6MrxKZ\nxhEEuSTGV4nMY4Mgl8PdV4kswykmchmMrxJZhyMIcgmlpcDcubr4anY246tElmCDIKcjCMCxY0Bu\nru5r716gshKYNQvYuJHxVSJL8ToIcng3bgA//3yrIezbB3TuDMTGAoMH676CgwE3TqiSi+KFcuQy\nLl/WNYHmhlBQAAQF6RpBbKzui2sLRLewQZBTEgTdXduap4pyc3XrCDExtxrCoEHAbRsCE1ELbBDk\nFBoagCNHDBtCU9OtqaLYWCA8HHB3l7tSIsfBBkEOqaYGOHDgVkPIywP8/Awbwn/9F2Di9iBEZAE2\nCHIIZWW3RgZ79wJFRUBExK2GcN99QLducldJ5FzYIEhxTMVN77vvVkMYMAC46y65KyVybmwQJLvb\n46Z79wLe3oybEsmNDYIkV1mpi5s2TxkxbkqkTGwQJCrGTYkcFxsEtSlzcdPBg3Vx0/bcrIVI8dgg\nyC7m4qaDBwN9+zJuSuSI2CDIKoybErkONggyqakJOH78VrooN1e3nxHjpkSugQ2C9G7cAH76yXCE\n4O19azGZcVMi18IG4cIYNyWi1rBBuAhzcdPBg3XfM25KRM3YIJwU46ZEZC82CCdhLG7au7fhdhWM\nmxKRNdggHFTLuGluLnD0KBAZeashMG5KRPZig3AApuKmzQvJjJsSkRjYIBSIcVMiUgI2CAVg3JSI\nlIgNQmLG4qZnzgADBzJuSkTKwgYhMsZNichRsUG0sZZx09xc3feMmxKRI2KDsBPjpkTkrNggrMC4\nKRG5EqdoEFlZWXj22WfR2NiIGTNm4MUXXzR43tZ/yNbips0JI8ZNichZ2fq3UzF/EhsbGzF37lxk\nZWWhqKgI69evx9GjR236rMpK4NtvgZdeAoYM0U0NzZsHnDsHTJ0K/PILcPIk8OWXwKxZQEiINM0h\nOztb/IOIiPXLi/XLx5Frt4diGsTBgwfRr18/+Pv7w93dHQ8//DC2bt1q9n2CAJw6BXz1FTB7NhAa\nCvj7A0uXAh06AK+9pltf+PlnYNkyYPJkoGdP8f95jHH0f8lYv7xYv3wcuXZ7KCaUee7cOfTu3Vv/\ns5+fHw4cOHDH61rGTZuni1rGTWfNYtyUiKgtKObPqMrCvGjXrrfipmPGAKmpjJsSEYlCUIj9+/cL\nI0eO1P/89ttvC6mpqQavCQgIEADwi1/84he/rPgKCAiw6e+yYlJMDQ0NuPfee/H999+jZ8+eGDhw\nINavX4/g4GC5SyMickmKmWJq3749PvroI4wcORKNjY2YPn06mwMRkYwUM4IgIiJlUUzMtaWsrCwE\nBQXhnnvuwZIlS4y+Zt68ebjnnnsQHh6OwsJCiStsnbn6s7Oz4e3tjcjISERGRuLNN9+UoUrjpk2b\nBrVajbCwMJOvUfK5N1e/ks89AJSWliIuLg4hISEIDQ3Fhx9+aPR1SvwdWFK7ks9/XV0dYmJiEBER\nAY1Gg5deesno65R47gHL6rf6/Nu8qiyShoYGISAgQDh16pRQX18vhIeHC0VFRQav2bZtmzBq1ChB\nEAQhLy9PiImJkaNUoyypf8+ePcLYsWNlqrB1P/74o1BQUCCEhoYafV7J514QzNev5HMvCIJQVlYm\nFBYWCoIgCNXV1UJgYKDD/PtvSe1KP//Xrl0TBEEQbt68KcTExAj/+te/DJ5X6rlvZq5+a8+/4kYQ\nllwwl5GRgeTkZABATEwMqqqqUFFRIUe5d7D0gj9BoTN7Q4YMQZcuXUw+r+RzD5ivH1DuuQcAX19f\nREREAAA8PT0RHByM8+fPG7xGqb8DS2oHlH3+O3bsCACor69HY2MjunbtavC8Us99M3P1A9adf8U1\nCGMXzJ07d87sa86ePStZja2xpH6VSoV9+/YhPDwcCQkJKCoqkrpMmyn53FvCkc59SUkJCgsLERMT\nY/C4I/wOTNWu9PPf1NSEiIgIqNVqxMXFQaPRGDyv9HNvrn5rz79iUkzNLL1g7vYuaOn7xGZJHVFR\nUSgtLUXHjh2xY8cOJCYm4sSJExJU1zaUeu4t4SjnvqamBpMmTcKyZcvg6el5x/NK/h20VrvSz7+b\nmxsOHTqEK1euYOTIkcjOzoZWqzV4jZLPvbn6rT3/ihtB9OrVC6WlpfqfS0tL4efn1+przp49i14K\nudmzJfV7eXnph4KjRo3CzZs3UVlZKWmdtlLyubeEI5z7mzdv4qGHHsLjjz+OxMTEO55X8u/AXO2O\ncP4BwNvbG6NHj8ZPP/1k8LiSz31Lpuq39vwrrkEMGDAAv/32G0pKSlBfX4/09HSMGzfO4DXjxo3D\nl19+CQDIy8uDj48P1Gq1HOXewZL6Kyoq9P8VcvDgQQiCYHSuUImUfO4tofRzLwgCpk+fDo1Gg2ef\nfdboa5T6O7CkdiWf/z/++ANVVVUAgOvXr2P37t2IjIw0eI1Szz1gWf3Wnn/FTTGZumDus88+AwDM\nnj0bCQk5anozAAADy0lEQVQJ2L59O/r164dOnTph9erVMld9iyX1b9q0CZ988gnat2+Pjh07YsOG\nDTJXfcsjjzyCnJwc/PHHH+jduzdef/113Lx5E4Dyzz1gvn4ln3sA2Lt3L9auXYv+/fvr/8/99ttv\n48yZMwCU/TuwpHYln/+ysjIkJyejqakJTU1NmDp1KoYPH+4wf3ssqd/a888L5YiIyCjFTTEREZEy\nsEEQEZFRbBBERGQUGwQRERnFBkFEREaxQRARkVFsEOSUjG1P0ZaWLl2K69evW3W8zMxMk9vXEykR\nr4Mgp+Tl5YXq6mrRPr9v37746aef0K1bN0mORyQHjiDIZRQXF2PUqFEYMGAAhg4diuPHjwMAnnzy\nSTzzzDOIjY1FQEAANm/eDEC3M+acOXMQHByMESNGYPTo0di8eTOWL1+O8+fPIy4uDsOHD9d//quv\nvoqIiAj85S9/wYULF+44/po1a/D000+3esyWSkpKEBQUhKeeegr33nsvHnvsMezatQuxsbEIDAxE\nfn6+GKeJ6BYb70tBpGienp53PHb//fcLv/32myAIupu93H///YIgCEJycrKQlJQkCIIgFBUVCf36\n9RMEQRC+/vprISEhQRAEQSgvLxe6dOkibN68WRAEQfD39xcuXbqk/2yVSiV8++23giAIwvz584U3\n33zzjuOvWbNGmDt3bqvHbOnUqVNC+/bthV9//VVoamoSoqOjhWnTpgmCIAhbt24VEhMTrT0tRFZR\n3F5MRGKoqanB/v37MXnyZP1j9fX1AHTbNTfvPBocHKy/AUxubi6SkpIAQL+/vikeHh4YPXo0ACA6\nOhq7d+9utR5Tx7xd3759ERISAgAICQnBAw88AAAIDQ1FSUlJq8cgshcbBLmEpqYm+Pj4mLyHsIeH\nh/574T/LciqVymDvf6GV5Tp3d3f9925ubmhoaDBbk7Fj3q5Dhw4Gn9v8HkuPQWQPrkGQS+jcuTP6\n9u2LTZs2AdD9QT5y5Eir74mNjcXmzZshCAIqKiqQk5Ojf87LywtXr161qobWGgyRErFBkFOqra1F\n79699V9Lly7FunXrsHLlSkRERCA0NBQZGRn617e8K1jz9w899BD8/Pyg0WgwdepUREVFwdvbGwAw\na9YsPPjgg/pF6tvfb+wuY7c/bur7299j6mcl3cmMnBNjrkStuHbtGjp16oRLly4hJiYG+/btQ48e\nPeQui0gSXIMgasWYMWNQVVWF+vp6LFq0iM2BXApHEEREZBTXIIiIyCg2CCIiMooNgoiIjGKDICIi\no9ggiIjIKDYIIiIy6v8BsxKV3Pt7cnUAAAAASUVORK5CYII=\n",
       "text": [
        "<matplotlib.figure.Figure at 0x5c11b50>"
       ]
      }
     ],
     "prompt_number": 23
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 3.3.2,Page No.101"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "import numpy as np\n",
      "%matplotlib inline\n",
      "\n",
      "#Initilization of Variables\n",
      "\n",
      "w1=10 #KN/m #u.d.L\n",
      "F_D=20 #KN #Force at pt D\n",
      "F_C=30 #KN #Force at pt C\n",
      "L_DB=4 #m #Length of DB\n",
      "L_CD=L_AC=2 #m #Length of AC & CD\n",
      "L=8 #m #Length of Beam\n",
      "\n",
      "#Calculations\n",
      "\n",
      "#Let R_A And R_B be the Reactions at pt A and B \n",
      "#R_A+R_B=90 \n",
      "#Now Taking moment at A,M_A we get\n",
      "R_A=(w1*L_DB*(L_DB*2**-1)+F_D*L_DB+F_C*(L_CD+L_DB))*L**-1\n",
      "R_B=90-R_A\n",
      "\n",
      "#Shear Force Calculations\n",
      "\n",
      "#S.F At Pt B\n",
      "V_B1=0 #KN\n",
      "V_B2=R_B #KN\n",
      "\n",
      "#S.F At pt D\n",
      "V_D1=R_B-w1*L_DB #KN\n",
      "V_D2=V_D1-F_D #KN\n",
      "\n",
      "#S.F at Pt C\n",
      "V_C1=V_D2 #KN\n",
      "V_C2=V_C1-F_C  \n",
      "\n",
      "#S.F at PT A\n",
      "V_A1=V_C2 #KN\n",
      "V_A2=V_C2+R_A #KN\n",
      "\n",
      "#Bending Moment Calculations\n",
      "\n",
      "#B.M At Pt B\n",
      "M_B=0 #KN.m\n",
      "\n",
      "#B.M At Pt D\n",
      "M_D=-R_B*L_DB+w1*L_DB*L_DB*2**-1 #KN.m\n",
      "\n",
      "#B.M At PT C\n",
      "M_C=-R_B*(L_DB+L_CD)+w1*L_DB*(L_DB*2**-1+L_CD)+F_D*L_CD #KN.m\n",
      "\n",
      "#B.M At Pt A\n",
      "M_A=-R_B*L+w1*L_DB*(L_DB*2**-1+L_CD+L_AC)+F_D*(L_CD+L_AC)+F_C*L_AC\n",
      "\n",
      "#Result\n",
      "print \"The Shear Force and Bending Moment Diagrams are the results\"\n",
      "\n",
      "#Plotting the Shear Force Diagram\n",
      "\n",
      "X1=[0,0,L_DB,L_DB,L_CD+L_DB,L_CD+L_DB,L_CD+L_DB+L_AC,L_CD+L_DB+L_AC]\n",
      "Y1=[V_B1,V_B2,V_D1,V_D2,V_C1,V_C2,V_A1,V_A2]\n",
      "Z1=[0,0,0,0,0,0,0,0]\n",
      "plt.plot(X1,Y1,X1,Z1)\n",
      "plt.xlabel(\"Length x in m\")\n",
      "plt.ylabel(\"Shear Force in kN\")\n",
      "plt.show()\n",
      "\n",
      "#Plotting the Bendimg Moment Diagram\n",
      "\n",
      "Y2=[M_B,M_D,M_C,M_A]\n",
      "X2=[0,L_DB,L_DB+L_CD,L_AC+L_CD+L_DB]\n",
      "Z2=[0,0,0,0]\n",
      "plt.plot(X2,Y2,X2,Z2)\n",
      "plt.xlabel(\"Length in m\")\n",
      "plt.ylabel(\"Bending Moment in kN.m\")\n",
      "plt.show()"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The Shear Force and Bending Moment Diagrams are the results\n"
       ]
      },
      {
       "metadata": {},
       "output_type": "display_data",
       "png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEPCAYAAACtCNj2AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAH9FJREFUeJzt3XtUlHX+B/D3IGDJRUERiqEdFkQYUBjwWrmCiqUGeUEK\nMk1T98h6qbaMzumYv2MKapau2ba55qU8aS2nQDNXXBzFDC9hkcsmKExxtVYkRTQEvr8/WJ9AZhiQ\nmXlmmPfrnDnNDDPMe92at8/381wUQggBIiIiAA5yByAiIuvBUiAiIglLgYiIJCwFIiKSsBSIiEjC\nUiAiIomspVBbW4uEhASEhIRArVbj5MmTqKmpQWxsLIKCgjBx4kTU1tbKGZGIyK7IWgrLli3D5MmT\n8Z///AcFBQUIDg5Geno6YmNjUVRUhPHjxyM9PV3OiEREdkUh18Frv/zyCzQaDUpKSto8HxwcjKNH\nj8Lb2xvV1dWIjo7G999/L0dEIiK7I9uWQmlpKby8vDB37lxERkZiwYIFuH79Oi5dugRvb28AgLe3\nNy5duiRXRCIiuyNbKTQ2NiI/Px8pKSnIz8+Hi4tLu6UihUIBhUIhU0IiIjskZFJVVSVUKpX0ODc3\nV0yePFkEBweLqqoqIYQQlZWVYvDgwe3eGxAQIADwxhtvvPHWhVtAQIDR72bZthR8fHzg5+eHoqIi\nAMDhw4cRGhqKuLg47Ny5EwCwc+dOTJ06td17L168CCGE1d9ee+012TMwJ3MyJzPevl28eNHod7Oj\nab/qu2bz5s146qmn0NDQgICAAGzfvh1NTU1ITEzEtm3boFKp8PHHH8sZkYjIrshaCuHh4Th9+nS7\n5w8fPixDGiIi4hHNZhQdHS13hE5hTtNiTtOyhZy2kLGzZDtOoTsUCgVsMDYRkaw6893JLQUiIpKw\nFIiISMJSICIiCUuBiIgkLAUiIpKwFIiISMJSICIiCUuBiIgkLAUiIpKwFIiISMJSICIiCUuBiIgk\nLAUiIpKwFIiISMJSICIiCUuBiIgkNlsKubkAr7NDRGRaNlsK8+YBI0YAH30E3Loldxoiop7BZkvh\n/HlgxQrgvfeA3/8eWL8eqK2VOxURkW2z2VJwcADi4oAjR4DMTKCgoKUcli4FLl6UOx0RkW2y2VJo\nLTIS+OAD4LvvAFdXYNQoYPp0zh2IiLpKIYTtfW0qFAp0FPv6dWDnTuCtt4B+/YAXXgASEgAnJwuG\nJCKyMsa+O4EeWgq3NTcDn38OvPkmcOFCy9LSggUtRUFEZG86893ZI5aPDOHcgYioa3p0KbTGuQMR\nkXE9evmoI5w7EJG9sYnlo6amJmg0GsTFxQEAampqEBsbi6CgIEycOBG1Zjr4wMUFSEnh8Q5ERK3J\nXgqbNm2CWq2GQqEAAKSnpyM2NhZFRUUYP3480tPTzfr5nDsQEf1G1lIoLy/HgQMHMH/+fGmTJisr\nC3PmzAEAzJkzB5999pnF8uibO0ybxrkDEdkPWUvh+eefx/r16+Hg8FuMS5cuwdvbGwDg7e2NS5cu\nWTyXry+wZg2g0wGxsTzPEhHZD9lKYf/+/Rg4cCA0Go3BwYdCoZCWleRgaO6wbh1w5YpssYiIzMZR\nrg8+ceIEsrKycODAAdy8eRNXr17F008/DW9vb1RXV8PHxwdVVVUYOHCg3vevXLlSuh8dHY3o6Giz\nZb09d4iLA/LzW/ZYCggAZs0Cli1ruU9EZG20Wi20Wm2X3mMVu6QePXoUb7zxBvbt24fly5ejf//+\nePnll5Geno7a2tp2w2ZT7JLaXRUVwJYtwNatwMMPt+zS+vDDgIwbNkREHbKJXVJvu71MlJqaiuzs\nbAQFBSEnJwepqakyJ9OPcwci6omsYkuhq6xhS+FOd55nacmSlvMseXjInYyIqIVNbSnYujuPd/ju\nu5ZZA493ICJbwlIwAx7vQES2istHFsDzLBGRNbD76ylYG84diEhOnClYGc4diMjasRRkwrkDEVkj\nLh9ZCc4diMjcOFOwQZw7EJG5cKZggzh3ICI5sRSsGOcORGRpXD6yIbfnDhs3An37cu5ARF3DmUIP\nxbkDEd0NzhR6qNZzh6ws4Nw5zh2IyDRYCjZOowF27eLcgYhMg8tHPcz16y0l8dZbnDsQUVucKdgx\nzh2I6E6cKdgxzh2I6G6wFOwA5w5E1FlcPrJDnDsQ2SfOFKhDnDsQ2RfOFKhDnDsQ0Z1YCgSAcwci\nasHlI9KLcweinoczBeo2zh2Ieg7OFKjbOHcgsi8sBeo0zh2Iej4uH9Fd49yByLZwpkAWwbkDkW3o\nVinExMQY/KUAkJOT0814d4+lYL3Onm3Zcti/H5g1C1i2rGUGQUTy61YpnDlzps0vAoC8vDysXbsW\nAwcObPPzu1FWVobZs2fjp59+gkKhwMKFC7F06VLU1NTgiSeewA8//ACVSoWPP/4Y/fr16/L/MJJX\nRQWwZQuwdSvw8MMtS0sPPwz8718lIpKByZaPtFotXn/9ddy4cQOvvvoqJk2a1O1w1dXVqK6uRkRE\nBOrq6hAVFYXPPvsM27dvx4ABA7B8+XKsXbsWV65cQXp6etvQLAWbwbkDkfXodikcPHgQq1evhrOz\nM1599VWDS0qmMHXqVCxevBiLFy/G0aNH4e3tjerqakRHR+P7779vG5qlYHM4dyCSX7dKYfjw4fj5\n55/x4osvYvTo0dIvvC0yMtJkQXU6HcaOHYtz587hgQcewJUrVwAAQgh4enpKj6XQLAWbxrkDkTw6\n893paOgHLi4ucHFxQUZGBjIyMtr9/MiRI91PCKCurg4zZszApk2b4Obm1uZnCoWiTRG1tnLlSul+\ndHQ0oqOjTZKHzO/28Q635w6jRnHuQGQOWq0WWq22S+8xOlNobm6Gg0PbY9xu3ryJe+65p8sB73Tr\n1i089thjmDRpEp577jkAQHBwMLRaLXx8fFBVVYWYmBguH/VwnDsQWYZJTnMxf/78No/r6uowefLk\n7iVDy9LQs88+C7VaLRUCAMTHx2Pnzp0AgJ07d2Lq1Knd/iyybi4uwKJFwPffAytWAO+9B/z+98C6\ndcAdK4dEZGZGS8HX1xcpKSkAgCtXrmDixIl4+umnu/3BX375JT788EMcOXIEGo0GGo0GBw8eRGpq\nKrKzsxEUFIScnBykpqZ2+7PINvA8S0Ty69QuqS+99BKuXr2Kr7/+GqmpqUhISLBENoO4fGQ/eLwD\nkel0a++j28Pl279k1apVGD58OB599FEoFApMnz7d9Ik7iaVgfzh3IOq+bpXCM88802bPHyFEm8fb\nt283UcyuYynYLx7vQHT3eEI86tF4vANR1/AiO9Sj8foORKbHLQXqMTh3IOoYl4/ILnHuQKSfSUrh\n5s2byMjIgE6nQ2Njo/SLV6xYYbqkXcRSoM5qPXd46qmWuUNgoNypiORhkpnC448/jqysLDg5OcHV\n1RWurq5wcXExWUgic2o9d3BzA0aP5tyBqCNGtxTCwsJw7tw5S+XpFG4p0N1qPXdwd2+ZO8ycybkD\n2QeTbCk8+OCDKCgoMFkoIjm1Ps/Sa68Bf/87z7NE1JrRLYWQkBBcuHAB/v7+6N27d8ubFApZi4Jb\nCmRKnDuQvTDJoFmn0+l9XqVS3W2ubmMpkDlUVracZ+m993ieJeqZulUKV69ehbu7O2pqavS+0dPT\ns/sJ7xJLgcyJcwfqqbpVClOmTMHnn38OlUrV7upnCoUCJSUlpkvaRSwFsoTbxzu89RZQXMzjHcj2\n8eA1IhPh3IF6Ap77iMhEbh/vcO5cy5ISj3egnopbCkR3gXMHskVcPiIyM31zh6VLgXvukTsZUXsm\nWz7Kzc2VLqrz888/o7S0tPvpiHqA29eVzslpua707t3Ap5/KnYro7hkthZUrV2LdunVIS0sDADQ0\nNGDWrFlmD0ZkazQaIDwcuHVL7iREd89oKXz66afIzMyUToLn6+uLa9eumT0YERFZntFS6N27Nxwc\nfnvZ9evXzRqIiIjkY7QUZs6ciT/+8Y+ora3Fe++9h/Hjx2P+/PmWyEZERBbmaOwFL730Eg4dOgQ3\nNzcUFRVh1apViI2NtUQ2IiKyMKOlUFpaijFjxmDixIkAgBs3bkCn08l6QjwiIjIPo8tHCQkJ6NWr\n129vcHBAQkKCWUMREZE8jJZCU1MTnJ2dpce9e/fGLe5zR0TUIxkthQEDBiAzM1N6nJmZiQEDBpg1\nFBERycNoKbz77rtYs2YN/Pz84Ofnh/T0dPztb38za6iDBw8iODgYgwYNwtq1a836WURE9JsOB81N\nTU149913cfLkSemANTc3N7MGampqwuLFi3H48GH4+vpi+PDhiI+PR0hIiFk/l4iIjGwp9OrVC8eP\nH4cQAm5ubmYvBAA4deoUAgMDoVKp4OTkhCeffLLN8hUREZmP0V1SIyIi8Pjjj2PmzJno06cPgJYz\n7U2fPt0sgSoqKuDn5yc9ViqVOHnypFk+i4jIXly+3LnXGS2FmzdvwtPTEzk5OW2eN1cp3HnpT4Ov\ni271OhUAf7PEIeqaAOCDUmDO/8kdhAhAKQBd195itBR27NhxV1nulq+vL8rKyqTHZWVlUCqV7V4n\ntLyeAlmf2bOBCRNa/klkTY4fB8aMMf6XbqN7H5WVlWHatGnw8vKCl5cXZsyYgfLycpOE1GfYsGEo\nLi6GTqdDQ0MD9u7di/j4eLN9HhER/cZoKcydOxfx8fGorKxEZWUl4uLiMHfuXLMFcnR0xNtvv41H\nHnkEarUaTzzxBPc8IiKyEKOX4wwPD8e3335r9DlL4uU4yVpx+Yis1e3lo25fjrN///744IMP0NTU\nhMbGRnz44Yc8opmIqIcyWgrvv/8+Pv74Y/j4+OC+++7DJ598Il2vmYiIehaDex/l5eVh1KhRUKlU\n2LdvnyUzERGRTAxuKSxatEi6P3r0aIuEISIieRldPgJaDmAjIqKez+DyUVNTE2pqaiCEkO635unp\nafZwRERkWQZL4erVq4iKigIACCGk+0DLLqElJSXmT0dERBZlsBR0Op0FYxARkTXo1EyBiIjsA0uB\niIgkLAUiIpJ0WAqNjY0YPHiwpbIQEZHMOiwFR0dHBAcH44cffrBUHiIikpHRi+zU1NQgNDQUI0aM\ngIuLC4CWXVKzsrLMHo6IiCzLaCmsWrXKEjmIiMgKGC2F6OhoC8QgIiJrYHTvo6+++grDhw+Hq6sr\nnJyc4ODgAHd3d0tkIyIiCzO6pbB48WLs2bMHiYmJOHPmDHbt2oXz589bIhuRTbpxA7h2Te4UPYOj\nI3DvvXKnsC9GSwEABg0ahKamJvTq1Qtz585FREQE0tPTzZ2NyObcfz/w4ostN+q+hgagpgb43z4u\nZAFGS8HFxQW//vorwsPDsXz5cvj4+PD6yEQGpKe33Mg0PDxaioGlYDlGZwq7du1Cc3Mz3n77bfTp\n0wfl5eXIyMiwRDYiIrIwo1sKKpUK9fX1qK6uxsqVKy0QiYiI5GJ0SyErKwsajQaPPPIIAODs2bOI\nj483ezAiIrI8o6WwcuVKnDx5Eh4eHgAAjUbDC+wQEfVQRkvByckJ/fr1a/smB55clYioJzL67R4a\nGordu3ejsbERxcXFWLJkCR588EFLZCMiIgszWgqbN2/Gv//9b/Tu3RtJSUlwd3fHxo0bLZGNiIgs\nTCFs8KADhULBYyWI7ICHB1BS0vJP6p7jx4ExY4x/dxrdUjh//jwWLFiA2NhYxMTEICYmBuPGjetW\nuJdeegkhISEIDw/H9OnT8csvv0g/S0tLw6BBgxAcHIxDhw5163OIiKhrjG4pDB06FIsWLUJkZCR6\n9erV8iaFAlFRUXf9odnZ2Rg/fjwcHByQmpoKAEhPT0dhYSGSk5Nx+vRpVFRUYMKECSgqKmo32OaW\nApF94JaC6XR2S8HowWtOTk5YtGiRyYIBQGxsrHR/5MiR0hHSmZmZSEpKgpOTE1QqFQIDA3Hq1CmM\nGjXKpJ9PRET6GVw+qqmpweXLlxEXF4ctW7agqqoKNTU10s1U3n//fUyePBkAUFlZCaVSKf1MqVSi\noqLCZJ9FREQdM7ilEBkZCYVCIT1+4403pPsKhcLoAWyxsbGorq5u9/yaNWsQFxcHAFi9ejWcnZ2R\nnJxs8Pe0ztBa61NuREdH82JARER30Gq10Gq1AIAff+zcewyWgk6n61aY7OzsDn++Y8cOHDhwAP/6\n17+k53x9fVFWViY9Li8vh6+vr9738zxMREQda/0X5uPHge3b/8/oewwuH50+fRpVVVXS4507dyI+\nPh5Lly7t9vLRwYMHsX79emRmZuKee+6Rno+Pj8eePXvQ0NCA0tJSFBcXY8SIEd36LCIi6jyDpbBw\n4UL07t0bAHDs2DGkpqZizpw5cHd3x8KFC7v1oUuWLEFdXR1iY2Oh0WiQkpICAFCr1UhMTIRarcak\nSZPwzjvvGFw+IiIi0zO4S2p4eDi+/fZbAMCf/vQneHl5SUs2rX8mB+6SSmQfuEuq6XT74LWmpibc\nunULAHD48GHExMRIP2tsbDRRTCIisiYGB81JSUkYO3YsBgwYgD59+mDMmDEAgOLi4nZnTSUiop6h\nwyOav/rqK1RXV2PixIlw+d9FUouKilBXV4fIyEiLhbwTl4+I7AOXj0zHJEc0jx49ut1zQUFB3UtG\nRERWi1fLISIiCUuBiIgkLAUiIpKwFIiISMJSICIiCUuBiIgkLAUiIpKwFIiISMJSICIiCUuBiIgk\nLAUiIpKwFIiISMJSICIiCUuBiIgkLAUiIpKwFIiISMJSICIiCUuBiIgkLAUiIpKwFIiISMJSICIi\nCUuBiIgkLAUiIpKwFIiISCJrKWzYsAEODg6oqamRnktLS8OgQYMQHByMQ4cOyZiOiMj+OMr1wWVl\nZcjOzsbvfvc76bnCwkLs3bsXhYWFqKiowIQJE1BUVAQHB27QEBFZgmzfti+88ALWrVvX5rnMzEwk\nJSXByckJKpUKgYGBOHXqlEwJiYjsjyylkJmZCaVSiaFDh7Z5vrKyEkqlUnqsVCpRUVFh6XhERHbL\nbMtHsbGxqK6ubvf86tWrkZaW1mZeIIQw+HsUCoVZ8hERUXtmK4Xs7Gy9z587dw6lpaUIDw8HAJSX\nlyMqKgonT56Er68vysrKpNeWl5fD19dX7+9ZuXKldD86OhrR0dEmy05E1BNotVpotVoAwI8/du49\nCtHRX9MtwN/fH19//TU8PT1RWFiI5ORknDp1Sho0X7hwod3WgkKh6HDrgoh6Bg8PoKSk5Z/UPceP\nA2PGGP/ulG3vo9taf+Gr1WokJiZCrVbD0dER77zzDpePiIgsSPYthbvBLQUi++DhAezaBbi5yZ3E\n9n33HbB0qQ1sKRARGRIfD2zYIHcK+8ItBSIiO9GZ704eKkxERBKWAhERSVgKREQkYSkQEZGEpUBE\nRBKWAhERSVgKREQkYSkQEZGEpUBERBKWAhERSVgKREQkYSkQEZGEpUBERBKWAhERSVgKREQkYSkQ\nEZGEpUBERBKWAhERSVgKREQkYSkQEZGEpUBERBKWAhERSVgKREQkYSkQEZGEpUBERBKWAhERSWQr\nhc2bNyMkJARhYWF4+eWXpefT0tIwaNAgBAcH49ChQ3LFIyKyS7KUwpEjR5CVlYWCggKcO3cOL774\nIgCgsLAQe/fuRWFhIQ4ePIiUlBQ0NzfLEdEktFqt3BE6hTlNizlNyxZy2kLGzpKlFP7617/ilVde\ngZOTEwDAy8sLAJCZmYmkpCQ4OTlBpVIhMDAQp06dkiOiSdjKvyjMaVrMaVq2kNMWMnaWLKVQXFyM\nY8eOYdSoUYiOjsaZM2cAAJWVlVAqldLrlEolKioq5IhIRGSXHM31i2NjY1FdXd3u+dWrV6OxsRFX\nrlxBXl4eTp8+jcTERJSUlOj9PQqFwlwRiYjoTkIGjz76qNBqtdLjgIAA8fPPP4u0tDSRlpYmPf/I\nI4+IvLy8du8PCAgQAHjjjTfeeOvCLSAgwOj3s9m2FDoydepU5OTkYOzYsSgqKkJDQwMGDBiA+Ph4\nJCcn44UXXkBFRQWKi4sxYsSIdu+/cOGCDKmJiHo+WUph3rx5mDdvHoYMGQJnZ2fs2rULAKBWq5GY\nmAi1Wg1HR0e88847XD4iIrIghRBCyB2CiIisg80d0Xzw4EEEBwdj0KBBWLt2rdxx9Jo3bx68vb0x\nZMgQuaN0qKysDDExMQgNDUVYWBj+8pe/yB1Jr5s3b2LkyJGIiIiAWq3GK6+8Inckg5qamqDRaBAX\nFyd3FINUKhWGDh0KjUajd3nWWtTW1iIhIQEhISFQq9XIy8uTO1I758+fh0ajkW59+/a12v+O0tLS\nEBoaiiFDhiA5ORm//vqr/heaYnBsKY2NjSIgIECUlpaKhoYGER4eLgoLC+WO1c6xY8dEfn6+CAsL\nkztKh6qqqsTZs2eFEEJcu3ZNBAUFWeWfpxBCXL9+XQghxK1bt8TIkSNFbm6uzIn027Bhg0hOThZx\ncXFyRzFIpVKJy5cvyx3DqNmzZ4tt27YJIVr+f6+trZU5UceampqEj4+P+PHHH+WO0k5paanw9/cX\nN2/eFEIIkZiYKHbs2KH3tTa1pXDq1CkEBgZCpVLByckJTz75JDIzM+WO1c6YMWPg4eEhdwyjfHx8\nEBERAQBwdXVFSEgIKisrZU6lX58+fQAADQ0NaGpqgqenp8yJ2isvL8eBAwcwf/58CCtflbX2fL/8\n8gtyc3Mxb948AICjoyP69u0rc6qOHT58GAEBAfDz85M7Sjvu7u5wcnJCfX09GhsbUV9fD19fX72v\ntalSqKioaPMHzoPbTEen0+Hs2bMYOXKk3FH0am5uRkREBLy9vRETEwO1Wi13pHaef/55rF+/Hg4O\n1v2flUKhwIQJEzBs2DBs3bpV7jh6lZaWwsvLC3PnzkVkZCQWLFiA+vp6uWN1aM+ePUhOTpY7hl6e\nnp7485//jAceeAD3338/+vXrhwkTJuh9rXX/23sH7olkHnV1dUhISMCmTZvg6uoqdxy9HBwc8M03\n36C8vBzHjh2zutMK7N+/HwMHDoRGo7H6v4V/+eWXOHv2LL744gts2bIFubm5ckdqp7GxEfn5+UhJ\nSUF+fj5cXFyQnp4udyyDGhoasG/fPsycOVPuKHpdvHgRGzduhE6nQ2VlJerq6rB79269r7WpUvD1\n9UVZWZn0uKysrM1pMajrbt26hRkzZmDWrFmYOnWq3HGM6tu3L6ZMmSKdGsVanDhxAllZWfD390dS\nUhJycnIwe/ZsuWPpdd999wFoOefYtGnTrPL8YkqlEkqlEsOHDwcAJCQkID8/X+ZUhn3xxReIioqS\nzuNmbc6cOYMHH3wQ/fv3h6OjI6ZPn44TJ07ofa1NlcKwYcNQXFwMnU6HhoYG7N27F/Hx8XLHsllC\nCDz77LNQq9V47rnn5I5j0H//+1/U1tYCAG7cuIHs7GxoNBqZU7W1Zs0alJWVobS0FHv27MG4ceOk\n42+sSX19Pa5duwYAuH79Og4dOmSVe8n5+PjAz88PRUVFAFrW60NDQ2VOZdhHH32EpKQkuWMYFBwc\njLy8PNy4cQNCCBw+fNjwEqyFht8mc+DAAREUFCQCAgLEmjVr5I6j15NPPinuu+8+4ezsLJRKpXj/\n/ffljqRXbm6uUCgUIjw8XERERIiIiAjxxRdfyB2rnYKCAqHRaER4eLgYMmSIWLdundyROqTVaq12\n76OSkhIRHh4uwsPDRWhoqNX+NySEEN98840YNmyYGDp0qJg2bZrV7n1UV1cn+vfvL65evSp3lA6t\nXbtWqNVqERYWJmbPni0aGhr0vo4HrxERkcSmlo+IiMi8WApERCRhKRARkYSlQEREEpYCERFJWApE\nRCRhKVCPYu7TdGzcuBE3btww+eft27fPak8FT/aFxylQj+Lm5iYdsWsO/v7+OHPmDPr372+RzyOy\nNG4pUI938eJFTJo0CcOGDcMf/vAHnD9/HgDwzDPPYNmyZXjooYcQEBCAjIwMAC1nZE1JSUFISAgm\nTpyIKVOmICMjA5s3b0ZlZSViYmIwfvx46fe/+uqriIiIwOjRo/HTTz+1+/znnnsOq1atAgD885//\nxNixY9u9ZseOHViyZEmHuVrT6XQIDg7G3LlzMXjwYDz11FM4dOgQHnroIQQFBeH06dPd/4Mj+2TB\no6yJzM7V1bXdc+PGjRPFxcVCCCHy8vLEuHHjhBBCzJkzRyQmJgohhCgsLBSBgYFCCCE++eQTMXny\nZCGEENXV1cLDw0NkZGQIIdpfoEahUIj9+/cLIYRYvny5eP3119t9fn19vQgNDRU5OTli8ODBoqSk\npN1rduzYIRYvXtxhrtZKS0uFo6OjOHfunGhubhZRUVFi3rx5QgghMjMzxdSpU43+WRHp4yh3KRGZ\nU11dHb766qs2pzRuaGgA0HIq9ttnhg0JCcGlS5cAAMePH0diYiIASNdvMMTZ2RlTpkwBAERFRSE7\nO7vda+69915s3boVY8aMwaZNm+Dv799hZkO57uTv7y+dJC40NFQ6P35YWBh0Ol2Hn0FkCEuBerTm\n5mb069cPZ8+e1ftzZ2dn6b7433hNoVC0uSaC6GDs5uTkJN13cHBAY2Oj3tcVFBTAy8ur0xeF0pfr\nTr17927z2bff01EOImM4U6Aezd3dHf7+/vjHP/4BoOULtqCgoMP3PPTQQ8jIyIAQApcuXcLRo0el\nn7m5ueHq1atdyvDDDz/gzTfflC5so+/6BR0VD5ElsRSoR6mvr4efn59027hxI3bv3o1t27YhIiIC\nYWFhyMrKkl7f+mp+t+/PmDEDSqUSarUaTz/9NCIjI6XrAy9cuBCPPvqoNGi+8/13Xh1QCIH58+dj\nw4YN8PHxwbZt2zB//nxpCcvQew3dv/M9hh7zKoV0t7hLKpEe169fh4uLCy5fvoyRI0fixIkTGDhw\noNyxiMyOMwUiPR577DHU1taioaEBK1asYCGQ3eCWAhERSThTICIiCUuBiIgkLAUiIpKwFIiISMJS\nICIiCUuBiIgk/w9P4ODmR+1IBgAAAABJRU5ErkJggg==\n",
       "text": [
        "<matplotlib.figure.Figure at 0x5cab090>"
       ]
      },
      {
       "metadata": {},
       "output_type": "display_data",
       "png": "iVBORw0KGgoAAAANSUhEUgAAAYwAAAEPCAYAAABRHfM8AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XtcVWW6B/DfRkArRDMtCnBguAQICoKoY2OooKCRl5QE\nk8x0nGrSTnPTOnk5qWTpHC8Nmh3MmaOZF0K0ERM9YqUSiDZadBJUTlzE1BFRURF4zx9LdiBs9oK9\n9l5r7/37fj58hA1786uMh3e9630enRBCgIiIyAgHtQMQEZF1YMEgIiJZWDCIiEgWFgwiIpKFBYOI\niGRhwSAiIlmsrmDs3bsXAQEB8PPzw7Jly9SOQ0RkN3TWdA6jvr4ejz/+OPbv3w93d3cMGDAAW7Zs\nQWBgoNrRiIhsnlWtMPLy8uDr6wsvLy84OTlh8uTJyMzMVDsWEZFdsKqCUV5eDk9PT/3HHh4eKC8v\nVzEREZH9sKqCodPp1I5ARGS3HNUO0B7u7u4oLS3Vf1xaWgoPD49mX6ProQOuWDoZEZF18/HxQXFx\ncZtfY1UrjIiICBQVFaGkpAS1tbXYunUrnn766eZfdAVwcxM4d05ACO2+LViwQPUMtpLTGjIyJ3Nq\n8e3GDYHHHhPIyxM4c+aM0Z/BVlUwHB0d8f7772PUqFEICgrCs88+2+odUn/+MzB2LHD9ugohiYis\nxJo1wODBwIAB8r7eqi5JAUBcXBzi4uLa/Jo5c4CTJ4Fp04Bt2wAHqyqLRETmd+UKsHw58OWX8p9j\nkz9KdTpg7VqgogJYvFjtNK2LiopSO4Is1pDTGjICzKk05jTNe+8BTz8NBATIf45VHdyTQ6fTofEf\nqbISiIwEVq4EJkxQORgRkUacPw8EBwMnTgC9e0uPNf3ZaYhNFwwAKCgAYmOBAweAvn1VDEZEpBGv\nvAJ07gz85S8/P8aCcdeWLcAbbwD5+UDPnioFIyLSgLNnpSsv338P9Or18+MsGE3MmwccPQpkZwNO\nTioEIyLSgOeeA/z8gAULmj/OgtFEfb10q23v3kBqqgrBiIhUdvIkMHIkUFQEdO3a/HNyCoZN3iXV\nmk6dgI8/BnJygHXr1E5DRGR5b74JzJ3bsljIZXXnMEzh6gpkZgJPPAEEBgJPPql2IiIiyzh8WFph\nbN/e8dewmxVGIz8/YNMmYPJkoKRE7TREROYnhLSPu3Ah0KVLx1/H7goGAMTEsH0IEdmPvXuBS5eA\nqVNNex272fS+lxDAiy8C1dVsH0JEtquhAejfH5g/v+0DzNz0boM1tA8hIjLVtm2AszMwfrzpr2W3\nK4xGbB9CRLbqzh3pBp/164Hhw9v+Wq4wZHBzAzIygFmzpDsIiIhsRVoa4O1tvFjIZfcrjEZsH0JE\ntqSmRrordOdOefMuuMJoh8RE6VbbiROlZRwRkTVr73AkObjCaILtQ4jIFly5Avj7S8OR5M674Aqj\nndg+hIhsQUeGI8nBFUYrioqk9iHbtrF9CBFZl9aGI8nBbrUmyM4GkpOlluheXqbnIiKyhNaGI8nB\ngmGilSuBjz6Smna5uCjykkREZmNoOJIcLBgmYvsQIrImhoYjycGCoYDbt4Fhw6S54PPnK/ayRESK\nams4khxyfnba1TyMjujcGfj0U2mZFxzM9iFEpE2mDkeSgysMmQoKpFXGgQNA376KvzwRUYcdPgwk\nJQE//NDxeRc8h6Gg8HBg9WrpYN+lS2qnISKSKDUcSQ4WjHZg+xAi0hqlhiPJwUtS7cT2IUSkFY3D\nkRYsMH3ehVVekvrjH/+IwMBA9OvXDxMmTMDVq1f1n0tJSYGfnx8CAgKwb98+VfKxfQgRacXWrdKN\nOePGWeb7aW6FkZ2djREjRsDBwQFz584FALzzzjsoLCxEUlIS8vPzUV5ejujoaJw+fRoO9xyOMPcK\noxHbhxCRmtozHEkOq1xhxMTE6IvAwIEDUVZWBgDIzMxEYmIinJyc4OXlBV9fX+Tl5amW088P2LRJ\n2tMoKVEtBhHZKaWHI8mhuYLR1IYNGzB69GgAQEVFBTw8PPSf8/DwQHl5uVrRAAAxMcCf/yztaVy/\nrmoUIrIjNTXA228DS5da9vuqcnAvJiYGlZWVLR5funQp4uPjAQBLliyBs7MzkpKSDL6OTqczW0a5\n5syRTlhOm8b2IURkGeYYjiSHKgUjOzu7zc9v3LgRe/bswYEDB/SPubu7o7S0VP9xWVkZ3N3dW33+\nwoUL9e9HRUUhKirKpLxt0emAtWul9iGLF7N9CBGZ15UrwPLl0nAkU+Tk5CAnJ6ddz9HcpvfevXvx\n+9//HocOHULPJsO1Gze98/Ly9JvexcXFLVYZltr0vldlpdQ+ZOVKtg8hIvN54w3gwgVpD0NJVtl8\n0M/PD7W1tejRowcAYPDgwUi9e+Bh6dKl2LBhAxwdHbFq1SqMGjWqxfPVKhgA24cQkXl1dDiSHFZZ\nMEylZsEAgC1bpN8A8vOBJgskIiKTdXQ4khwsGCqZN0+a1JedDTg5qRqFiGyEKcOR5GDBUEl9vXTy\n0tOT7UOISBmmDEeSgwVDRdXVwKBBwOzZwG9/q3YaIrJmpg5HkoMFQ2VsH0JESoiPB0aMAF57zXzf\ngwVDA7KzgeRkaU/Dy0vtNERkbZQYjiSHVfaSsjVsH0JEHWXJ4UhysGBYwJw50sS+adOk/vVERHJY\ncjiSHCwYFtDYPqSiQmofQkRkTEODtLpYsgRwVKWJU0saiWH7OncGPv1Uuo86OJjtQ4iobZYejiSH\n0RXG7t27ERYWhgcffBBdu3ZF165d4erqaolsNsfNDcjIAGbNkm6TIyJqzZ07wFtvASkp0hUKrTB6\nl5SPjw8yMjIQHBzcYrqdFmntLqnWsH0IEbVl3TogPV26y9JS5PzsNHpJysPDA3369LGKYmEtEhOl\nFcbEiWwfQkTNNQ5H2rlT7SQtGV1h5ObmYv78+Rg2bBicnZ2lJ+l0eP311y0SsL2sYYUBsH0IEbVu\n2TLp6sOOHZb9voqsMN566y107doVt27dQm1trWLh7F2nTsDmzVL7kHXr2D6EiJQbjmQuRlcYwcHB\n+Pbbby2Vx2TWssJoxPYhRNTIXMOR5FDkpPfo0aPx+eefKxaKmvPzAzZtAiZPBkpK1E5DRGo5fx74\n4APzdaNVgtEVhouLC2pqauDs7Aynu7uzOp0O1dXVFgnYXta2wmi0ciXw0UdS3xgXF7XTEJGlmXM4\nkhxsPmhFhABefFFqi75tG8Cb0ojsh7mHI8nB5oNWpGn7kLffVjsNEVnS/PnAq6+qVyzk6lDBCAsL\nUzoH4ef2IWlp0p9EZPtOngT27wc0elKhGV6S0qCCAiA2FjhwAOjbV+00RGROlhiOJAcvSVmp8HBg\n9WpphsalS2qnISJzOXxYWmFYyzksgysMb29vw0/S6XD27FmzhTKFLawwGs2bJ03qY/sQItsjBDB0\nqHSzy7Rpaqcx8S6pS01+tdXpdGhoaMDWrVuxfPlyhIeHIz09Xdm0CrGlgsH2IUS2a88e4A9/AE6d\nkjo/qM2kS1I9e/ZEz5490aNHD+zevRtRUVE4evQo9uzZo9liYWsa24fk5EjtQ4jINjQ0SKe6lyzR\nRrGQy2AvqdraWmzYsAH/+Z//iSeeeAKZmZnw9fW1ZDYC4OoK7NoFDBkCBAayfQiRLdDicCQ5DF6S\n8vDwgKOjI+bMmYPevXtDd3eKhxACOp0OEzQ6Ms6WLkk1lZ0NJCdLexpeXmqnIaKOunNH+uVv/Xpg\n+HC10/zMpD2MaXd3YXQGxj199NFHpqUzE1stGADbhxDZAjWGI8mhSGuQW7duoUuXLs0eu3z5Mh56\n6CHTE5qBLRcMtg8hsm41NVLD0Z07gQED1E7TnCLnMCZMmIA7d+7oPz5//jxiYmJMT2fEihUr4ODg\ngH/961/6x1JSUuDn54eAgADs27fP7Bm0hu1DiKzbmjXA4MHaKxZyGR2gNH78eCQkJGDHjh0oLS3F\n008/jeXLl5s1VGlpKbKzs/GLX/xC/1hhYSG2bt2KwsJClJeXIzo6GqdPn7a70bGN7UMiI4GQEECj\nW0lEdA+tD0eSw+hP25kzZ2LEiBEYO3Ys4uPjsXbtWowcOdKsoV5//XW8++67zR7LzMxEYmIinJyc\n4OXlBV9fX+Tl5Zk1h1a5uQEZGcCsWdIpUSLSvvfeA55+GggIUDtJxxlcYaxYsQLAz9e1SktL0a9f\nP+Tm5uLrr78220zvzMxMeHh4oO89TZQqKiowaNAg/cceHh4oLy83SwZr0LR9SH4+0LOn2omIyJDG\n4UgnTqidxDQGC8a1a9ea3SE1fvx46HQ6XL9+3eRvGhMTg8rKyhaPL1myBCkpKc32J9rahDF0B9fC\nhQv170dFRSEqKqrDWbUsMVFaYUycyPYhRFq2eDHw/PNA795qJ/lZTk4OcnJy2vUcTXWr/fbbbzFi\nxAjcf//9AICysjK4u7vj66+/1t/GO3fuXABAbGwsFi1ahIEDBzZ7DVu+S6o1bB9CpG1aGI4kh9VP\n3PP29kZBQQF69OiBwsJCJCUlIS8vT7/pXVxc3GKVYW8FA5Busx00CJg923q6XhLZi+eek26l1fKs\nbkDez06jd0mpqWkxCAoKQkJCAoKCguDo6IjU1FSDl6TsDduHEGlT43CktWvVTqIMTa8wOsIeVxiN\n2D6ESFvi44HoaGDOHLWTGKfIJamffvoJH374IUpKSlBXV6d/4Q0bNiiXVEH2XDAAYNUqYMMGtg8h\nUtvhw0BSEnD6tHR+SusUKRiDBw/G0KFDER4erj8kp9Pp8MwzzyiXVEH2XjDYPoRIfVobjiSHIgUj\nNDQU33zzjaLBzMneCwYA3L4NDBsGjBql/Y02IlukteFIcijSS+qpp57CP/7xD8VCkfk1tg9JS5P+\nJCLLsdbhSHIYXWG4uLigpqYGzs7OcLp7Mkyn06G6utoiAduLK4yfFRQAsbHAgQPAPQfnichMtmyR\nRhHk5koNQ62F1Z/D6AgWjOa2bJF+22H7ECLz0+pwJDlMOofx/fffIzAwEMePH2/18/379zctHVkE\n24cQWU5aGuDtbX3FQi6DK4yZM2fiww8/RFRUVKsH5A4ePGj2cB3BFUZLbB9CZH5aHo4kBy9JkR7b\nhxCZ17Jl0qXfHTvUTtIxLBjUTHGx1D5k2za2DyFS0pUrgL+/NBzJWuddKHJbLdkOX19g0yZg8mSg\npETtNES2wxaGI8nBFYYdYvsQIuWcPw8EB0vDkbQ076K9FFlhjBgxQtZjZD1mz5Ym9k2bJh0yIqKO\n0+JwJHMxeFvtzZs3UVNTg4sXL+Jf//qX/vHq6mq7Ho1qC3Q6qd3ysGHA22+zfQhRR509C2zdKg1H\nsgcGC8YHH3yAVatWoaKiAuHh4frHu3btit/97ncWCUfm09g+JDISCAkBJkxQOxGR9Zk/H3j1VW1P\n0lOS0T2M1atXY/bs2ZbKYzLuYbQP24cQdczJk8DIkUBREdC1q9ppTKfYbbVHjhxpNg8DAJKTk01P\naAYsGO3H9iFE7WdNw5HkUKRgPPfcczh79ixCQ0PRqUnrxTVr1iiTUmEsGB0zb540qY/tQ4iMs7bh\nSHIoUjACAwNRWFhoNfOzWTA6hu1DiOSxxuFIcihyW21wcDDOnz+vWCjSpk6dgM2bgZwcYN06tdMQ\naVdWFnD5MjB1qtpJLM/gXVKNLl68iKCgIERGRqLz3bWXTqfDrl27zB6OLMvVFdi1S2ofEhjI9iFE\n97Ll4UhyGC0YCxcuBNB8uWItl6eo/Zq2Dzl6FPDyUjsRkXZs3SrtWYwbp3YSdci6S6qkpATFxcWI\njo5GTU0N6urq4Orqaol87cY9DGWwfQhRc9Y8HEkORfYw1q9fj0mTJmHWrFkAgLKyMowfP16ZhKRZ\nbB9C1JytD0eSw2jB+Otf/4qvvvpKv6Lw9/fHTz/9ZPZgpK7G9iEVFVL7ECJ7VlMj/X+wdKnaSdRl\ntGB07txZv9kNAHV1ddzDsBON7UPS0qQ/iezVmjXA4MHWOUlPSUY3vZ988kksWbIENTU1yM7ORmpq\nKuLj4y2RjTTAzQ3IyJDah/j6sn0I2Z8rV4Dly6XhSPbO6KZ3fX090tLSsG/fPgDAqFGjMGPGDM2u\nMrjpbR6N7UPy8uyn0RoRIP29v3BBWmnbMqsd0bpmzRqkpqaiU6dOGDNmDJYtWwYASElJwYYNG9Cp\nUyesXr0aI0eObPFcFgzzYfsQsje2MhxJDkUKxu7duzF//vxmzQd1Oh2qq6uVS9rEwYMHsXTpUuzZ\nswdOTk64ePEievXqhcLCQiQlJSE/Px/l5eWIjo7G6dOn4eDQfBuGBcN82D6E7M0rr0h7eX/5i9pJ\nzE+R22pfe+01/O1vf8Ply5dx7do1XLt2zWzFAgDWrl2LefPmwenur7C97l7/yMzMRGJiIpycnODl\n5QVfX1/k5eWZLQe1xPYhZE8ahyPNm6d2Eu0wWjA8PDzQp0+fFr/Jm0tRURG++OILDBo0CFFRUTh2\n7BgAoKKiAh4eHs1ycfKf5TW2D1mwADh0SO00ROYzf750Hol7dj8zepfUsmXLEBcXh2HDhsHZ2RmA\ntHR5/fXXO/xNY2JiUFlZ2eLxJUuWoK6uDleuXEFubi7y8/ORkJCAs2fPtvo6hjbeG9uZAEBUVBSi\noqI6nJVaYvsQsnUnTwL790tnkWxVTk4OcnJy2vUcowXjrbfeQteuXXHr1i3U1tZ2NFsz2dnZBj+3\ndu1aTLg7L3TAgAFwcHDApUuX4O7ujtLSUv3XlZWVwd3dvdXXaFowyDxiYoC5c4GxY9k+hGzPm29K\nl6JsYZKeIff+Mr1o0SKjzzG66R0cHIxvv/3W5HByffDBB6ioqMCiRYtw+vRpREdH48cff9Rveufl\n5ek3vYuLi1usMrjpbTlCSDMBqquBbdsAC121JDIrWxyOJIcim96jR4/G559/rlgoY6ZPn46zZ88i\nJCQEiYmJ+Pvf/w4ACAoKQkJCAoKCghAXF4fU1FTNngWxF2wfQrZGCGnlvGiRfRULuYyuMFxcXFBT\nUwNnZ2f9nUvmvK3WVFxhWF5lJRAZCaxcCdy9mkhklfbsAf7wB+DUKfubd2G1B/dMwYKhjoICqX3I\ngQNsH0LWqaEB6N9fugPQHhtyy/nZaXTTG5DOQHzxxRfQ6XR48skn2UuKWggPB1avljbB2T6ErJG9\nD0eSw+gKY+7cucjPz8eUKVMghMAnn3yCiIgIpKSkWCpju3CFoS62DyFrZOvDkeRQ5JJUSEgIvvnm\nG3S6e0Gvvr4eoaGhOHXqlHJJFcSCoS62DyFrtG4dkJ4u/aJjrxS5S0qn06Gqqkr/cVVVFe9OIoPY\nPoSsDYcjyWd0D2PevHno37+//oDHoUOH8M4775g7F1mxxvYhQ4ZIy/wnn1Q7EZFhHI4kn6y7pCoq\nKpCfnw+dTofIyEi4ublZIluH8JKUdmRnA8nJbB9C2nXlCuDvLw1HCghQO426TNrDOH78eLOPG7+s\n8XJU//79lcioOBYMbVm1Ctiwge1DSJvsZTiSHCYVDAcHBwQHB+Ohhx5q9YkHDx40PaEZsGBoC9uH\nkFbZ03AkOUwqGCtXrsT27dvRvXt3PPvssxg/fjy6WkEnLhYM7bl9Gxg2DBg1SjoURaQF9jQcSQ5F\nbqs9c+YMtm7dip07d+IXv/gF3nzzTYSGhioaVEksGNrE9iGkJWfPSn8fv/+eh0wbKXJbrY+PD8aO\nHYuRI0ciPz8fP/zwg2IByX64uQEZGcCsWdKsASI1cThSxxhcYZw5cwaffPIJMjMz0bt3bzz77LN4\n6qmncN9991k6Y7twhaFtW7ZIG41sH0JqOXkSGDkSKCqy7XkX7WXypndISAjGjRsHV1fXZi9o6sQ9\nc2LB0D62DyE1xccD0dHAnDlqJ9EWkwrGwoUL2zzRvUCju5csGNrH9iGkFnsdjiQH25uTZlVXA4MG\nSdeRf/tbtdOQPRACGDpUus172jS102iPYu3NiZTG9iFkaVlZwOXLwNSpaiexXjxGRarx9QU2bQIm\nTwZKStROQ7asoUG62WLJEvubpKckFgxSVUyMNEN57Fjg+nW105Ct4nAkZRjdw1ixYkWza1s6nQ7d\nunVDeHi4Jg/wcQ/D+rB9CJkThyPJo8jBvYKCAqxbtw4VFRUoLy/HBx98gKysLMycORPLli1TLCzZ\nL50OWLsWqKiQ5hIQKSktDfD2ZrFQgtEVxq9//WtkZWXB5W6r0evXr2P06NHYu3cvwsPD8f3331sk\nqFxcYVgvtg8hpdXUAH5+wM6dnHdhjCIrjIsXL8LZ2Vn/sZOTEy5cuID7778fXbp0MT0l0V1sH0JK\n43AkZRm9rXbKlCkYOHAgxo0bByEEdu/ejaSkJNy4cQNBQUGWyEh2JDwcWL1a2gRn+xAyxZUrwPLl\n0nAkUoasg3v5+fk4fPgwdDodhgwZgoiICEtk6xBekrINb7wBHDnC9iHUcRyO1D6KnfSur69HZWUl\n6urq9O1Cemt04ggLhm1oaJBWGWwfQh3B4Ujtp0jBWLNmDRYtWoSHH34YnZqceDl16pQyKRXGgmE7\n2D6EOuqVV4AuXYAVK9ROYj0UKRg+Pj7Iy8szOKpVa1gwbEtxsdQ+ZNs2tg8hec6cke62++EHoGdP\ntdNYD0Xukurdu7e+vbkl5OXlITIyEmFhYRgwYADy8/P1n0tJSYGfnx8CAgKwb98+i2Ui9bB9CLXX\nggVS63IWC+UZXWFMnz4dp0+fxpgxY/S315pzHkZUVBTmzZuHUaNGISsrC++++y4OHjyIwsJCJCUl\nIT8/H+Xl5YiOjsbp06fhcM+xYK4wbNOqVcCGDVJ76rtHgoha4HCkjlNshREdHY3a2lpcv34d165d\nw7Vr1xQLea9HH30UV69eBQBUVVXB3d0dAJCZmYnExEQ4OTnBy8sLvr6+yMvLM1sO0pbZs6VbbqdN\nkzbEiVrz5pvSgC4WC/PQ3DyM//u//8MTTzwBnU6HhoYGHD16FJ6ennj11VcxaNAgTJkyBQAwY8YM\nxMXF4Zlnnmn2fK4wbNft28CwYcCoUdJlB6KmOBzJNCbNw5gzZw5WrVqF+Pj4Vl94165dHQ4WExOD\nysrKFo8vWbIEq1evxurVqzF+/Hhs374d06dPR3Z2dquvY2gi4MKFC/XvR0VFISoqqsNZSTs6dwY+\n/VTa0AwJYfsQ+pkQUtfjRYtYLOTKyclBTk5Ou55jcIVx7NgxREREGHxBc/0QdnV1RXV1NQBACIHu\n3bvj6tWreOeddwAAc+fOBQDExsZi0aJFGDhwYLPnc4Vh+woKgNhY4MABoG9ftdOQFuzZA/zhD8Cp\nU5x30VGyfnYKjQkLCxM5OTlCCCH2798vIiIihBBCfPfdd6Jfv37i9u3b4uzZs+KXv/ylaGhoaPF8\nDf4jkRl8/LEQXl5C/PST2klIbfX1QvTrJ8Snn6qdxLrJ+dlp8JJUSEhIm5XopJm6w61fvx6vvPIK\nbt++jfvuuw/r168HAAQFBSEhIQFBQUFwdHREamqqwUtSZPsSE6XfJidNYvsQe8fhSJZj8JJUyd2b\n3lPv9mWYOnUqhBDYvHkzAGh2FgYvSdkPtg8hDkdSjiInvUNDQ/HNN980eywsLAwnTpwwPaEZsGDY\nF7YPsW/r1gHp6dIqk0yjyDkMIQS++uor/ceHDx/mD2TSDFdXYNcu6TbbQ4fUTkOWVFMjTWhculTt\nJPbD6AqjoKAAL7zwgv4wXffu3fHRRx+hf//+FgnYXlxh2KfsbGDqVCA3F/DyUjsNWcKyZUB+PrBj\nh9pJbINi7c0B6AtGt27dTE9mRiwY9ovtQ+zHlSuAv780HCkgQO00tkGRgnHr1i2kp6ejpKQEdXV1\n+heeP3++ckkVxIJhv4QAXnxR2tfYtg1wMHrBlaxRaanUvrxXLw5HUpIiexhjx47Frl274OTkBBcX\nF7i4uOCBBx5QLCSRUnQ6YO1aoKJCurZNtqW6WuoVFRoqHdhctUrtRPbH6Ezv8vJyfP7555bIQmQy\ntg+xPXV1wH/9l9T2Y9Qo4J//BDw81E5ln4yuMH71q1+Z7ZAekTm4uQEZGcCsWVK7a7JOQgCffSYV\n/u3bpfYfGzeyWKjJ6B5GYGAgiouL4e3tjc53u3qZ86S3qbiHQY22bAHeeAPIy5Oud5P1OH5c6g1V\nWQm89x4werR0yZHMR5FN7xIDY868NHrvIgsGNfXGG8CRI2wfYi1KS6V9iuxsYOFC6SYGR6MXzkkJ\nimx6e3l5obS0FAcPHoSXlxceeOAB/kAmq7F4sTRMZ84ctZNQW5puaPfuLc3jnjWLxUJrjBaMhQsX\n4t1330VKSgoAoLa2Fs8995zZgxEpwcEB2LwZyMmR2kiQttTVSf9dHn8cKC+XNrQXL5ZO8JP2GK3f\nGRkZOHHiBMLDwwEA7u7uZh3RSqS0xvYhQ4ZIjeqefFLtRCQE8I9/AH/8I/DYY9KGdliY2qnIGKMF\no3PnznBocgLqxo0bZg1EZA6+vsCmTcCzz7J9iNqabmgvX84NbWti9JLUpEmTMGvWLFRVVWH9+vUY\nMWIEZsyYYYlsRIqKiQHmzZNaol+/rnYa+1NaCiQnA2PGSIX75EnpfRYL6yGrl9S+ffuwb98+AMCo\nUaMQExNj9mAdxbukqC1sH2J51dVSo8B164CXXgL+9CfuUWiRos0HAeDixYvo2bOnpifdsWCQMbdv\nA8OGSaeGFyxQO43tuveE9uLFPHSnZSbdVnv06FFERUVhwoQJOHHiBIKDgxESEoJHHnkEWVlZiocl\nspTG9iFpadKfpCye0LZdBlcY4eHhSElJwdWrVzFz5kzs3bsXgwYNwv/+7/9i8uTJLabwaQVXGCRX\nQQEQGwscOCA1syPT8YS29TJphVFfX4+RI0di0qRJePTRRzFo0CAAQEBAgKYvSRHJFR4OrF4tbYJf\nvKh2GuvGDW37YLBgNC0KXbp0sUgYIktLTJTeJk0C7txRO4314Qlt+2LwklSnTp1w//33AwBu3ryJ\n++67T/+5mzdv6ocpaQ0vSVF7NTRIqwxPTyA1Ve001qGuDvjwQ2lDOzaWG9q2QPG7pKwBCwZ1RHU1\nMGgQMHuYNp9ZAAAOPElEQVQ28Nvfqp1Gu+49ob18OU9o2woWDKJ2KC6W2ods28b2Ia3hhrZtU6Rb\nLZG98PWVGhVOngwY6Opvl7ihTY1YMIiaiI4G5s5l+xCAG9rUEgsG0T1mz5ZuuX3+eWlD3N7U1QFr\n1wL+/mw5Ts2xYBDdQ6eTfmCePw+8/bbaaSyn6QntHTuArCye0KbmVCkY27dvR58+fdCpUyccP368\n2edSUlLg5+eHgIAAfcNDACgoKEBISAj8/Pwwh+PTyMzsrX3I8ePAiBFSY8Dly4H9+3n3E7WkSsEI\nCQlBRkYGhg4d2uzxwsJCbN26FYWFhdi7dy9efvll/a79Sy+9hLS0NBQVFaGoqAh79+5VIzrZETc3\nICNDum5/8qTaacyDG9rUHqoUjICAAPj7+7d4PDMzE4mJiXBycoKXlxd8fX3x9ddf4/z587h27Roi\nIyMBAMnJydi5c6elY5MdstX2IdzQpo7Q1B5GRUUFPJpcMPXw8EB5eXmLx93d3VFeXq5GRLJDttQ+\nhBvaZAqz/T4RExODysrKFo8vXboU8fHx5vq2RGaxeLG0ypgzxzrbh9x7Qjsri3sU1H5mKxjZ2dnt\nfo67uztKS0v1H5eVlcHDwwPu7u4oKytr9ri7u7vB11m4cKH+/aioKERFRbU7C1FTDg7Sob5Bg6TJ\ncdbUPoQztKk1OTk5yMnJad+ThIqioqLEsWPH9B9/9913ol+/fuL27dvi7Nmz4pe//KVoaGgQQggR\nGRkpcnNzRUNDg4iLixNZWVmtvqbK/0hk44qKhHj4YSFyctROYtyPPwoxdaoQbm5CrFsnxJ07aici\nLZPzs1OVPYyMjAx4enoiNzcXY8aMQVxcHAAgKCgICQkJCAoKQlxcHFJTU/Vt1lNTUzFjxgz4+fnB\n19cXsbGxakQnO2cN7UO4oU3mwuaDRB2wahWwYQNw+DDg4qJ2GglbjpMp2K2WyEyEAGbMAKqqpLnV\nDireb8iW46QEFgwiM7p9Gxg+HBg5EliwQJ0MbDlOSmF7cyIz6twZSE9Xp30IT2iTGlgwiExg6fYh\n3NAmNbFgEJnIEu1DeEKbtIC/lxApIDEROHVKah+SnQ04OSnzujyhTVrCTW8ihTQ0SKsMT09l2odw\nQ5ssiZveRBbU2D4kJ0dqH9JR3NAmrWLBIFKQqyuwa5d0m+2hQ+17Lje0SetYMIgU1t72IdzQJmvB\nPQwiMzHWPoQntElLeNKbSEVttQ/hhjZpDTe9iVSk00l3S1VWAm+/LT3GDW2yZtxOIzKjxvYhkZFA\ncTGwZw/w0kvShjb3KMjasGAQmZmbG5CZKe1n/POfbDlO1ot7GERExD0MIiJSDgsGERHJwoJBRESy\nsGAQEZEsLBhERCQLCwYREcnCgkFERLKwYBARkSwsGEREJAsLBhERycKCQUREsrBgEBGRLKoUjO3b\nt6NPnz7o1KkTCgoK9I9nZ2cjIiICffv2RUREBA4ePKj/XEFBAUJCQuDn54c5c+aoEZuIyK6pUjBC\nQkKQkZGBoUOHQtdkckyvXr3w2Wef4eTJk/jb3/6GqVOn6j/30ksvIS0tDUVFRSgqKsLevXvViK6Y\nnJwctSPIYg05rSEjwJxKY07LU6VgBAQEwN/fv8XjoaGhcHNzAwAEBQXh5s2buHPnDs6fP49r164h\nMjISAJCcnIydO3daNLPSrOUvkTXktIaMAHMqjTktT7N7GOnp6QgPD4eTkxPKy8vh0WTqjLu7O8rL\ny1VMR0Rkf8w2cS8mJgaVlZUtHl+6dCni4+PbfO53332HuXPnIjs721zxiIiovYSKoqKiREFBQbPH\nSktLhb+/vzhy5Ij+sYqKChEQEKD/+OOPPxazZs1q9TV9fHwEAL7xjW9841s73nx8fIz+zFZ9prdo\nMhKwqqoKY8aMwbJlyzB48GD9448++ihcXV3x9ddfIzIyEv/93/+N2bNnt/p6xcXFZs9MRGSPVNnD\nyMjIgKenJ3JzczFmzBjExcUBAN5//32cOXMGixYtQlhYGMLCwnDp0iUAQGpqKmbMmAE/Pz/4+voi\nNjZWjehERHZLJ4SRqd9ERETQ8F1S7bV3714EBATAz88Py5YtUzuOQdOnT8cjjzyCkJAQtaMYVFpa\nimHDhqFPnz4IDg7G6tWr1Y7Uqlu3bmHgwIEIDQ1FUFAQ5s2bp3akNtXX1yMsLMzoTR9q8vLyQt++\nfREWFqa/jV1rqqqqMHHiRAQGBiIoKAi5ublqR2rhhx9+0F8lCQsLQ7du3TT7/1FKSgr69OmDkJAQ\nJCUl4fbt24a/uCOb1VpTV1cnfHx8xLlz50Rtba3o16+fKCwsVDtWq7744gtx/PhxERwcrHYUg86f\nPy9OnDghhBDi2rVrwt/fX7P/Pm/cuCGEEOLOnTti4MCB4ssvv1Q5kWErVqwQSUlJIj4+Xu0oBnl5\neYnLly+rHaNNycnJIi0tTQgh/XevqqpSOVHb6uvrhZubm/jxxx/VjtLCuXPnhLe3t7h165YQQoiE\nhASxceNGg19vEyuMvLw8+Pr6wsvLC05OTpg8eTIyMzPVjtWqX//613jwwQfVjtEmNzc3hIaGAgBc\nXFwQGBiIiooKlVO17v777wcA1NbWor6+Hj169FA5UevKysqwZ88ezJgxo9mNHlqk5XxXr17Fl19+\nienTpwMAHB0d0a1bN5VTtW3//v3w8fGBp6en2lFacHV1hZOTE2pqalBXV4eamhq4u7sb/HqbKBjl\n5eXN/mN4eHjwYJ9CSkpKcOLECQwcOFDtKK1qaGhAaGgoHnnkEQwbNgxBQUFqR2rVv/3bv+G9996D\ng4O2/5fT6XSIjo5GREQEPvzwQ7XjtHDu3Dn06tULL7zwAvr374+ZM2eipqZG7Vht+uSTT5CUlKR2\njFb16NEDv//979G7d2889thj6N69O6Kjow1+vbb/9srUtB8VKef69euYOHEiVq1aBRcXF7XjtMrB\nwQHffPMNysrK8MUXX2iyDcNnn32Ghx9+GGFhYZr+7R0ADh8+jBMnTiArKwt//etf8eWXX6odqZm6\nujocP34cL7/8Mo4fP44HHngA77zzjtqxDKqtrcXu3bsxadIktaO06syZM1i5ciVKSkpQUVGB69ev\nY/PmzQa/3iYKhru7O0pLS/Ufl5aWNmslQu13584dPPPMM3juuecwbtw4teMY1a1bN4wZMwbHjh1T\nO0oLR44cwa5du+Dt7Y3ExET8z//8D5KTk9WO1apHH30UgNQIdPz48cjLy1M5UXMeHh7w8PDAgAED\nAAATJ07E8ePHVU5lWFZWFsLDw9GrVy+1o7Tq2LFj+NWvfoWHHnoIjo6OmDBhAo4cOWLw622iYERE\nRKCoqAglJSWora3F1q1b8fTTT6sdy2oJIfDiiy8iKCgIr732mtpxDLp06RKqqqoAADdv3kR2djbC\nwsJUTtXS0qVLUVpainPnzuGTTz7B8OHD8fe//13tWC3U1NTg2rVrAIAbN25g3759mrubz83NDZ6e\nnjh9+jQAaX+gT58+KqcybMuWLUhMTFQ7hkEBAQHIzc3FzZs3IYTA/v3727ysq/pJbyU4Ojri/fff\nx6hRo1BfX48XX3wRgYGBasdqVWJiIg4dOoTLly/D09MT//Ef/4EXXnhB7VjNHD58GJs2bdLfXglI\nt95p7bDk+fPn8fzzz6OhoQENDQ2YOnUqRowYoXYso7R6CfXChQsYP348AOnSz5QpUzBy5EiVU7W0\nZs0aTJkyBbW1tfDx8cFHH32kdqRW3bhxA/v379fkXlCjfv36ITk5GREREXBwcED//v3xm9/8xuDX\n8+AeERHJYhOXpIiIyPxYMIiISBYWDCIikoUFg4iIZGHBICIiWVgwiIhIFhYMslvmbneycuVK3Lx5\ns13fb/fu3Zpuz0/2jecwyG517dpVf7LZHLy9vXHs2DE89NBDFvl+RObGFQZRE2fOnEFcXBwiIiIw\ndOhQ/PDDDwCAadOmYc6cORgyZAh8fHyQnp4OQOqW+/LLLyMwMBAjR47EmDFjkJ6ejjVr1qCiogLD\nhg1rdvr83//93xEaGorBgwfjp59+avH9N27ciFdffbXN79lUSUkJAgIC8MILL+Dxxx/HlClTsG/f\nPgwZMgT+/v7Iz883x78msldmns9BpFkuLi4tHhs+fLgoKioSQgiRm5srhg8fLoQQ4vnnnxcJCQlC\nCCEKCwuFr6+vEEKI7du3i9GjRwshhKisrBQPPvigSE9PF0K0HEak0+nEZ599JoQQ4k9/+pNYvHhx\ni++/ceNG8bvf/a7N79nUuXPnhKOjo/j2229FQ0ODCA8PF9OnTxdCCJGZmSnGjRvX3n8tRAbZRC8p\nIiVcv34dR48ebdaKura2FoDU/6mxa29gYCAuXLgAAPjqq6+QkJAAAPqZHIY4OztjzJgxAIDw8HBk\nZ2e3mcfQ97yXt7e3vgFfnz599PMMgoODUVJS0ub3IGoPFgyiuxoaGtC9e3ecOHGi1c87Ozvr3xd3\nt/50Ol2zGReijS1BJycn/fsODg6oq6szmqm173mvzp07N3vdxufI/R5EcnEPg+guV1dXeHt7Y8eO\nHQCkH9AnT55s8zlDhgxBeno6hBC4cOECDh06pP9c165dUV1d3a4MbRUcIrWxYJDdqqmpgaenp/5t\n5cqV2Lx5M9LS0hAaGorg4GDs2rVL//VN25I3vv/MM8/Aw8MDQUFBmDp1Kvr376+fMf2b3/wGsbGx\n+k3ve5/fWpvzex839P69zzH0sVZbqZN14m21RCa6ceMGHnjgAVy+fBkDBw7EkSNH8PDDD6sdi0hx\n3MMgMtFTTz2Fqqoq1NbWYv78+SwWZLO4wiAiIlm4h0FERLKwYBARkSwsGEREJAsLBhERycKCQURE\nsrBgEBGRLP8PAOBgfwTG6goAAAAASUVORK5CYII=\n",
       "text": [
        "<matplotlib.figure.Figure at 0x5c19930>"
       ]
      }
     ],
     "prompt_number": 22
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 3.3.3,Page No.102"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "import numpy as np\n",
      "%matplotlib inline\n",
      "\n",
      "#Initilization of Variables\n",
      "\n",
      "L_DB=L_CD=1.5 #m #Length of DB & CD\n",
      "L_AC=3 #m #Length of AC\n",
      "F_D=80 #KN #Force at Pt D\n",
      "w=40 #KN/m #u.v.l\n",
      "L=6 #Length of beam\n",
      "\n",
      "#Calculations\n",
      "\n",
      "#Let R_A and R_B be the Reactions at Pt A & B respectively\n",
      "#R_A+R_B=140 \n",
      "#Taking moment at B we get,M_B\n",
      "R_A=(1*2**-1*L_AC*w*(1*3**-1*L_AC+(L_CD+L_DB))+F_D*L_DB)*L**-1\n",
      "R_B=140-R_A\n",
      "\n",
      "#Shear Force Calculations\n",
      "\n",
      "#S.F at B\n",
      "V_B1=0 #KN\n",
      "V_B2=R_B #KN\n",
      "\n",
      "#S.F At D\n",
      "V_D1=V_B2 #KN\n",
      "V_D2=V_D1-F_D #KN\n",
      "\n",
      "#S.F at C\n",
      "V_C=V_D2 #KN\n",
      "\n",
      "#S.F At A\n",
      "V_A1=V_C-1*2**-1*w*L_AC #KN\n",
      "V_A2=V_A1+R_A #KN\n",
      "\n",
      "#Bending Moment Calculations\n",
      "\n",
      "#B.M At B\n",
      "M_B=0 #KN.m\n",
      "\n",
      "#B.M At D\n",
      "M_D=-R_B*L_DB\n",
      "\n",
      "#B.M At C\n",
      "M_C=F_D*L_CD-R_B*(L_DB+L_CD)\n",
      "\n",
      "#B.M At A\n",
      "M_A=F_D*(L_CD+L_AC)-R_B*L+1*2**-1*w*L_AC*(1*3**-1*L_AC)+R_A\n",
      "\n",
      "#Result\n",
      "print \"The Shear Force and Bending Moment Diagrams are the results\"\n",
      "\n",
      "#Plotting the Shear Force Diagram\n",
      "\n",
      "X1=[0,0,L_DB,L_DB,L_DB+L_CD,L_DB+L_CD+L_AC,L_DB+L_CD+L_AC]\n",
      "Y1=[V_B1,V_B2,V_D1,V_D2,V_C,V_A1,V_A2]\n",
      "Z1=[0,0,0,0,0,0,0]\n",
      "plt.plot(X1,Y1,X1,Z1)\n",
      "plt.xlabel(\"Length x in m\")\n",
      "plt.ylabel(\"Shear Force in kN\")\n",
      "plt.show()\n",
      "\n",
      "#Plotting the Bendimg Moment Diagram\n",
      "\n",
      "X2=[0,L_DB,L_CD+L_DB,L_AC+L_CD+L_DB]\n",
      "Y2=[M_B,M_D,M_C,M_A]\n",
      "Z2=[0,0,0,0]\n",
      "plt.plot(X2,Y2,X2,Z2)\n",
      "plt.xlabel(\"Length in m\")\n",
      "plt.ylabel(\"Bending Moment in kN.m\")\n",
      "plt.show()"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The Shear Force and Bending Moment Diagrams are the results\n"
       ]
      },
      {
       "metadata": {},
       "output_type": "display_data",
       "png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEPCAYAAACtCNj2AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAH7dJREFUeJzt3X9UVGX+B/D3RUZbUTNSoRy24QsiDKYgKv5YcxAHTYNI\nkRO4SSjZiWObtWW222lpzcB17Wia267HlLRNTXaDrEiJRsVCLdjjtqSggvE7VyJFNGR4vn+w3EQY\nBmNm7vx4v86Z48yde7mfUc+8uc/n3udKQggBIiIiAG5KF0BERPaDoUBERDKGAhERyRgKREQkYygQ\nEZGMoUBERDJFQyE9PR3BwcG49957kZiYiB9//BENDQ3Q6/UICAhAVFQUGhsblSyRiMilKBYKFRUV\n2Lp1K4qKivDvf/8bRqMRu3fvRkZGBvR6PUpLSxEZGYmMjAylSiQicjmKhcKQIUOgUqnQ3NyM1tZW\nNDc34+6770ZOTg6SkpIAAElJSXj//feVKpGIyOUoFgqenp747W9/i1/+8pe4++67MXToUOj1etTX\n18PLywsA4OXlhfr6eqVKJCJyOYqFwtmzZ7FhwwZUVFSgpqYGTU1N2LVrV6d1JEmCJEkKVUhE5Hrc\nldrxl19+ialTp+LOO+8EAMyfPx9ffPEFvL29UVdXB29vb9TW1mLEiBFdtpUkfwBnbVwxEZFj8/Pz\nw5kzZ3pcR7EjhcDAQBQWFuLq1asQQiAvLw9arRbR0dHIzMwEAGRmZiI2Nrabrc9CCOG0jz/84Q82\n29eePQILFzrv53P2fz9+Pn62W3mcPWv+l2nFjhTGjRuHxYsXY8KECXBzc8P48eOxbNkyXL58GfHx\n8di2bRs0Gg327t2rVIlERC5HsVAAgJUrV2LlypWdlnl6eiIvL0+hioiIXBuvaLZDOp1O6RKsip/P\nsTnz53Pmz9ZbkhDC4W6yI0kSHLBsu7R3L7BvX/ufROTcevPdySMFIiKSMRSIiEjGUCAiIhlDgYiI\nZAwFIiKSMRSIiEjGUCAiIhlDgYiIZAwFIiKSMRSIiEjGUCAiIhlDgYiIZAwFIiKSMRSIiEjGUCAi\nIhlDgYiIZAwFIiKSMRSIiEjGUCAiIhlDgYiIZAwFIiKSKRoKjY2NiIuLQ1BQELRaLY4dO4aGhgbo\n9XoEBAQgKioKjY2NSpZIRORSFA2Fp556CnPnzsU333yDkydPIjAwEBkZGdDr9SgtLUVkZCQyMjKU\nLJGIyKVIQgihxI5/+OEHhIaG4ty5c52WBwYG4tChQ/Dy8kJdXR10Oh1OnTrVaR1JkqBQ2U5n715g\n3772P4nIufXmu1OxI4Xy8nIMHz4cycnJGD9+PB577DFcuXIF9fX18PLyAgB4eXmhvr5eqRKJiFyO\nu1I7bm1tRVFRETZv3oyJEydixYoVXYaKJEmCJEndbp+WliY/1+l00Ol0VqyWiMjxGAwGGAyGW9pG\nseGjuro6TJkyBeXl5QCAgoICpKen49y5c/jss8/g7e2N2tpaREREcPjIijh8ROQ67Hr4yNvbGz4+\nPigtLQUA5OXlITg4GNHR0cjMzAQAZGZmIjY2VqkSiYhcjmLDRwCwadMmLFq0CC0tLfDz88P27dth\nNBoRHx+Pbdu2QaPRYC9/hSUishlFQ2HcuHE4ceJEl+V5eXkKVENERLyimYiIZAwFIiKSMRSIiEjG\nUCAiIhlDgYiIZAwFIiKSMRSIiEjGUCAiIhlDgYiIZAwFIiKSMRSIiEjGUCAiIhlDgYiIZAwFIiKS\nMRSIiEjGUCAiIhlDgYiIZAwFIiKSMRSIiEjGUCAiIhlDgYiIZAwFIiKSMRSIiEimeCgYjUaEhoYi\nOjoaANDQ0AC9Xo+AgABERUWhsbFR4QqJiFyH4qGwceNGaLVaSJIEAMjIyIBer0dpaSkiIyORkZGh\ncIVERK5D0VCoqqrCRx99hJSUFAghAAA5OTlISkoCACQlJeH9999XskQiIpeiaCg8/fTTWLduHdzc\nfiqjvr4eXl5eAAAvLy/U19crVR4RkctxV2rH+/fvx4gRIxAaGgqDwdDtOpIkycNKN0tLS5Of63Q6\n6HQ6yxdJROTADAaDye9XUyTRMW5jY7/73e+wc+dOuLu749q1a7h06RLmz5+PEydOwGAwwNvbG7W1\ntYiIiMCpU6c6Fy1JUKhsp7N3L7BvX/ufROTcevPdqdjw0auvvorKykqUl5dj9+7dmDlzJnbu3ImY\nmBhkZmYCADIzMxEbG6tUiURELkfxs486dAwTrVq1CgcPHkRAQADy8/OxatUqhSsjInIdig0f9QWH\njyyHw0dErsOuh4+IiMj+mDz7KCIiotvlHcM8+fn51qmIiIgUYzIU1q1bJz/vCILCwkKsXbsWI0aM\nsH5lRERkcyZDYcKECfJzg8GAV155BVevXsVf//pX3H///TYpjoiIbKvHi9dyc3OxZs0a9O/fHy++\n+KLJISUiInIOJkNh4sSJuHDhAp599llMmTIFAFBUVCS/P378eOtXR0RENmUyFDw8PODh4YGsrCxk\nZWV1ef+zzz6zamFERGR7JkOhY76Mtra2ThPWAcC1a9esWhQRESnD7HUKKSkpnV43NTVh7ty5ViuI\niIiUYzYURo4cidTUVADA999/j6ioKDzyyCNWL4yIiGzPbCisXr0aHh4eePzxx6HX6/HMM88gOTnZ\nFrUREZGNmewpdDSXJUnC5MmTsXr1akycOBGSJOEf//gH5s+fb7MiiYjINkyGwgcffNDpBjchISFo\nbW3F/v37AYChQETkhEyGwo4dO2xYBhER2QPOkkpERDKGAhERyRgKREQk63FCPKD96uWsrCxUVFSg\ntbUVQPsZSS+99JLViyMiItsyGwoPPvgghg4dirCwMNx22222qImIiBRiNhSqq6vxySef2KIWIiJS\nmNmewtSpU3Hy5Elb1EJERAoze6Rw5MgRbN++Hb6+vhgwYACA9p4Cg4KIyPmYDYWPP/7YFnUQEZEd\nMDl8dOnSJQDAkCFDun30VWVlJSIiIhAcHIwxY8bg9ddfBwA0NDRAr9cjICAAUVFRaGxs7PO+iIio\ndyQhhOjujXnz5uHDDz+ERqPpNAcS0D58dO7cuT7tuK6uDnV1dQgJCUFTUxPCwsLw/vvvY/v27Rg2\nbBhWrlyJtWvX4vvvv0dGRkaX/Zsom27R3r3Avn3tfxKRc+vNd6fJ4aMPP/wQAFBRUWHRojp4e3vD\n29sbADBo0CAEBQWhuroaOTk5OHToEAAgKSkJOp2uSygQEZF12MUVzRUVFSguLkZ4eDjq6+vh5eUF\nAPDy8kJ9fb3C1RERuQ6zjWZra2pqwoIFC7Bx40YMHjy403uSJHUZuuqQlpYmP9fpdNDpdFaskojI\n8RgMBhgMhlvaxmRPwRauX7+OBx54APfffz9WrFgBAAgMDITBYIC3tzdqa2sRERGBU6dOddqOPQXL\nYU+ByHX05ruzV8NHHdcqAMCFCxdQXl7e5+KEEFi6dCm0Wq0cCAAQExODzMxMAEBmZiZiY2P7vC8i\nIuods0cKaWlp+Oqrr3D69GmUlpaiuroa8fHxOHr0aJ92XFBQgPvuuw9jx46Vh4jS09MxadIkxMfH\n49tvv4VGo8HevXsxdOjQzkXzSMFieKRA5Dr6dPZRh3/+858oLi5GWFgYAGDkyJG4fPlyn4v71a9+\nhba2tm7fy8vL6/PPJyKiW2d2+GjAgAFwc/tptStXrli1ICIiUo7ZUFi4cCEef/xxNDY24m9/+xsi\nIyORkpJii9qIiMjGzA4fPffcczhw4AAGDx6M0tJSrF69Gnq93ha1ERGRjZkNhfLyckyfPh1RUVEA\ngKtXr6KiogIajcbatRERkY2ZHT6Ki4tDv379ftrAzQ1xcXFWLYqIiJRhNhSMRiP69+8vvx4wYACu\nX79u1aKIiEgZZkNh2LBhyM7Oll9nZ2dj2LBhVi2KiIiUYban8Oabb2LRokVYvnw5AECtVmPnzp1W\nL4yIiGyvx1AwGo148803cezYMfmCtZsnrSMiIufRYyj069cPBQUFEEIwDIiIXIDZ4aOQkBA8+OCD\nWLhwIQYOHAigff6M+fPnW704IiKyLbOhcO3aNXh6eiI/P7/TcoYCEZHzMRsKO3bssEEZRERkD8ye\nklpZWYmHHnoIw4cPx/Dhw7FgwQJUVVXZojYiIrIxs6GQnJyMmJgY1NTUoKamBtHR0UhOTrZFbURE\nZGNmQ+HChQtITk6GSqWCSqXCo48+iu+++84WtRERkY2ZDYU777wTO3fuhNFoRGtrK3bt2sUrmomI\nnJTZUHjrrbewd+9eeHt746677sJ7770n36+ZiIici8mzjwoLCzF58mRoNBp88MEHtqyJiIgUYvJI\n4YknnpCfT5kyxSbFEBGRsswOHwHtF7AREZHzMzl8ZDQa0dDQACGE/PxGnp6eVi+OiIhsy2QoXLp0\nCWFhYQAAIYT8HGif++jcuXPWr46IiGzKZChUVFTYsIzOcnNzsWLFChiNRqSkpOD5559XrBYiIlfS\nq56CLRmNRixfvhy5ubkoKSnBu+++i2+++UbpsoiIXILdhcLx48fh7+8PjUYDlUqFhx9+uNPtQImI\nyHrMzpJqa9XV1fDx8ZFfq9VqHDt2TMGKnN/588A77yhdhfO47z7ghv/CRHaht7MT9RgKra2tCA4O\nxunTpy1RU69IktS79XQ3rKcB4GuVclzDXODXZ5Quwonw75LsRTmAilvbpMdQcHd3R2BgIM6fP497\n7rnn5xd2C0aOHInKykr5dWVlJdRqdZf1hEHYpB6iW3X+PLBqFVBQAKSnA4mJgJvdDdSSqykoAKZP\nN/9LtySE6PHbdfr06SguLsakSZPg4eHRvpEkIScnxzKV3qS1tRWjR4/Gp59+irvvvhuTJk3Cu+++\ni6CgoJ+KliSYKZtIcUePAitWAP36ARs2AJMnK10RubKOUDD33Wm2p7B69WqLFdUb7u7u2Lx5M2bP\nng2j0YilS5d2CgQiRzFtGnDsGLBrFxAXB8yYAWRksN9A9s3skYI94pECOZqmJmDtWmDLFmD5cmDl\nSuB/B95ENtHbIwWzI51ffPEFJk6ciEGDBkGlUsHNzQ1DhgyxWKFErmDQIGD1aqCoCCgtBQID248g\n2tqUroyoM7OhsHz5cvz973/HqFGjcO3aNWzbtg2pqam2qI3I6dxzD/Duu8Du3cDGjcDUqUBhodJV\nEf2kV+dEjBo1CkajEf369UNycjJyc3OtXReRU+voN6SmtvcbFi0CbjjpjkgxZkPBw8MDP/74I8aN\nG4eVK1fitdde43g+kQW4uQGLFwOnTgH/939ASAjwhz8AV64oXRm5MrOh8Pbbb6OtrQ2bN2/GwIED\nUVVVhaysLFvURuQS2G8ge9Krs4+am5tRWVmJ0aNH26Ims3j2ETkzXt9A1mCxs49ycnIQGhqK2bNn\nAwCKi4sRExNjmSqJqAv2G0hJZkMhLS0Nx44dwx133AEACA0N5Q12iKyM/QZSitlQUKlUGDp0aOeN\nOJELkU2w30C2ZvbbPTg4GO+88w5aW1tRVlaGJ598ElOnTrVFbUT0P7y+gWzFbChs2rQJ//nPfzBg\nwAAkJCRgyJAh2LBhgy1qI6KbsN9A1sa5j4gcFOdTolvR27OPzIbC6dOn8ec//xkVFRVobW1t30iS\nkJ+fb7lqbxFDgegnvH8D9YbFQmHs2LF44oknMH78ePTr1699I0lCWFiY5aq9RQwFoq54fQP1xGL3\nU1CpVHjiiScsVhgRWQfv30CWYPIgs6GhARcvXkR0dDTeeOMN1NbWoqGhQX4Qkf3h9Q3UVyaHjzQa\nDSSp+/t5SpKk6AVsHD4i6h32G6iDxXoK9oihQHRr2G+gPs99dOLECdTW1sqvMzMzERMTg9/85jcc\nPiJyMLy+gXrLZCgsW7YMAwYMAAAcPnwYq1atQlJSEoYMGYJly5bZrEAisgz2G6g3TIZCW1sbPD09\nAQB79uzB448/jgULFuCVV15BWVmZzQokIsvifErUE5OhYDQacf36dQBAXl4eIiIi5Pc6LmIjIsfF\n+ZSoOyavU0hISMCMGTMwbNgwDBw4ENOnTwcAlJWVdZk1lYgcF69voBuZPFL4/e9/j/Xr1yM5ORkF\nBQXydNlCCGzatKlPO33uuecQFBSEcePGYf78+fjhhx/k99LT0zFq1CgEBgbiwIEDfdoPEfUO+w3U\nQZFTUg8ePIjIyEi4ublh1apVAICMjAyUlJQgMTERJ06cQHV1NWbNmoXS0tIu92/gKalE1sXrG5yP\nxW7HaQ16vV7+og8PD0dVVRUAIDs7GwkJCVCpVNBoNPD398fx48eVKJHIpbHf4LoUz/633noLc+fO\nBQDU1NRArVbL76nValRXVytVGpHL4/UNrsfshHg/l16vR11dXZflr776KqKjowEAa9asQf/+/ZGY\nmGjy55iaaiMtLU1+rtPpoNPp+lQvEXWvo98wf377/RtCQnj/BkdhMBhgMBgAAN9+27ttFJvmYseO\nHdi6dSs+/fRT3HbbbQDa+woA5D7DnDlz8PLLLyM8PLzTtuwpECmH/QbHZNc9hdzcXKxbtw7Z2dly\nIABATEwMdu/ejZaWFpSXl6OsrAyTJk1SokQiMoH9BudmteGjnjz55JNoaWmBXq8HAEyZMgVbtmyB\nVqtFfHw8tFot3N3dsWXLFpPDR0SkLF7f4Jw4SyoR9RnvF23/7Hr4iIicC+dTch4MBSKyGPYbHB9D\ngYgsjtc3OC6GAhFZBedTckwMBSKyKvYbHAtDgYhsgv0Gx8BQICKbYr/BvjEUiMjm2G+wXwwFIlIM\n+w32h6FARIpjv8F+MBSIyG6w36A8hgIR2RX2G5TFUCAiu8R+gzIYCkRk19hvsC2GAhE5BPYbbIOh\nQEQOg/0G62MoEJHDYb/BehgKROSw2G+wPIYCETk89hssh6FARE6B/QbLYCgQkVNhv6FvGApE5JTY\nb/h5GApE5NTYb7g1iobC+vXr4ebmhoaGBnlZeno6Ro0ahcDAQBw4cEDB6ojIWbDf0HuKhUJlZSUO\nHjyIe+65R15WUlKCPXv2oKSkBLm5uUhNTUUbBwKJyELYbzBPsVB45pln8Kc//anTsuzsbCQkJECl\nUkGj0cDf3x/Hjx9XqEIiclbsN5imSChkZ2dDrVZj7NixnZbX1NRArVbLr9VqNaqrq21dHhG5CPYb\nunK31g/W6/Woq6vrsnzNmjVIT0/v1C8QQpj8OZIkdbs8LS1Nfq7T6aDT6X52rUTkujr6DfPnA2vX\ntvcbli8HVq4EPDyUrq5vDAYDDAYDAODbb3u3jSR6+ka2gq+//hqRkZEYOHAgAKCqqgojR47EsWPH\nsH37dgDAqlWrAABz5szByy+/jPDw8M5FS1KPQUJE9HOdPw+sWgUUFADp6UBiYntwOLqCAmD6dPPf\nnTYPhZv5+vriq6++gqenJ0pKSpCYmIjjx4+juroas2bNwpkzZ7ocLTAUiMjajh4FVqwA+vUDNmwA\nJk9WuqK+6W0oWG34qLdu/MLXarWIj4+HVquFu7s7tmzZYnL4iIjImjr6Dbt2tfcbZswAMjIAHx+l\nK7MuxY8Ufg4eKRCRLTU1tfcbtmxx3H5Db48UnGCkjIjIulzp+gaGAhFRL7nC9Q0MBSKiW+TM1zcw\nFIiIfgZnnU+JoUBE1AfO1m9gKBARWYCz9BsYCkREFuTo/QaGAhGRhTlyv4GhQERkJY7Yb2AoEBFZ\nmSP1GxgKREQ24gj9BoYCEZEN2Xu/gaFARKQAe+03MBSIiBRkb/0GhgIRkR2wl34DQ4GIyE7YQ7+B\noUBEZGeU7DcwFIiI7JQS/QaGAhGRnbNlv4GhQETkAGzVb2AoEBE5EGv3GxgKREQOyFr9BsVCYdOm\nTQgKCsKYMWPw/PPPy8vT09MxatQoBAYG4sCBA0qVR0TkECzdb1AkFD777DPk5OTg5MmT+Prrr/Hs\ns88CAEpKSrBnzx6UlJQgNzcXqampaFP6mm8FGAwGpUuwKn4+x+bMn89RP5sl+w2KhMJf/vIXvPDC\nC1CpVACA4cOHAwCys7ORkJAAlUoFjUYDf39/HD9+XIkSFeWo/zF7i5/PsTnz53P0z2aJfoMioVBW\nVobDhw9j8uTJ0Ol0+PLLLwEANTU1UKvV8npqtRrV1dVKlEhE5LD60m9wt1ZRer0edXV1XZavWbMG\nra2t+P7771FYWIgTJ04gPj4e586d6/bnSJJkrRKJiJxaR79h1y7ghRd6uZFQwJw5c4TBYJBf+/n5\niQsXLoj09HSRnp4uL589e7YoLCzssr2fn58AwAcffPDBxy08/Pz8zH4/W+1IoSexsbHIz8/HjBkz\nUFpaipaWFgwbNgwxMTFITEzEM888g+rqapSVlWHSpEldtj9z5owCVRMROT9FQmHJkiVYsmQJ7r33\nXvTv3x9vv/02AECr1SI+Ph5arRbu7u7YsmULh4+IiGxIEkIIpYsgIiL74HBXNOfm5iIwMBCjRo3C\n2rVrlS7HopYsWQIvLy/ce++9SpdiFZWVlYiIiEBwcDDGjBmD119/XemSLObatWsIDw9HSEgItFot\nXuh1V8+xGI1GhIaGIjo6WulSLE6j0WDs2LEIDQ3tdtja0TU2NiIuLg5BQUHQarUoNHU6kiUax7bS\n2toq/Pz8RHl5uWhpaRHjxo0TJSUlSpdlMYcPHxZFRUVizJgxSpdiFbW1taK4uFgIIcTly5dFQECA\nU/37XblyRQghxPXr10V4eLg4cuSIwhVZ3vr160ViYqKIjo5WuhSL02g04uLFi0qXYTWLFy8W27Zt\nE0K0/x9tbGzsdj2HOlI4fvw4/P39odFooFKp8PDDDyM7O1vpsixm+vTpuOOOO5Quw2q8vb0REhIC\nABg0aBCCgoJQU1OjcFWWM3DgQABAS0sLjEYjPD09Fa7IsqqqqvDRRx8hJSUFwklHnZ31c/3www84\ncuQIlixZAgBwd3fH7bff3u26DhUK1dXV8PHxkV/z4jbHVVFRgeLiYoSHhytdisW0tbUhJCQEXl5e\niIiIgFarVboki3r66aexbt06uLk51NdGr0mShFmzZmHChAnYunWr0uVYVHl5OYYPH47k5GSMHz8e\njz32GJqbm7td16H+dXkmknNoampCXFwcNm7ciEGDBildjsW4ubnhX//6F6qqqnD48GGHnzLhRvv3\n78eIESMQGhrqtL9NHz16FMXFxfj444/xxhtv4MiRI0qXZDGtra0oKipCamoqioqK4OHhgYyMjG7X\ndahQGDlyJCpvmP6vsrKy07QYZP+uX7+OBQsW4Ne//jViY2OVLscqbr/9dsybN0+evsUZfP7558jJ\nyYGvry8SEhKQn5+PxYsXK12WRd11110A2udie+ihh5xq3jW1Wg21Wo2JEycCAOLi4lBUVNTtug4V\nChMmTEBZWRkqKirQ0tKCPXv2ICYmRumyqJeEEFi6dCm0Wi1WrFihdDkW9d///heNjY0AgKtXr+Lg\nwYMIDQ1VuCrLefXVV1FZWYny8nLs3r0bM2fOlK8vcgbNzc24fPkyAODKlSs4cOCAU50F6O3tDR8f\nH5SWlgIA8vLyEBwc3O26ily89nO5u7tj8+bNmD17NoxGI5YuXYqgoCCly7KYhIQEHDp0CBcvXoSP\njw/++Mc/Ijk5WemyLObo0aPYtWuXfNof0H7/jDlz5ihcWd/V1tYiKSkJbW1taGtrwyOPPILIyEil\ny7IaZxvKra+vx0MPPQSgfahl0aJFiIqKUrgqy9q0aRMWLVqElpYW+Pn5Yfv27d2ux4vXiIhI5lDD\nR0REZF0MBSIikjEUiIhIxlAgIiIZQ4GIiGQMBSIikjEUyKlYe9qMDRs24OrVqxbf3wcffOB0U8GT\nY+J1CuRUBg8eLF+Zag2+vr748ssvceedd9pkf0S2xiMFcnpnz57F/fffjwkTJuC+++7D6dOnAQCP\nPvoonnrqKUybNg1+fn7IysoC0D7baWpqKoKCghAVFYV58+YhKysLmzZtQk1NDSIiIjpdrfziiy8i\nJCQEU6ZMwXfffddl/ytWrMDq1asBAJ988glmzJjRZZ0dO3bgySef7LGuG1VUVCAwMBDJyckYPXo0\nFi1ahAMHDmDatGkICAjAiRMn+v4XR67JFjd3ILKVQYMGdVk2c+ZMUVZWJoQQorCwUMycOVMIIURS\nUpKIj48XQghRUlIi/P39hRBCvPfee2Lu3LlCCCHq6urEHXfcIbKysoQQXW/EIkmS2L9/vxBCiJUr\nV4pXXnmly/6bm5tFcHCwyM/PF6NHjxbnzp3rss6OHTvE8uXLe6zrRuXl5cLd3V18/fXXoq2tTYSF\nhYklS5YIIYTIzs4WsbGxZv+uiLrjUHMfEd2qpqYmfPHFF1i4cKG8rKWlBUD7/D0dM7UGBQWhvr4e\nAFBQUID4+HgAkO+NYEr//v0xb948AEBYWBgOHjzYZZ1f/OIX2Lp1K6ZPn46NGzfC19e3x5pN1XUz\nX19feVKz4OBgzJo1CwAwZswYVFRU9LgPIlMYCuTU2traMHToUBQXF3f7fv/+/eXn4n/tNUmSOt0z\nQPTQdlOpVPJzNzc3tLa2drveyZMnMXz48F7fFKq7um42YMCATvvu2KanOojMYU+BnNqQIUPg6+uL\nffv2AWj/gj158mSP20ybNg1ZWVkQQqC+vh6HDh2S3xs8eDAuXbp0SzWcP38er732mnwDl+7m6e8p\neIhsiaFATqW5uRk+Pj7yY8OGDXjnnXewbds2hISEYMyYMcjJyZHXv3EK6I7nCxYsgFqthlarxSOP\nPILx48fL97NdtmwZ5syZIzeab97+5imlhRBISUnB+vXr4e3tjW3btiElJUUewjK1rannN29j6rWz\nTW1NtsNTUom6ceXKFXh4eODixYsIDw/H559/jhEjRihdFpHVsadA1I0HHngAjY2NaGlpwUsvvcRA\nIJfBIwUiIpKxp0BERDKGAhERyRgKREQkYygQEZGMoUBERDKGAhERyf4fYbq4IcfF0QUAAAAASUVO\nRK5CYII=\n",
       "text": [
        "<matplotlib.figure.Figure at 0x5cbcdf0>"
       ]
      },
      {
       "metadata": {},
       "output_type": "display_data",
       "png": "iVBORw0KGgoAAAANSUhEUgAAAYwAAAEPCAYAAABRHfM8AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XtUlHX+B/D3cHNTUbvrb0bD5RKMkNwUy83GBBSJElMK\nTFPT7eRmtrW1eto13V1Fa91Ki0qP3XZt47geQ0sJasW7goprOq2Cyi4MYmaLomgIPL8/JqZBGGaG\neZ55LvN+ncM5MjAzH3KXj8/387y/X50gCAKIiIic8JO7ACIiUgc2DCIicgkbBhERuYQNg4iIXMKG\nQURELmHDICIil6iuYRQWFiIyMhLh4eFYvny53OUQEfkMnZpyGC0tLbjzzjvx5ZdfQq/XY9iwYfj7\n3/+OqKgouUsjItI8VV1hlJaWIiwsDCEhIQgMDMSjjz6KgoICucsiIvIJqmoYFosFAwcOtH1uMBhg\nsVhkrIiIyHeoqmHodDq5SyAi8lkBchfgDr1ej+rqatvn1dXVMBgM7b5Hd5MO+J+3KyMiUrfQ0FBU\nVlZ2+T2qusJITExERUUFqqqq0NTUhPz8fDz44IPtv+l/gMUiQBC0+fHyyy/LXgN/Nv58/Pm08ZGX\nJ2DoUAFXrgg4efKk09/BqmoYAQEBePPNNzF27FgYjUY88sgjnd4h9be/yVAcEZGKlJcDCxcC69cD\nP/uZa89R1ZIUAKSlpSEtLa3L7/ngA+CFFwCOPIiIOrp4EZg8GVi1CggPd/15qrrCcFVTE1BWJncV\n0jCZTHKXIBkt/2wAfz6108rPJwjA7NlASgrw6KPuPVdVwT1X6HQ6/PGPAmprgbw8uashIlKWt98G\n3n0X2Lev/VKUTqeDs3agyYbxn/8IiIsDLBbX1+aIiLSuvBxITQX27Om4FOVKw9DkktSgQUBcHLBp\nk9yVEBEpQ3fnFvY02TAAYPp06/CbiMjXeTK3sKfJJSlBEHD5MmAwAMeOAf/3f3JXRUQkH0dzC3s+\nuyQFAL16AQ8/zEwGEfm27uQtHNFswwB+WpbS1jUUEZFrxJhb2NN0wxg5UtuZDCIiR8SaW9hTXdLb\nHTrdT1cZw4fLXQ0Rkfe88w5w/Lh1biEWzQ692/z3v2Amg4h8Sld5C0d8eujdhpkMIvIlYs8t7Gm+\nYQDMZBCRb5BibmFP80tSAJjJICKf4ErewhEuSf2ImQwi0jox8xaO+ETDAJjJICLtknJuYc9nGgYz\nGUSkRVLPLexpOodhj5kMItIiKfIWjvjE0LsNMxlEpCXdyVs4wqH3dZjJICKt8Nbcwp5PNQyAmQwi\nUj9vzi3s+dSSFMBMBhGpnyd5C0e4JNUJZjKISM28kbdwxOcaBsBMBhGpkxxzC3s+2TCYySAitZFr\nbmHPZ3IY9pjJICK18WbewhGfG3q3YSaDiNRCzLyFIxx6d4GZDCJSA7nnFvYU1zBeeOEFREVFYejQ\noZg4cSIuXLhg+1pubi7Cw8MRGRmJoqIij9+LmQwiUjIlzC3sKa5hpKam4tixY/jXv/6FiIgI5Obm\nAgDMZjPy8/NhNptRWFiIOXPmoLW11aP3yswE9u4FamvFqJyISFxtc4vXXpO7EivFNYyUlBT4+VnL\nSkpKQk1NDQCgoKAA2dnZCAwMREhICMLCwlBaWurRezGTQURKJWfewhHFNQx77733HsaPHw8AqK2t\nhcFgsH3NYDDAYrF4/B7MZBCR0ihpbmFPlttqU1JSUFdX1+HxpUuXIiMjAwCwZMkSBAUFIScnx+Hr\n6HQ6j2uxz2TwFlsikpvS5hb2ZGkYxcXFXX79gw8+wJYtW/DVV1/ZHtPr9aiurrZ9XlNTA71e3+nz\nFy1aZPuzyWSCyWRy+F7MZBCRkngrb1FSUoKSkhK3nqO4HEZhYSGef/55bN++HbfccovtcbPZjJyc\nHJSWlsJisSA5ORmVlZUdrjJczWHYYyaDiJTAG3kLR1z53am4pPfcuXPR1NSElJQUAMDdd9+NvLw8\nGI1GZGVlwWg0IiAgAHl5eaIsSQHtMxlZWaK8JBGRW5Q6t7CnuCsMT3XnCgOw3in18cfAli0SFEVE\n1AVBsM4rbrrJunW5HFz53cmG8SOek0FEcpHifAt3cWsQNzCTQURyUGLewhE2DDvMZBCRN6lhbmGP\nDcMOz8kgIm9Rct7CEcXdJSUnZjKIyFuUcL6Fuzj0vg4zGUQkNTnzFo5w6N0NPCeDiKSktrmFPTaM\nTvCcDCKSghrnFva4JNUJZjKISApKyFs4IsqS1ObNmxEXF4cbb7wRwcHBCA4ORp8+fUQrUomYySAi\nsakpb+GI0yuM0NBQbNy4EdHR0baDjZRMjCsMANi1C/jlL61XGSJtWUVEPuriRSA+HvjTn5S7FCXK\nFYbBYMCQIUNU0SzExEwGEYlB7XMLe05zGMuXL0daWhpGjx6NoKAgANZO9Nxzz0lenJyYySAiMagx\nb+GI0yWplJQUBAcHIyYmpt1Vxssvvyx5cd0h1pIUwEwGEXlGiXkLR0Q5D+PMmTNOT8jTKp6TQUTd\npea8hSNOBxPjx4/HF1984Y1aFImZDCJyl5bmFvacLkn17t0bjY2NCAoKQmBgoPVJOh0uXrzolQLd\nJeaSFMBMBhG5T8l5C0d4gJJIZs0CIiKAF18U9WWJSIPUNLewx72kRMJzMojIFVqcW9jrVsOIi4sT\nuw5FYyaDiJzR6tzCXrfOwygvLxe7DkVjJoOInNFS3sIRzjBcxEwGETmi1rmFPY9yGIMHD+7yhU+d\nOtX9ylSImQwi6ozW5xb2HDaMMrsFe51Oh9bWVuTn5+PPf/4z4uPjvVKc0rQtS7FhEBHgG3MLe06X\npFpbW/HRRx/h1VdfRWxsLF566SUYjUZv1ec2qZakAGYyiKg9NeYtHPHottqmpia88847iIqKws6d\nO1FQUIB169YpullIjedkEFEbLZxv4S6HVxgGgwEBAQGYN28eBg0aBN2Ph0IIggCdToeJEyd6tVBX\nSXmFAfCcDCJSx/kW7vIo6T19+nTbi3Tm/fff96w6iUjdMATBOtj6+GPeYkvkiwTB2iRuusm6JKUV\nomwNcvXqVfzsuuut8+fP4+abb/a8QglI3TAA678qamuBvDxJ34aIFEhLcwt7omwNMnHiRFy7ds32\n+ZkzZ5CSkuJ5dU6sWLECfn5++P77722P5ebmIjw8HJGRkSgqKpK8BkemTQPy84GrV2UrgYhk4Itz\nC3tOG0ZmZiaysrLQ0tKCqqoqjB07FsuWLZO0qOrqahQXF+OOO+6wPWY2m5Gfnw+z2YzCwkLMmTMH\nra2tktbhiH0mg4h8gy/lLRxx2jBmz56NMWPG4KGHHkJGRgbefvttpKamSlrUc889h1deeaXdYwUF\nBcjOzkZgYCBCQkIQFhaG0tJSSevoCs/JIPIdvpa3cMRhcG/FihUAflrXqq6uxtChQ7Fv3z7s379f\nsjO9CwoKYDAYcNddd7V7vLa2FiNGjLB9bjAYYLFYJKnBFZmZwNy51lkGMxlE2uYL+0S5wmHDaGho\naHeHVGZmJnQ6HS5duuTxm6akpKCurq7D40uWLEFubm67+URXQxhHd3AtWrTI9meTyQSTydTtWh2x\nz2TwnAwi7WqbW+zZo625RUlJCUpKStx6jqI2Hzx69CjGjBmDnj17AgBqamqg1+uxf/9+22288+fP\nBwCMGzcOixcvRlJSUrvX8MZdUm2YySDSNi3mLRxR/Yl7gwcPxsGDB3HTTTfBbDYjJycHpaWlsFgs\nSE5ORmVlZYerDG82DEGwnsS3bh0zGURao9W8hSMe7VarBPbNwGg0IisrC0ajEQEBAcjLy3O4JOUt\nPCeDSLs4t+hI0VcY3eHNKwyA52QQaZEWzrdwlyhXGN9++y3WrFmDqqoqNDc32174vffeE6dKlRs0\nyLrGyXMyiLSBeQvHnDaMhx56CKNGjUJKSgr8/KyxDbmXgpSG52QQaQPzFl1zuiQVGxuLw4cPe6se\nj3l7SQoAGhut52QcPcpMBpGaaXWfKFeIspfUAw88gM8//1y0orSoZ0+ek0Gkdr6+T5QrnF5h9O7d\nG42NjQgKCkJgYKD1STodLl686JUC3SXHFQYA7N5tvZRlJoNIfXwpb+GI6nMY3SFXw2Amg0idfC1v\n4YhHd0l98803iIqKwqFDhzr9enx8vGfVaQwzGUTqxLyF6xxeYcyePRtr1qyByWTq9K6obdu2SV5c\nd8h1hQEwk0GkNr6Yt3CES1IySEmxzjJ4iy2RsnFu0Z4od0mRe3hOBpHyMW/RPbzCEBkzGUTK58t5\nC0d4hSEDZjKIlI15i+5z2jDGjBnj0mP0k7ZlKW1duxGpH/eJ8ozD22qvXLmCxsZGnDt3Dt9//73t\n8YsXL8p6NKoa3HMPcO0aUFbGW2yJlIJzC885bBjvvvsu3njjDdTW1iIhIcH2eHBwMJ5++mmvFKdW\nzGQQKQ/zFp5zOvReuXIlnnnmGW/V4zG5h95tmMkgUg7mLZwTLYexZ8+edudhAMC0adM8r1ACSmkY\nADMZRErAvIVrRGkYjz32GE6dOoXY2Fj4+/vbHl+1apU4VYpMSQ1j3Trrx5YtcldC5Ju4T5TrRGkY\nUVFRMJvNqjk0SUkNg5kMInkxb+E6UXIY0dHROHPmjGhF+RJmMojkw7yF+Jwe0Xru3DkYjUYMHz4c\nPXr0AGDtRJs2bZK8OC2YPt06x3jhBZ6TQeQtzFtIw+mSVElJifUb7S5XdDod7rvvPsmL6w4lLUkB\nPCeDyNs4t+gej87DaGMymVBVVYXKykokJyejsbGx3d1S1DVmMoi8i3kL6Ti9wli9ejXWrFmD77//\nHidPnsSJEyfw1FNP4auvvvJWjW5R2hUGwEwGkbcwb9F9ogy933rrLezatQt9+vQBAERERODbb78V\np0IfMWiQ9T5wjn2IpMO5hfScNowePXrYht0A0NzcrJpbbJWE52QQSYf7RHmH04Zx3333YcmSJWhs\nbERxcTEmT56MjIwMb9SmKZmZ1jXV2lq5KyHSnra5xWuvyV2JtjmdYbS0tGDt2rUoKioCAIwdOxaz\nZs1S7FWGEmcYbWbPtl4qv/ii3JUQaQfnFuJQ7Zneq1atQl5eHvz9/ZGeno7ly5cDAHJzc/Hee+/B\n398fK1euRGpqaofnKrlh7N5tbRrHjjGTQSQG7hMlHlFuq928eTMWLlzYbvNBnU6HixcvilPldbZt\n24ZNmzbhyJEjCAwMxLlz5wAAZrMZ+fn5MJvNsFgsSE5OxokTJ+Dnp55DA3lOBpF4OLfwPqe/bZ99\n9ll8+OGHOH/+PBoaGtDQ0CBZswCAt99+GwsWLEBgYCAA4NZbbwUAFBQUIDs7G4GBgQgJCUFYWBhK\nS0slq0MK9pkMIvIM5xbe57RhGAwGDBkyxGv/kq+oqMCOHTswYsQImEwmHDhwAABQW1sLg8HQri41\nnvw3dSqQnw9cvSp3JUTqxX2i5OF0SWr58uVIS0vD6NGjERQUBMC6JPXcc891+01TUlJQV1fX4fEl\nS5agubkZ//vf/7Bv3z6UlZUhKysLp06d6vR1HA3eFy1aZPuzyWSCyWTqdq1is89k8JwMIvcxbyGO\nkpIS29ZPrnLaMH7/+98jODgYV69eRVNTU3dra6e4uNjh195++21MnDgRADBs2DD4+fnhu+++g16v\nR3V1te37ampqoNfrO30N+4ahRG3LUmwYRO7h3EI81/9jevHixU6f4/QuqejoaBw9etTj4lz17rvv\nora2FosXL8aJEyeQnJyM//73vzCbzcjJyUFpaalt6F1ZWdnhKkPJd0m14TkZRN3D8y2kI8rWIOPH\nj8cXX3whWlHOzJw5E6dOnUJMTAyys7Px0UcfAQCMRiOysrJgNBqRlpaGvLw8xWZBnOE5GUTu49xC\nfk6vMHr37o3GxkYEBQXZ7lyS8rZaT6nhCgNgJoPIHcxbSE+1wT1PqKVh8JwMItfwfAvvECW4B1gz\nEDt27LAdnMS9pDzHczKIXMPzLZTD6RXG/PnzUVZWhilTpkAQBHzyySdITExEbm6ut2p0i1quMACe\nk0HkDPeJ8h5RlqRiYmJw+PBh+Pv7A7BuRhgbG4uvv/5avEpFpKaGAVhvD5w9m7fYEl2PcwvvEuUu\nKZ1Oh/r6etvn9fX1qr07SYm4VQhRR8xbKJPTGcaCBQsQHx9vC3hs374dy5Ytk7oun5GZCcydaz0n\ng5kMIivOLZTJpbukamtrUVZWBp1Oh+HDh6N///7eqK1b1LYkBfCcDCJ7nFvIw6MZxqFDh9p93vZt\nbctR8fHxYtQoOjU2DGYyiKw4t5CPRw3Dz88P0dHRuPnmmzt94rZt2zyvUAJqbBjMZBAxbyE3j3IY\nf/nLX7B+/Xr07NkTjzzyCDIzMxEcHCx6kcRMBhHAuYUaOJ1hnDx5Evn5+fj0009xxx134KWXXkJs\nbKy36nObGq8wAGYyyLdxbiE/UW6rDQ0NxUMPPYTU1FSUlZXh+PHjohVIP7E/J4PIl/B8C/VweIVx\n8uRJfPLJJygoKMCgQYPwyCOP4IEHHsANN9zg7RrdotYrDMA6w1i3DtiyRe5KiLyDcwvl8HjoHRMT\ngwkTJqBPnz7tXtDTE/ekpOaGwXMyyNfwfAvl8GjovXDhQtsttJcuXRK3MuqU/TkZzGSQ1rWdb7Fn\nD5uFWnB7c4VhJoN8AfMWyiPK0Ju86557gGvXgLIyuSshkgb3iVIvl87DIO9hJoO0jnkL9eKSlAIx\nk0FaxbyFcoly4t6KFSvavZBOp0Pfvn2RkJCg6ACfmtlnMnhOBmkF8xbq5/QKIycnBwcOHEBGRgYE\nQcDnn3+OmJgY/Oc//8GkSZPw29/+1lu1ukQLVxgAMxmkLcxbKJ8oJ+7de++92Lp1K3r37g3Aeovt\n+PHjUVhYiISEBHzzzTfiVSwCrTQMZjJIS5i3UD5R7pI6d+4cgoKCbJ8HBgbi7Nmz6NmzJ37Gv3nJ\n2GcyiNSsLW+xfj2bhdo5nWFMmTIFSUlJmDBhAgRBwObNm5GTk4PLly/DaDR6o0afNX269fbDF15g\nJoPUiXMLbXHpLqmysjLs3r0bOp0OI0eORGJiojdq6xatLEkBPCeD1I1zC3URZYYBAC0tLairq0Nz\nc7Ntu5BBgwaJU6XItNQwAGDJEuvttXl5cldC5B7OLdRFlIaxatUqLF68GLfddhv8/f1tj3/99dfi\nVCkyrTUMZjJIjZi3UB9RGkZoaChKS0sdHtWqNFprGIB1C4XZs5nJIHXgPlHqJMpdUoMGDbJtb+4N\npaWlGD58OOLi4jBs2DCU2W2qlJubi/DwcERGRqKoqMhrNcmtbasQIqXjPlHa5vQKY+bMmThx4gTS\n09Ntt9dKeR6GyWTCggULMHbsWGzduhWvvPIKtm3bBrPZjJycHJSVlcFisSA5ORknTpyAn1/7nqfF\nKwxmMkgtOLdQL9GuMJKTk9HU1IRLly6hoaEBDQ0NohV5vQEDBuDChQsAgPr6euj1egBAQUEBsrOz\nERgYiJCQEISFhaG0tFSyOpSEmQxSA+YttM9pDmPRokVeKOMny5Ytwy9+8Qv85je/QWtrK/bu3QsA\nqK2txYgRI2zfZzAYYLFYvFqbnJjJICVj3sI3OGwY8+bNwxtvvIGMjIwOX9PpdNi0aVO33zQlJQV1\ndXUdHl+yZAlWrlyJlStXIjMzE+vXr8fMmTNRXFzc6evoHPzmtG9yJpMJJpOp27Uqhf05GcxkkJJw\nbqFOJSUlKCkpces5DmcYBw4cQGJiosMXlOqXcJ8+fXDx4kUAgCAI6NevHy5cuIBly5YBAObPnw8A\nGDduHBYvXoykpKR2z9fiDKMNMxmkRJxbaINowT1vio+Px2uvvYb77rsPX331FebPn4+ysjLb0Lu0\ntNQ29K6srOxwlaHlhsFMBikN8xba4dF5GDExMV2+8JEjR7pfWRdWr16NX/3qV/jhhx9www03YPXq\n1QAAo9GIrKwsGI1GBAQEIC8vz+GSlFbxnAxSEs4tfI/DK4yqqioAQN6P6x9Tp06FIAhYt24dAGD5\n8uXeqdBNWr7CAHhOBikD94nSHlGWpGJjY3H48OF2j8XFxaG8vNzzCiWg9YbBTAYpAecW2iNKDkMQ\nBOzatcv2+e7duzX9C1npmMkguTFv4bucXmEcPHgQM2bMsIXp+vXrh/fffx/x8fFeKdBdWr/CAIDd\nu623MR47xkwGeRf3idIuUe+SamsYffv29bwyCflCw+A5GSQHzi20zaO7pNpcvXoVGzZsQFVVFZqb\nm20vvHDhQnGqJLfpdD9tSMiGQd7yzjvA8ePWuQX5JqdXGGPHjkW/fv2QkJDQ7jyM559/XvLiusMX\nrjAAZjLIu5i30D5RrjAsFgu++OIL0YoicTCTQd7CvAW1cXqX1D333CNZSI88w3MySGrcJ4rsOV2S\nioqKQmVlJQYPHowePXpYnyRh0ttTvrIkBTCTQdJj3sJ3iHKXVFvi+3ohISHdrUtSvtQwAOu//sLD\ngRdflLsS0hrOLXyLKMG9kJAQVFdXY9u2bQgJCUGvXr186hey0rUtS/GvhMTEuQV1xukVxqJFi3Dw\n4EEcP34cJ06cgMViQVZWFnbv3u2tGt3ia1cYzGSQ2Ji38E2iXGFs3LgRBQUF6NWrFwBAr9dLekQr\nucc+k0Ekhra8xWuvyV0JKY3ThtGjRw/4+f30bZcvX5a0IHLf1KlAfj5w9arclZDacZ8o6orThjF5\n8mQ8+eSTqK+vx+rVqzFmzBjMmjXLG7WRi+wzGUTdxbkFOePSXlJFRUUoKioCYE1+p6SkSF5Yd/na\nDKMNz8kgT3BuQaIf0Xru3Dnccsstij7pzlcbBjMZ5AnmLcijoffevXthMpkwceJElJeXIzo6GjEx\nMbj99tuxdetW0Yslz/CcDOouzi3IVQ6vMBISEpCbm4sLFy5g9uzZKCwsxIgRI/Dvf/8bjz76aIdT\n+JTCV68wAJ6TQe7j+RbUxqMrjJaWFqSmpmLy5MkYMGAARowYAQCIjIxU9JKUL7vnHuDaNaCsTO5K\nSA24TxS5y+FutfZN4We8TlUFnpNB7uD5FuQuh0tS/v7+6NmzJwDgypUruOGGG2xfu3Lliu0wJaXx\n5SUpgOdkkGu4TxRdz6PzMFpaWkQviKTHczLIGeYtqLucBvdIfbhVCDnCuQV5wq0chhr4+pIUwEwG\nOca8BTkiyuaDpD7MZFBnmLcgT7FhaBTPySB7nFuQGNgwNIqZDGrDuQWJRZaGsX79egwZMgT+/v44\ndOhQu6/l5uYiPDwckZGRtg0PAeDgwYOIiYlBeHg45s2b5+2SVYfnZFAbnm9BYpGlYcTExGDjxo0Y\nNWpUu8fNZjPy8/NhNptRWFiIOXPm2IYwTz31FNauXYuKigpUVFSgsLBQjtJVhedkEOcWJCZZGkZk\nZCQiIiI6PF5QUIDs7GwEBgYiJCQEYWFh2L9/P86cOYOGhgYM/zG+PG3aNHz66afeLlt1eE6Gb+Pc\ngsSmqBlGbW0tDAaD7XODwQCLxdLhcb1eD4vFIkeJqsNlKd/EuQVJwWHS21MpKSmoq6vr8PjSpUuR\nkZEh1dvSdTIzgblzgdpaZjJ8CfeJIilI1jCKi4vdfo5er0d1dbXt85qaGhgMBuj1etTU1LR7XK/X\nO3ydRYsW2f5sMplgMpncrkUr7DMZL74odzXkDW1ziz17OLcgx0pKSlBSUuLekwQZmUwm4cCBA7bP\njx07JgwdOlT44YcfhFOnTgk///nPhdbWVkEQBGH48OHCvn37hNbWViEtLU3YunVrp68p84+kSLt2\nCUJUlCD8+J+SNOzCBUEIDRWEv/9d7kpIbVz53SnLDGPjxo0YOHAg9u3bh/T0dKSlpQEAjEYjsrKy\nYDQakZaWhry8PNs263l5eZg1axbCw8MRFhaGcePGyVG6KjGT4Rs4tyCpcS8pH7FkiXXL87w8uSsh\nqXCfKPKEK7872TB8BM/J0Daeb0Ge4uaDZMNMhnYxb0HewobhQ5jJ0B7OLcibuCTlQ3hOhvZwbkFi\n4ZIUtcNzMrSF+0SRt7Fh+Biek6ENnFuQHNgwfAwzGerHuQXJRbKtQUiZ7M/J+HHzX1IZ7hNFcuHQ\n2wcxk6FezFuQVDj0pk4xk6FOnFuQ3NgwfBQzGerCuQUpAZekfBQzGerCvAVJjUtS5BAzGerBvAUp\nBRuGD2MmQ/k4tyAlYcPwYcxkKBvnFqQ0zGH4MGYylI15C1IaDr19HDMZysS8BXkbh97kFDMZysO5\nBSkVGwYxk6EgnFuQknFJipjJUBDmLUguXJIilzCToQzMW5DSsWEQAGYy5Ma5BakBGwYBYCZDTpxb\nkFowh0EAmMmQE/MWpBYcepMNMxnex7wFKQWH3uQWZjK8i3MLUhs2DGqHmQzv4NyC1IhLUtQOMxne\nwbwFKY1il6TWr1+PIUOGwN/fHwcPHrQ9XlxcjMTERNx1111ITEzEtm3bbF87ePAgYmJiEB4ejnnz\n5slRtk9gJkN6zFuQWsnSMGJiYrBx40aMGjUKOp3O9vitt96Kzz77DEeOHMGHH36IqVOn2r721FNP\nYe3ataioqEBFRQUKCwvlKF12JSUlkr+HXJkMb/xsciopKdH03MIX/v58nSwNIzIyEhERER0ej42N\nRf/+/QEARqMRV65cwbVr13DmzBk0NDRg+I/3e06bNg2ffvqpV2tWCm/8j1auTIbW/w+5bVuJpucW\nWv/70/rP5wrF5jA2bNiAhIQEBAYGwmKxwGAw2L6m1+thsVhkrE7bmMmQxoED1luWmbcgtZKsYaSk\npKCurq7D40uXLkVGRkaXzz127Bjmz5+P4uJiqcojJ6ZOBWJigOpq773n8eOA3UhLUwQB2LYN+Ne/\nOLcgFRNkZDKZhIMHD7Z7rLq6WoiIiBD27Nlje6y2tlaIjIy0ff7xxx8LTz75ZKevGRoaKgDgBz/4\nwQ9+uPERGhrq9He27EtSgt1ktb6+Hunp6Vi+fDnuvvtu2+MDBgxAnz59sH//fgwfPhx//etf8cwz\nz3T6epWVlZLXTETki2QZem/cuBEDBw7Evn37kJ6ejrS0NADAm2++iZMnT2Lx4sWIi4tDXFwcvvvu\nOwBAXl7oSKdGAAAHOUlEQVQeZs2ahfDwcISFhWHcuHFylE5E5LM0F9wjIiJpaGZrkMLCQkRGRiI8\nPBzLly+XuxxRzZw5E7fffjtiYmLkLkUS1dXVGD16NIYMGYLo6GisXLlS7pJEdfXqVSQlJSE2NhZG\noxELFiyQuyTRtbS0IC4uzukNLWoUEhKCu+66C3FxcbZb+7Wkvr4ekyZNQlRUFIxGI/Z1dRtfd4bV\nStPc3CyEhoYKp0+fFpqamoShQ4cKZrNZ7rJEs2PHDuHQoUNCdHS03KVI4syZM0J5ebkgCILQ0NAg\nREREaOrvTxAE4fLly4IgCMK1a9eEpKQkYefOnTJXJK4VK1YIOTk5QkZGhtyliC4kJEQ4f/683GVI\nZtq0acLatWsFQbD+77O+vt7h92riCqO0tBRhYWEICQlBYGAgHn30URQUFMhdlmjuvfde3HjjjXKX\nIZn+/fsjNjYWANC7d29ERUWhtrZW5qrE1bNnTwBAU1MTWlpacNNNN8lckXhqamqwZcsWzJo1S7P7\nuGn157pw4QJ27tyJmTNnAgACAgLQt29fh9+viYZhsVgwcOBA2+cGg4HBPpWqqqpCeXk5kpKS5C5F\nVK2trYiNjcXtt9+O0aNHw2g0yl2SaH7961/j1VdfhZ+fJn6ddKDT6ZCcnIzExESsWbNG7nJEdfr0\nadx6662YMWMG4uPjMXv2bDQ2Njr8fk38DdvvR0XqdenSJUyaNAlvvPEGevfuLXc5ovLz88Phw4dR\nU1ODHTt2aGabic8++wy33XYb4uLiNPuv8N27d6O8vBxbt27FW2+9hZ07d8pdkmiam5tx6NAhzJkz\nB4cOHUKvXr2wbNkyh9+viYah1+tRbRdJrq6ubreVCCnftWvX8PDDD+Oxxx7DhAkT5C5HMn379kV6\nejoOHDggdymi2LNnDzZt2oTBgwcjOzsb//znPzFt2jS5yxLVgAEDAFg3R83MzERpaanMFYnHYDDA\nYDBg2LBhAIBJkybh0KFDDr9fEw0jMTERFRUVqKqqQlNTE/Lz8/Hggw/KXRa5SBAEPPHEEzAajXj2\n2WflLkd03333Herr6wEAV65cQXFxMeLi4mSuShxLly5FdXU1Tp8+jU8++QT3338/PvroI7nLEk1j\nYyMaGhoAAJcvX0ZRUZGm7lbs378/Bg4ciBMnTgAAvvzySwwZMsTh98ue9BZDQEAA3nzzTYwdOxYt\nLS144oknEBUVJXdZosnOzsb27dtx/vx5DBw4EH/4wx8wY8YMucsSze7du/G3v/3NdusiAOTm5mom\nnHnmzBk8/vjjaG1tRWtrK6ZOnYoxY8bIXZYktLY8fPbsWWRmZgKwLt9MmTIFqampMlclrlWrVmHK\nlCloampCaGgo3n//fYffy+AeERG5RBNLUkREJD02DCIicgkbBhERuYQNg4iIXMKGQURELmHDICIi\nl7BhkM+SevuR119/HVeuXHHr/TZv3qy57flJO5jDIJ8VHBxsS/FKYfDgwThw4ABuvvlmr7wfkdR4\nhUFk5+TJk0hLS0NiYiJGjRqF48ePAwCmT5+OefPmYeTIkQgNDcWGDRsAWHehnTNnDqKiopCamor0\n9HRs2LABq1atQm1tLUaPHt0u1f273/0OsbGxuPvuu/Htt992eP8PPvgAc+fO7fI97VVVVSEyMhIz\nZszAnXfeiSlTpqCoqAgjR45EREQEysrKpPjPRL5K6sM5iJSqd+/eHR67//77hYqKCkEQBGHfvn3C\n/fffLwiCIDz++ONCVlaWIAiCYDabhbCwMEEQBGH9+vXC+PHjBUEQhLq6OuHGG28UNmzYIAhCx4N3\ndDqd8NlnnwmCIAgvvvii8Kc//anD+3/wwQfC008/3eV72jt9+rQQEBAgHD16VGhtbRUSEhKEmTNn\nCoIgCAUFBcKECRPc/c9C5JAm9pIiEsOlS5ewd+9eTJ482fZYU1MTAOseSW276EZFReHs2bMAgF27\ndiErKwsAbGddOBIUFIT09HQAQEJCAoqLi7usx9F7Xm/w4MG2DeOGDBmC5ORkAEB0dDSqqqq6fA8i\nd7BhEP2otbUV/fr1Q3l5eadfDwoKsv1Z+HH0p9Pp2p0DIXQxEgwMDLT92c/PD83NzU5r6uw9r9ej\nR492r9v2HFffg8hVnGEQ/ahPnz4YPHgw/vGPfwCw/oI+cuRIl88ZOXIkNmzYAEEQcPbsWWzfvt32\nteDgYFy8eNGtGrpqOERyY8Mgn9XY2IiBAwfaPl5//XWsW7cOa9euRWxsLKKjo7Fp0ybb99tv3d32\n54cffhgGgwFGoxFTp05FfHy87UzkX/7ylxg3bpxt6H398zvbCvz6xx39+frnOPpca9uNk7x4Wy2R\nhy5fvoxevXrh/PnzSEpKwp49e3DbbbfJXRaR6DjDIPLQAw88gPr6ejQ1NWHhwoVsFqRZvMIgIiKX\ncIZBREQuYcMgIiKXsGEQEZFL2DCIiMglbBhEROQSNgwiInLJ/wMLLmI+AgPr0QAAAABJRU5ErkJg\ngg==\n",
       "text": [
        "<matplotlib.figure.Figure at 0x5d72230>"
       ]
      }
     ],
     "prompt_number": 21
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 3.3.4,Page No.104"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "import numpy as np\n",
      "%matplotlib inline\n",
      "\n",
      "#Initilization of Variables\n",
      "\n",
      "M_D=120 #KN.m #B.M at Pt D\n",
      "F_C=40 #KN #Force at Pt C\n",
      "w1=20 #KN.m\n",
      "L_DB=1.5 #m #Length of DB\n",
      "L_CD=1.5 #m #Length of CD\n",
      "L_AC=3 #m #Length of AC\n",
      "L=6 #m #Length of Beam\n",
      "\n",
      "#Calculations\n",
      "\n",
      "#Let R_A And R_B be the Reactions at pt A and B \n",
      "#R_A+R_B=100\n",
      "#Now Taking Moment At Pt B We get,M_B\n",
      "R_A=-(M_D-F_C*(L_CD+L_DB)-w1*L_AC*(L_AC*2**-1+L_CD+L_DB))*L**-1\n",
      "R_B=100-R_A\n",
      "\n",
      "#Shear Force Calculations\n",
      "\n",
      "#S.F At Pt B\n",
      "V_B1=0\n",
      "V_B2=R_B\n",
      "\n",
      "#S.F at Pt D\n",
      "V_D=V_B2 #KN\n",
      "\n",
      "#S.F At Pt C\n",
      "V_C1=V_D #KN\n",
      "V_C2=V_C1-F_C\n",
      "\n",
      "#S.F At Pt A\n",
      "V_A1=V_C2-w1*L_AC #KN\n",
      "V_A2=V_A1+R_A\n",
      "\n",
      "#Bending Moment Calculations\n",
      "\n",
      "#B.M At Pt B\n",
      "M_B=0 #KN.m\n",
      "\n",
      "#B.M At Pt D\n",
      "M_D1=M_B-R_B*L_DB #KN.m\n",
      "M_D2=M_B+M_D-R_B*L_DB\n",
      "\n",
      "#B.M At Pt C\n",
      "M_C=M_D-R_B*(L_CD+L_DB)\n",
      "\n",
      "#B.M At Pt A\n",
      "M_A=M_D-R_B*L+F_C*L_AC+w1*L_AC*L_AC*2**-1\n",
      "\n",
      "#Result\n",
      "print \"The Shear Force and Bending Moment Diagrams are the results\"\n",
      "\n",
      "#Plotting the Shear Force Diagram\n",
      "\n",
      "X1=[0,0,L_DB,L_DB+L_CD,L_DB+L_CD,L_DB+L_CD+L_AC,L_DB+L_CD+L_AC]\n",
      "Y1=[V_B1,V_B2,V_D,V_C1,V_C2,V_A1,V_A2]\n",
      "Z1=[0,0,0,0,0,0,0]\n",
      "plt.plot(X1,Y1,X1,Z1)\n",
      "plt.xlabel(\"Length x in m\")\n",
      "plt.ylabel(\"Shear Force in kN\")\n",
      "plt.show()\n",
      "\n",
      "#Plotting the Bendimg Moment Diagram\n",
      "\n",
      "Y2=[M_B,M_D1,M_D2,M_C,M_A]\n",
      "X2=[0,L_DB,L_DB,L_CD+L_DB,L_AC+L_CD+L_DB]\n",
      "Z2=[0,0,0,0,0]\n",
      "plt.plot(X2,Y2,X2,Z2)\n",
      "plt.xlabel(\"Length in m\")\n",
      "plt.ylabel(\"Bending Moment in kN.m\")\n",
      "plt.show()"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The Shear Force and Bending Moment Diagrams are the results\n"
       ]
      },
      {
       "metadata": {},
       "output_type": "display_data",
       "png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEPCAYAAACtCNj2AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAHfFJREFUeJzt3X1UlHX+//HXIGiJmpUIHfEsHLyBwRK8SavjCireBlkS\nha66Grm/3CzrW0rndFr3ayat2cm12nO2Y2o3u1myG+S2rrqEt3lTWH5dtsCElvtciQxvFoHr9wfr\nVQg4IDNzMTPPxzlznLnmurjeo57rxfv6fK5rbIZhGAIAQJKf1QUAALoOQgEAYCIUAAAmQgEAYCIU\nAAAmQgEAYLI0FGpqapScnKyoqCjZ7XYdOnRI1dXVSkhI0JAhQzR58mTV1NRYWSIA+BRLQ+HRRx/V\n9OnT9c9//lPHjh1TZGSkMjIylJCQoIKCAk2cOFEZGRlWlggAPsVm1cVr3333nWJjY3Xy5MlmyyMj\nI7V7924FBwersrJScXFx+uKLL6woEQB8jmWdQlFRkYKCgrRgwQKNGDFCDz74oM6ePauqqioFBwdL\nkoKDg1VVVWVViQDgcywLhfr6euXl5Wnx4sXKy8tTYGBgi1NFNptNNpvNogoBwAcZFqmoqDDCwsLM\n13v37jWmT59uREZGGhUVFYZhGEZ5ebkxdOjQFttGREQYknjw4MGDRwceERERDo/NlnUKISEhGjhw\noAoKCiRJu3btUnR0tBITE7V582ZJ0ubNmzVz5swW23711VcyDMNrH7/61a8sr4HPx+fzxc/nzZ/N\nMAx99dVXDo/N/s491HfM+vXrNWfOHNXV1SkiIkIbN25UQ0ODUlJStGHDBoWFhendd9+1skQA8CmW\nhsLw4cN15MiRFst37dplQTUAAK5o7oLi4uKsLsGl+HyezZs/nzd/tvay7DqFzrDZbPLAsgHAUu05\ndtIpAABMhAIAwGTpQHNnLFpkdQVA6/7nf6ShQ62uArg6HhsKo0ZZXQHQ0uuvS4cOEQrwXB4bCnQK\n6Ir27bO6AqBzGFMAAJgIBQCAiVAAAJgIBQCAiVAAAJgIBQCAiVAAAJgIBQCAiVAAAJgIBQCAiVAA\nAJgIBQCAiVAAAJgIBQCAiVAAAJgIBQCAiVAAAJgIBQCAiVAAAJgIBQCAiVAAAJgsD4WGhgbFxsYq\nMTFRklRdXa2EhAQNGTJEkydPVk1NjcUVAoDvsDwU1q1bJ7vdLpvNJknKyMhQQkKCCgoKNHHiRGVk\nZFhcIQD4DktDobS0VB9++KHS0tJkGIYkKTs7W/Pnz5ckzZ8/X++//76VJQKAT7E0FB577DGtWbNG\nfn4/lFFVVaXg4GBJUnBwsKqqqqwqDwB8jmWhsG3bNvXv31+xsbFml3A5m81mnlYCALiev1U7PnDg\ngLKzs/Xhhx/qwoULOnPmjObOnavg4GBVVlYqJCREFRUV6t+/f6vbr1ixwnweFxenuLg49xQOAB4i\nNzdXubm5HdrGZrT1a7ob7d69Wy+88II++OADLVu2TDfeeKOWL1+ujIwM1dTUtBhsttlsbXYXgJXm\nzZMmTWr6E+hq2nPstHz20SWXThOlp6dr586dGjJkiHJycpSenm5xZQDgO7pEp9BRdAroqugU0JV5\nVKcAALAeoQAAMBEKAAAToQAAMBEKAAAToQAAMBEKAAAToQAAMBEKAAAToQAAMBEKAAAToQAAMBEK\nAAAToQAAMBEKAAAToQAAMBEKAAAToQAAMBEKAAAToQAAMBEKAAAToQAAMBEKAAAToQAAMBEKAAAT\noQAAMBEKAAAToQAAMPm39UZ8fHyry202myQpJyfHNRUBACzTZiisWbPGfH4pCA4ePKjnn39e/fv3\n7/SOS0pKNG/ePH3zzTey2WxatGiRHnnkEVVXV+u+++7T119/rbCwML377rvq27dvp/cHAHDMZhiG\n4Wil3NxcPfvsszp//ryefvppTZs2rdM7rqysVGVlpWJiYlRbW6uRI0fq/fff18aNG9WvXz8tW7ZM\nzz//vL799ltlZGQ0L9pmUzvKBtxu3jxp0qSmP4Gupj3HzjY7BUnavn27Vq1ape7du+vpp59u85TS\n1QgJCVFISIgkqVevXoqKilJZWZmys7O1e/duSdL8+fMVFxfXIhQAAK7RZiiMHj1ap06d0hNPPKHb\nbrtNkpSXl2e+P2LECKcVUVxcrKNHj2rMmDGqqqpScHCwJCk4OFhVVVVO2w8A4MraDIXAwEAFBgYq\nMzNTmZmZLd7/6KOPnFJAbW2tZs2apXXr1ql3797N3rPZbOZ4xuVWrFhhPo+Li1NcXJxT6gEAb5Gb\nm6vc3NwObeNwTKGxsVF+fs1nrl64cEHXXHNNhwu83MWLF3XnnXdq2rRpWrp0qSQpMjJSubm5CgkJ\nUUVFheLj4/XFF180L5oxBXRRjCmgK2vPsdPhdQppaWnNXtfW1mr69Omdq0ySYRh64IEHZLfbzUCQ\npKSkJG3evFmStHnzZs2cObPT+wIAtI/DUBgwYIAWL14sSfr22281efJkzZ07t9M73r9/v9566y19\n9NFHio2NVWxsrLZv36709HTt3LlTQ4YMUU5OjtLT0zu9LwBA+7RrSuqTTz6pM2fO6NNPP1V6erqS\nk5PdUVubOH2ErorTR+jKOjUl9dLgss1m09ixY7Vy5UqNHj1aNptNf/rTn3TPPfc4t1oAgOXaDIUP\nPvig2cyfmJgY1dfXa9u2bZJEKACAF2ozFDZt2uTGMgAAXQF3SQUAmAgFwImio6VVq6QDB6yuBLg6\n7Zp91NUw+whdWWam9PDD0pw50sqV0rXXWl0R0KQ9x06HoXDhwgVlZmaquLhY9fX15g9+5plnnFdp\nBxEK6Or+/e+mYDh6VNq4Ubr9dqsrApxwl1RJuuuuu9S3b1+NHDnSKbe2AHxBv37SO+80dQ2zZtE1\nwHM47BSGDRum48ePu6uedqFTgCeha0BX4ZR7H91+++06duyY04oCfM2lruG555q6hieekM6ft7oq\noHUOO4WoqCidOHFC4eHh6tGjR9NGNpulQUGnAE9F1wArOWWgubi4uNXlYWFhV1tXpxEK8HTMUIIV\nOnX66MyZM5KkPn36tPoAcPVmzZL+7/+k0lIpJobrGtB1tNkpzJgxQ3/5y18UFhbW4tvPbDabTp48\n6ZYCW0OnAG9C1wB3ccrpo66IUIC3YawB7kAoAB6GrgGu5JQpqQDch7EGWI1OAeii6BrgbE7rFPbu\n3auNGzdKkk6dOqWioqLOVwfgiugaYAWHncKKFSv06aef6ssvv1RBQYHKysqUkpKi/fv3u6vGFugU\n4GvoGuAMTukU/vznPysrK0uBgYGSpAEDBuj77793ToUA2oWuAe7iMBR69OghP78fVjt79qxLCwLQ\nOu6hBHdwGAr33nuvfvGLX6impka///3vNXHiRKWlpbmjNgCtoGuAK7Vr9tGOHTu0Y8cOSdKUKVOU\nkJDg8sKuhDEFoAljDegIp1y8VlRUpJCQEF373/9t58+fV1VVFTfEA7oIroZGezlloDk5OVndunX7\nYQM/PyUnJ3e+OgBOwVgDnMlhKDQ0NKh79+7m6x49eujixYsuLQpAxzHWAGdwGAr9+vVTVlaW+Tor\nK0v9+vVzaVEArg5dAzrL4ZjCiRMnNGfOHJWXl0uSQkND9eabb2rQoEEuK2r79u1aunSpGhoalJaW\npuXLlzcvmjEFwCHGGnC5Tg80NzQ0aPny5XrhhRfMC9Z69+7t3Cpb2efQoUO1a9cuDRgwQKNHj9Yf\n//hHRUVF/VA0oQC0GzOUcEmnB5q7deumffv2yTAM9e7d2+WBIEmHDx/WoEGDFBYWpoCAAN1///3N\nTl8B6BjGGtAR/o5WiImJ0V133aV7771XPXv2lNSUNvfcc49LCiorK9PAgQPN16GhoTp06JBL9gX4\niktjDZmZTSFB1+B7Tp9u33oOQ+HChQu64YYblJOT02y5q0Lh8q/+bHO9uB+tFyYp3CXlAN7n/0lr\nJa39jdWFwOWKJBV3bBOHobBp06arquVqDRgwQCUlJebrkpIShYaGtljPyGVMAegMxhp8y7590rhx\njn/pdjgltaSkRHfffbeCgoIUFBSkWbNmqbS01ClFtmbUqFEqLCxUcXGx6urqtGXLFiUlJblsf4Cv\nYqwBrXEYCgsWLFBSUpLKy8tVXl6uxMRELViwwGUF+fv76+WXX9aUKVNkt9t13333NZt5BMB5uK4B\nl3N4ncLw4cP1+eefO1zmTkxJBZyP6xq826XTR52+99GNN96oN998Uw0NDaqvr9dbb73FFc2AF6Jr\ngNSOUHj99df17rvvKiQkRDfddJPee+898/uaAXgfxhp8W5unjw4ePKixY8e6u5524fQR4B7MUPIe\nnT599NBDD5nPb7vtNudVBsBj0DX4Hoenj6SmC9gA+CbGGnxLm6HQ0NCg6upqnT592nz+4wcA30LX\n4BvaHFMICwszbzlhGEaz20/YbDadPHnSPRW2gjEFwFqMNXie9o4pOLxOoSsiFADrcV2DZ3HadQoA\n0BrGGrwToQCgUxhr8C6EAoBOo2vwHlcMhfr6eg0dOtRdtQDwcHQNnu+KoeDv76/IyEh9/fXX7qoH\ngIeja/BsDr9kp7q6WtHR0br11lsVGBgoqWn2T3Z2tsuLA+C5Zs2Sxo9vmqEUE8MMJU/hMBRWrlzp\njjoAeCG+G9rzcJ0CALfgugZrOe06hY8//lijR49Wr169FBAQID8/P/Xp08dphQLwDYw1eAaHofDw\nww/rD3/4gwYPHqwLFy5ow4YNWrx4sTtqA+CFmKHUtbXrOoXBgweroaFB3bp104IFC7R9+3ZX1wXA\ni9E1dF0OQyEwMFD/+c9/NHz4cC1btkwvvvgi5/MBOAVdQ9fjMBTeeOMNNTY26uWXX1bPnj1VWlqq\nzMxMd9QGwAfQNXQt7Zp9dO7cOZWUlHSZq5uZfQR4J2YouY7TZh9lZ2crNjZWU6ZMkSQdPXpUSUlJ\nzqkSAH6ErsF6DkNhxYoVOnTokK6//npJUmxsrKVfsAPA+zHWYB2HoRAQEKC+ffs238iPm6sCcK1L\nXcOqVXQN7uTw6B4dHa23335b9fX1Kiws1JIlS3Q7J/oAuElysnTsmFRSQtfgDg5DYf369frHP/6h\nHj16KDU1VX369NFLL73kjtoAQJIUFCRt2ULX4A7c+wiARzl1qmmG0mefMUOpI5w2++jLL7/Ugw8+\nqISEBMXHxys+Pl4TJkzoVHFPPvmkoqKiNHz4cN1zzz367rvvzPdWr16twYMHKzIyUjt27OjUfgB4\nH7oG13LYKdxyyy166KGHNGLECHXr1q1pI5tNI0eOvOqd7ty5UxMnTpSfn5/S09MlSRkZGcrPz9fs\n2bN15MgRlZWVadKkSSooKGgxsE2nAECia+iI9nYKDr9PISAgQA899JDTCpOkhIQE8/mYMWPMK6Sz\nsrKUmpqqgIAAhYWFadCgQTp8+LDGjh3r1P0D8A6XuoatW/m+Bmdp8/RRdXW1Tp8+rcTERL3yyiuq\nqKhQdXW1+XCW119/XdOnT5cklZeXKzQ01HwvNDRUZWVlTtsXAO/EDCXnabNTGDFihGw2m/n6hRde\nMJ/bbDaHF7AlJCSosrKyxfLnnntOiYmJkqRVq1ape/fumj17dps/58c1/NiKFSvM53FxcYqLi7ti\nPQC8G11DS7m5ucrNzZUk/etf7dvGstlHmzZt0muvvaa///3vuuaaayQ1jStIMscZpk6dql//+tca\nM2ZMs20ZUwBwJYw1tNTp2UdHjhxRRUWF+Xrz5s1KSkrSI4880unTR9u3b9eaNWuUlZVlBoIkJSUl\n6Z133lFdXZ2KiopUWFioW2+9tVP7AuB7mKF09doMhUWLFqlHjx6SpD179ig9PV3z589Xnz59tGjR\nok7tdMmSJaqtrVVCQoJiY2PNb3Kz2+1KSUmR3W7XtGnT9Oqrr7Z5+ggAHGGsoePaPH00fPhwff75\n55KkX/7ylwoKCjLP4//4PStw+ghAR23dKi1Z4rtjDZ0+fdTQ0KCLFy9Kknbt2qX4+Hjzvfr6eieV\nCQDuQdfQPm3OPkpNTdX48ePVr18/9ezZU+PGjZMkFRYWtrhrKgB4AmYoOXbF2Ucff/yxKisrNXny\nZAUGBkqSCgoKVFtbqxEjRrityMtx+ghAZ/naDKX2nj7ihngAfJqvjDU47YZ4AODNGGtojlAA4PO4\nruEHhAIA/BddA6EAAM34etdAKABAK3y1ayAUAKANvtg1EAoA4IAvdQ2EAgC0g690DYQCAHSAt3cN\nhAIAdJA3dw2EAgBcJW/sGggFAOgEb+saCAUAcAJv6RoIBQBwEm/oGggFAHAyT+4aCAUAcAFP7RoI\nBQBwIU/rGggFAHAxT+oaCAUAcBNP6BoIBQBwo67eNRAKAGCBrto1EAoAYJGu2DUQCgBgsa7UNRAK\nANAFdJWuwdJQWLt2rfz8/FRdXW0uW716tQYPHqzIyEjt2LHDwuoAwP2s7hr83bu7H5SUlGjnzp36\nyU9+Yi7Lz8/Xli1blJ+fr7KyMk2aNEkFBQXy86OhAeA7LnUNW7c2dQ1z5kgrV0rXXuv6fVt2tH38\n8cf1m9/8ptmyrKwspaamKiAgQGFhYRo0aJAOHz5sUYUAYC0rugZLQiErK0uhoaG65ZZbmi0vLy9X\naGio+To0NFRlZWXuLg8Augx3jzW47PRRQkKCKisrWyxftWqVVq9e3Wy8wDCMNn+OzWZzSX0A4EmS\nk6Xx46WHH27qGjZulG6/3fn7cVko7Ny5s9Xlx48fV1FRkYYPHy5JKi0t1ciRI3Xo0CENGDBAJSUl\n5rqlpaUaMGBAqz9nxYoV5vO4uDjFxcU5rXYA6Io6OtaQm5ur3NxcSdK//tW+fdiMK/2a7gbh4eH6\n9NNPdcMNNyg/P1+zZ8/W4cOHzYHmEydOtOgWbDbbFbsLAPB2p041dQ2ffda+rmHfPmncOMfHTstm\nH13y4wO+3W5XSkqK7Ha7/P399eqrr3L6CABa4aoZSpZ3CleDTgEAftCerqG9nQIXAACAh3PmDCVC\nAQC8hDOuayAUAMCLdLZrIBQAwAtdbdfAQDMAeLmtW6XFi6VTpxwfOwkFAPABp05J/fsTCgCA/2rP\nsZMxBQCAiVAAAJgIBQCAiVAAAJgIBQCAiVAAAJgIBQCAiVAAAJgIBQCAiVAAAJgIBQCAiVAAAJgI\nBQCAiVAAAJgIBQCAiVAAAJgIBQCAiVAAAJgIBQCAiVAAAJgIBQCAybJQWL9+vaKiojRs2DAtX77c\nXL569WoNHjxYkZGR2rFjh1XlAYBPsiQUPvroI2VnZ+vYsWM6fvy4nnjiCUlSfn6+tmzZovz8fG3f\nvl2LFy9WY2OjFSVaKjc31+oSXIrP59m8+fN582drL0tC4Xe/+52eeuopBQQESJKCgoIkSVlZWUpN\nTVVAQIDCwsI0aNAgHT582IoSLeXt/zH5fJ7Nmz+fN3+29rIkFAoLC7Vnzx6NHTtWcXFx+uSTTyRJ\n5eXlCg0NNdcLDQ1VWVmZFSUCgE/yd9UPTkhIUGVlZYvlq1atUn19vb799lsdPHhQR44cUUpKik6e\nPNnqz7HZbK4qEQBwOcMCU6dONXJzc83XERERxqlTp4zVq1cbq1evNpdPmTLFOHjwYIvtIyIiDEk8\nePDgwaMDj4iICIfHZ5d1Clcyc+ZM5eTkaPz48SooKFBdXZ369eunpKQkzZ49W48//rjKyspUWFio\nW2+9tcX2J06csKBqAPB+loTCwoULtXDhQt18883q3r273njjDUmS3W5XSkqK7Ha7/P399eqrr3L6\nCADcyGYYhmF1EQCArsHjrmjevn27IiMjNXjwYD3//PNWl+NUCxcuVHBwsG6++WarS3GJkpISxcfH\nKzo6WsOGDdNvf/tbq0tymgsXLmjMmDGKiYmR3W7XU089ZXVJLtHQ0KDY2FglJiZaXYrThYWF6ZZb\nblFsbGyrp609XU1NjZKTkxUVFSW73a6DBw+2vqIzBo7dpb6+3oiIiDCKioqMuro6Y/jw4UZ+fr7V\nZTnNnj17jLy8PGPYsGFWl+ISFRUVxtGjRw3DMIzvv//eGDJkiFf9+509e9YwDMO4ePGiMWbMGGPv\n3r0WV+R8a9euNWbPnm0kJiZaXYrThYWFGadPn7a6DJeZN2+esWHDBsMwmv6P1tTUtLqeR3UKhw8f\n1qBBgxQWFqaAgADdf//9ysrKsrospxk3bpyuv/56q8twmZCQEMXExEiSevXqpaioKJWXl1tclfP0\n7NlTklRXV6eGhgbdcMMNFlfkXKWlpfrwww+VlpYmw0vPOnvr5/ruu++0d+9eLVy4UJLk7++v6667\nrtV1PSoUysrKNHDgQPM1F7d5ruLiYh09elRjxoyxuhSnaWxsVExMjIKDgxUfHy+73W51SU712GOP\nac2aNfLz86jDRrvZbDZNmjRJo0aN0muvvWZ1OU5VVFSkoKAgLViwQCNGjNCDDz6oc+fOtbquR/3r\nMhPJO9TW1io5OVnr1q1Tr169rC7Hafz8/PTZZ5+ptLRUe/bs8apbJmzbtk39+/dXbGys1/42vX//\nfh09elR//etf9corr2jv3r1Wl+Q09fX1ysvL0+LFi5WXl6fAwEBlZGS0uq5HhcKAAQNUUlJivi4p\nKWl2Wwx0fRcvXtSsWbP0s5/9TDNnzrS6HJe47rrrNGPGDPP2Ld7gwIEDys7OVnh4uFJTU5WTk6N5\n8+ZZXZZT3XTTTZKa7sV29913e9V910JDQxUaGqrRo0dLkpKTk5WXl9fquh4VCqNGjVJhYaGKi4tV\nV1enLVu2KCkpyeqy0E6GYeiBBx6Q3W7X0qVLrS7Hqf7973+rpqZGknT+/Hnt3LlTsbGxFlflPM89\n95xKSkpUVFSkd955RxMmTDCvL/IG586d0/fffy9JOnv2rHbs2OFVswBDQkI0cOBAFRQUSJJ27dql\n6OjoVte15OK1q+Xv76+XX35ZU6ZMUUNDgx544AFFRUVZXZbTpKamavfu3Tp9+rQGDhyo//3f/9WC\nBQusLstp9u/fr7feesuc9ic1fX/G1KlTLa6s8yoqKjR//nw1NjaqsbFRc+fO1cSJE60uy2W87VRu\nVVWV7r77bklNp1rmzJmjyZMnW1yVc61fv15z5sxRXV2dIiIitHHjxlbX4+I1AIDJo04fAQBci1AA\nAJgIBQCAiVAAAJgIBQCAiVAAAJgIBXgVV98246WXXtL58+edvr8PPvjA624FD8/EdQrwKr179zav\nTHWF8PBwffLJJ7rxxhvdsj/A3egU4PW++uorTZs2TaNGjdJPf/pTffnll5Kkn//853r00Ud1xx13\nKCIiQpmZmZKa7na6ePFiRUVFafLkyZoxY4YyMzO1fv16lZeXKz4+vtnVyk8//bRiYmJ022236Ztv\nvmmx/6VLl2rlypWSpL/97W8aP358i3U2bdqkJUuWXLGuHysuLlZkZKQWLFigoUOHas6cOdqxY4fu\nuOMODRkyREeOHOn8Xxx8kzu+3AFwl169erVYNmHCBKOwsNAwDMM4ePCgMWHCBMMwDGP+/PlGSkqK\nYRiGkZ+fbwwaNMgwDMN47733jOnTpxuGYRiVlZXG9ddfb2RmZhqG0fKLWGw2m7Ft2zbDMAxj2bJl\nxrPPPtti/+fOnTOio6ONnJwcY+jQocbJkydbrLNp0ybj4YcfvmJdP1ZUVGT4+/sbx48fNxobG42R\nI0caCxcuNAzDMLKysoyZM2c6/LsCWuNR9z4COqq2tlYff/yx7r33XnNZXV2dpKb791y6U2tUVJSq\nqqokSfv27VNKSookmd+N0Jbu3btrxowZkqSRI0dq586dLda59tpr9dprr2ncuHFat26dwsPDr1hz\nW3VdLjw83LypWXR0tCZNmiRJGjZsmIqLi6+4D6AthAK8WmNjo/r27aujR4+2+n737t3N58Z/h9ds\nNluz7wwwrjDsFhAQYD738/NTfX19q+sdO3ZMQUFB7f5SqNbqulyPHj2a7fvSNleqA3CEMQV4tT59\n+ig8PFxbt26V1HSAPXbs2BW3ueOOO5SZmSnDMFRVVaXdu3eb7/Xu3VtnzpzpUA1ff/21XnzxRfML\nXFq7T/+VggdwJ0IBXuXcuXMaOHCg+XjppZf09ttva8OGDYqJidGwYcOUnZ1trv/jW0Bfej5r1iyF\nhobKbrdr7ty5GjFihPl9tosWLdLUqVPNgebLt7/8ltKGYSgtLU1r165VSEiINmzYoLS0NPMUVlvb\ntvX88m3aeu1tt7aG+zAlFWjF2bNnFRgYqNOnT2vMmDE6cOCA+vfvb3VZgMsxpgC04s4771RNTY3q\n6ur0zDPPEAjwGXQKAAATYwoAABOhAAAwEQoAABOhAAAwEQoAABOhAAAw/X/endCY0sA2EwAAAABJ\nRU5ErkJggg==\n",
       "text": [
        "<matplotlib.figure.Figure at 0x5d72210>"
       ]
      },
      {
       "metadata": {},
       "output_type": "display_data",
       "png": "iVBORw0KGgoAAAANSUhEUgAAAYwAAAEPCAYAAABRHfM8AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XtUlPW+BvBnkKE00DQTi9FwczkwgkIQVO5yvCAainhD\nxco0zRVZmlnSWme7taMN1e6srRaWLs3dzpOecilYSrhTvIZgaKlUokkHQchMEEQ2Au/545WJ28AM\n886878z7fNZiLRjm8kyX+fK7fV+NIAgCiIiIOuEmdwAiInIOLBhERGQRFgwiIrIICwYREVmEBYOI\niCzCgkFERBZRbMFoaGhAeHg4JkyYAAD4/fffERMTg8DAQIwZMwYVFRUyJyQiUhfFFow1a9ZAr9dD\no9EAAFJTUxETE4Nz585h1KhRSE1NlTkhEZG6KLJgXLp0CXv27MG8efPQdK4wIyMDs2fPBgDMnj0b\nu3btkjMiEZHqKLJgvPzyy3jnnXfg5vZHvPLycnh7ewMAvL29UV5eLlc8IiJVUlzB+OKLL9CvXz+E\nh4fDXNcSjUZjmqoiIiLHcJc7QGvHjh1DRkYG9uzZg9raWly/fh1PPfUUvL29UVZWhv79++Py5cvo\n169fu4/39/fHhQsXHJyaiMi5+fn54fz58x3fSVCw7OxsYfz48YIgCMKrr74qpKamCoIgCEajUVi2\nbFm7j1H4W7LZX//6V7kj2I0rvzdB4Ptzdq7+/iz57FTclFRrTVNPKSkp2LdvHwIDA7F//36kpKTI\nnIyISF0UNyXV3PDhwzF8+HAAQJ8+ffCvf/1L5kTqYjAAW7YAvr4yByEiRVD8CINaMhgMDnut3Fzg\n+ecBR10xxZHvTQ58f87N1d+fJTS3565chkajMbu7iqzTowcwYADw178CSUlypyEie7Lks5MjDOrQ\nBx8AS5YAV6/KnYSI5MaCQR2KjgamTweWLpU7CRHJjVNSZFaPHsBvvwENDUBICLB5MzBqlNypiMge\nOCVFkvDyAtLSgAULgJs35U5DRHJhwSCLxMUBERHAypVyJyEiuXBKisxqmpLq0UP8uawMGDIEyMoC\nwsLkzUZE0uKUFEmqf3/AaATmzxfXNYhIXVgwyCpz5wKensDatXInISJH45QUmdV6SqpJYSHwyCPA\niRNsG0LkKjglRXYRECAe5nNk2xAikh8LBnXJq68CJSXAp5/KnYSIHIUFg7pEqwU2bmTbECI1YcGg\nLmPbECJ1YcEgm6xaBezfD3z9tdxJiMjeWDDIJmwbQqQeLBhks7g4IDKSbUOIXB3PYZBZ5s5htIdt\nQ4icG89hkMOwbQiR62PBIMmwbQiRa+OUFJllzZRUE7YNIXJOnJIih2PbECLXpciCUVxcjBEjRmDw\n4MEICQnB2ttzHL///jtiYmIQGBiIMWPGoKKiQuak1B62DSFyTYqckiorK0NZWRnCwsJQXV2NiIgI\n7Nq1Cx999BH69u2L1157DW+99RauXbuG1NTUFo/llJR0ujIl1eT4cWDiRODsWeCee6TPRkTSctop\nqf79+yPs9t5MT09PBAcHo6SkBBkZGZg9ezYAYPbs2di1a5ecMakDbBtC5HoUWTCaKyoqwsmTJxEd\nHY3y8nJ4e3sDALy9vVFeXi5zOuoI24YQuRZ3uQN0pLq6GlOmTMGaNWvg5eXV4ncajQYajabdx61Y\nscL0vcFggMFgsGNKMqd525DTp4Hu3eVORERNsrOzkZ2dbdVjFLmGAQC3bt3C+PHjMW7cOCxevBgA\nEBQUhOzsbPTv3x+XL1/GiBEj8OOPP7Z4HNcwpGPLGkZzM2aIW2xbLTcRkYI47RqGIAh49tlnodfr\nTcUCAOLj4/GPf/wDAPCPf/wDCQkJckUkK6xZA2zeDJw6JXcSIrKFIkcYR44cweOPP44hQ4aYpp2M\nRiOioqKQmJiI//u//4Ovry/+93//F3fffXeLx3KEIR2pRhgAsGkT8MEHQE4O0K2b7c9HRNKy5LNT\nkQXDFiwY0pGyYAgCMHIkEB8PvPyy7c9HRNJiwSCbSFkwALYNIVIyp13DINfEtiFEzo0FgxyKbUOI\nnBcLBjmUVgts3CiONK5elTsNEVmDBYMcjm1DiJwTCwbJgm1DiJwPCwbJonnbkJs35U5DRJZgwSDZ\nxMUBkZHAypVyJyEiS/AcBpkl9TmM9pSXA6GhQFYWcLujPRHJgOcwSPG8vcWmhPPnAw0Ncqchoo6w\nYJDs5swBPD2B21fiJSKF4pQUmeWIKakmbBtCJC9OSZHTYNsQIuVjwSDFYNsQImXrtGDs3r0b4eHh\n6N27N7y8vODl5YWePXs6IhupDNuGEClbp2sYfn5+2LlzJ0JCQuDmpvwBCdcwpOPINYzmFi0Crl8H\nPvrIsa9LpGaSrGHodDoMHjzYKYoFuQa2DSFSpk5HGDk5OVi+fDlGjBgBDw8P8UEaDZYsWeKQgNbi\nCEM6co0wAODLL8WRxunTQPfujn99IrWRZITxl7/8BZ6enqitrUV1dTWqq6tRVVUlWUii9rBtCJHy\ndDrCCAkJwZkzZxyVx2YcYUhHzhEGwLYhRI4kyQjjiSeewFdffSVZKCJLsW0IkbJ0OsLw9PRETU0N\nPDw8oNVqxQdpNLh+/bpDAlqLIwzpyD3CAMRDfCNHAvHxwMsvy5eDyNVZ8tnJ1iBklhIKBsC2IUSO\n4JKtQTIzMxEUFISAgAC89dZbcschB2DbECJl6FLBCA8PlzqHRRoaGrBw4UJkZmaioKAAn376KX74\n4QdZspBjsW0Ikfy6VDBOnjwpdQ6L5Obmwt/fH76+vtBqtZgxYwbS09NlyUKOxbYhRPJzqimpkpIS\nDBgwwPSzTqdDSUmJjInIkaKjgenTgaVL5U5C5FqKiy27n7u5XwwaNMjsgzQaDX7++WerQ9lKo9FY\ndj9Ds/v5AjD/Vqgjy4C73pE7RCt9xK8tPNBHZJuLAIqse4jZgpGXl2f6XqPRoLGxEdu3b8ff/vY3\nPPjgg11MaBsfHx8UNyuFxcXF0Ol0be73/ToBoaGOTOaalLJLqjW2DSHquhs3gE8+AdZ9Jm4ieekl\n4MknAU/Pzv8gNzsl1bdvX/Tt2xd9+vTB7t27YTAY8M0332DPnj3YsWOHpG/AUpGRkSgsLERRURHq\n6uqwfft2xMfHt7kfD3q5NrYNIbLexYvi5pEHHgD27gXWrAHOnAEWLADuusuy5zBbMOrq6vDBBx8g\nODgYhw8fRnp6OrZu3Qq9Xi9Vfqu5u7vjvffeQ2xsLPR6PaZPn47g4OA29/PwANavlyEgOcyaNcDm\nzcCpU3InIVIuQRA7PyckAA89JP6cmwvs2gWMGgVYOMtvYvbgnk6ng7u7OxYtWoSBAwea1g8EQYBG\no8HkyZNtfjP2oNFo8MMPAh57DMjPB5qtkZOVlDol1WTzZvEPg5wcoFs3udMQKYdp2mldy2mnjkYS\nNp30fuaZZ0xP0p6PFHp1m6Y3/cYb4sng9HTrqyiJlF4wBEH8K2nCBLYNIQLEaae0NPHiY3/+M/Di\ni2JrHUs+AyVpDVJbW4s777yzxW1Xr17FPffc03kCGTS96bo6IDwcWLECmDZN7lTOSekFA2DbECJB\nAA4cANauBY4cAZ55BkhOBv70J+ueR5LWIJMnT8atW7dMP1++fBkxMTHWJZGBh4d40GvRIuDaNbnT\nkL2wbQip1Y0bwIcfipcAePFFYNw44JdfgL/9zfpiYalOC8akSZOQmJiIhoYGFBUVITY2FqmpqfZJ\nI7FHHxUXe157Te4kZE9sG0JqIsVup66yqFvte++9h8zMTPzyyy/44IMPMGzYMPumskHrYVVlJRAS\nIi4ADR8uYzAn5AxTUk2OHwcmTgTOngUUOltK1GVSTTt1xKY1jHfffbfFk3z88ccIDQ1FeHi4013T\ne9cuYNky4LvvgFbLMdQBZyoYgDj9eP26uOBH5Aq6stupq2xaw6iqqjJdv7u6uhqTJk1CQECAU17T\nOyFBHGWsWiV3ErKnVavEPedffy13EiLbyDnt1BHVXECptBQYOlT8QGHbEMs42wgDYNsQcl6OmHbq\nCK+418qHH4rTFUeP8qCXJZyxYADAjBniFlsn2ZtBKufIaaeOsGC00tgIGAxAYiKwcKFjczkjZy0Y\n5eXiKDIrCwgLkzsNUftsOWRnDy55iVZbuLkBGzaITess7f9OzsfbWxxdsAklKY3UvZ0crdMRxq+/\n/oqNGzeiqKgI9fX14oM0GmzevNkhAa1lSZVk2xDLOOsIA2DbEFIWpUw7dUSSKalHHnkEjz/+OCIi\nIuDm5mZ64ilTpkiXVEKWvGm2DbGMMxcMgG1DSH5Km3bqiCQFIywsDKecqIe0JW8aAI4dA6ZOFQ96\n9e7tgGBOyNkLBgAYjcChQ8CePcr8n5Rcj9y7nbpKkjWM8ePH48svv5QslFKwbYg6LF3KtiHkGHL0\ndnK0TkcYnp6eqKmpgYeHB7RarfggjQbXr193SEBrWTrCANg2pDOuMMIA2DaE7MuZpp06IskIo7q6\nGo2NjaitrUVVVRWqqqoUWyys1auXuAj13HNAba3cacheoqOB6dPF0QaRFJx9t1NXmR1h/PDDDwgO\nDkZ+fn67D3zwwQftGqyrrBlhNJkyBQgOZuuQ1lxlhAEAVVXiaHLzZvF/aKKucIbdTl1l06L3/Pnz\nsXHjRhgMhnavunfgwAFpUkqsKwWDbUPa50oFA2DbEOo6V5l26ghPeluBbUPacrWCAbBtCFnOWXc7\ndRULhhXYNqQtVywYbBtCnXHlaaeOsGBY6ccfgcceA/LzgQEDJA7mhFyxYADiOsb69UBODkeT9Ac1\nTDt1hL2krBQUJP5H8sILvD60K5szB/DyEqcaSN3UutupqzotGKPa2VLS3m1SefXVVxEcHIyhQ4di\n8uTJqKysNP3OaDQiICAAQUFByMrKssvrp6QAFy4An39ul6cnBdBoxDWr1auBoiK505Ac1HDIzh7M\nFoybN2/i6tWruHLlCn7//XfTV1FREUpKSuwWaMyYMTh79iy+++47BAYGwmg0AgAKCgqwfft2FBQU\nIDMzE8nJyWhsbJT89T08gI0bxd00165J/vSkEAEBwCuvAM8/z9Gkmij1SnbOwmzB+PDDDxEZGYmf\nfvoJERERpq/4+HgstOOqcExMjKnJYXR0NC5dugQASE9Px8yZM6HVauHr6wt/f3/k5ubaJQPbhqjD\n0qXilmq2DXFtnHaSjru5XyxevBiLFy/G2rVr8dJLLzkyk8nmzZsxc+ZMAEBpaSkefvhh0+90Op1d\nRzpGo3jQ6+BBtg1xVVqtOJqMjwdiY9k2xNW0t9tp61aOJGxhtmA0eemll3Ds2LEW18MAgKeffrrL\nLxoTE4OysrI2t7/55puYMGECAGD16tXw8PBAUlKS2edp70AhAKxYscL0vcFggMFgsDpj87Yh330H\n3Hmn1U9BTiAq6o+2IR99JHcakkLr3U5r1qhrt5OlsrOzkZ2dbdVjOt1W++STT+Lnn39GWFgYujXb\ng7hu3bouhbTEli1bsHHjRnz99de48/Yndertk1YpKSkAgLFjx2LlypWIjo5u8VhbttW2R81tQ1x1\nW21rbBvi/NR2yM4eLPrsFDoRFBQkNDY2dnY3yezdu1fQ6/XClStXWtx+9uxZYejQocK///1v4eef\nfxb+9Kc/tZvLgrdklZISQejbVxBOn5b0aZ1C9+6CcOOG3Ckc44svBMHPTxBqauROQtaorhaEDz4Q\nhMGDBUGvF7+vrpY7lXOy5LOz0221ISEhuHz5sjQlzAIvvvgiqqurERMTg/DwcCQnJwMA9Ho9EhMT\nodfrMW7cOKSlpZmdkpLS/feLowteH9q1xcUBkZHi9d5J+YqKuNtJDp1OSRkMBpw6dQpRUVG44447\nxAdpNMjIyHBIQGtJPSUFqLdtiFqmpJqwbYiycdrJviRpDdK0KNL8yTQaDYYrdOuQPQoGoM62IWor\nGADbhiiRWns7OZpkvaSKiopw/vx5jB49GjU1Naivr0fPnj0lCyolexUMAHjjDeDECSA9XR07LtRY\nMARBXPieMAF4+WW506hbURHw/vvq7e3kaJL0ktqwYQOmTZuGBQsWAAAuXbqESZMmSZPQybBtiOtj\n2xB5NT9kFxnJQ3ZK02nBeP/993HkyBHTiCIwMBC//vqr3YMpEduGqAPbhjgeezs5h04Lxh133GFa\n7AaA+vp6h+xOUiq2DVEHtg1xDO52ci6dFozhw4dj9erVqKmpwb59+zBt2jTTaWy1MhqBzEyxbQi5\npqa2Ia+8Aly9Knca18JpJ+fV6aJ3Q0MDNm3aZGonHhsbi3nz5il2lGHPRe/mdu0Cli1z7bYhalz0\nbm3xYqCykm1DpMDdTsrGK+7Zmau3DWHBYNsQKXC3k3OQZJfU7t27ER4ejt69e8PLywteXl6K3VLr\naOvWiQt1Z87InYTsxctLbGS3YAFw86bcaZwHp51cU6cjDD8/P+zcuRMhISGm61QomSNHGIBYMLZs\nEU+eutpBL44w/jBjBuDrC9zugUlmcNrJeUkywtDpdBg8eLBTFAs5zJ8vLpCuXy93ErKnNWvEaalT\np+ROokzc7aQOnY4wcnJysHz5cowYMQIeHh7igzQaLFmyxCEBreXoEQbgum1DOMJoiW1DWmJvJ9ci\nyQjjL3/5Czw9PVFbW4vq6mpUV1ejqqpKspCuIChIXMh74QUe9HJlc+aIaxpr18qdRF48ZKdenY4w\nQkJCcMaJVnXlGGEAQF0dEB4OrFgBTJvm8Je3C44w2iosBB55ROwp5usrdxrH4m4n1ybJCOOJJ57A\nV199JVkoV8W2IeqgtrYh3O1EzXU6wvD09ERNTQ08PDyg1WrFB2k0uH79ukMCWkuuEUaT5GTg1i2x\neDg7jjDad+uW+OG5bBnQwSXnnRp3O6kPD+7JoLJSPOj1ySeAQi8ZYjEWDPNyc4GJE8WdQPfcI3ca\n6XDaSb0kKxjp6ek4dOiQ6cJJSu4lJXfBAFynbQgLRsdcpW0IdzsRIFHBSElJQV5eHmbNmgVBELBt\n2zZERkbCaDRKGlYqSigYgGu0DWHB6Fh1NTB4sPO2DeG0EzUnScEIDQ3FqVOn0O32xvOGhgaEhYXh\n9OnT0iWVkFIKRmkpMHSo+JdbSIjcabqGBaNzX34pbnQ4fRro3l3uNJbhtBO1R5JdUhqNBhUVFaaf\nKyoqFNupVknuv18cXcyfDzQ0yJ2G7CUuTlwAX7lS7iQd424nkkKnI4xPP/0UKSkpMBgMAICDBw8i\nNTUVM2bMcEQ+qyllhAEAjY2AwQAkJgILF8qdxnocYVimvFw8xJaVBYSFyZ2mJU47kaUkW/QuLS1F\nXl4eNBoNoqKi0L9/f8lCSk1JBQNw7rYhLBiWU1rbEE47kbVsmpLKz883fZWVlUGn08HHxwelpaXI\nz8+XPGxr7777Ltzc3PD777+bbjMajQgICEBQUJDpgk5Kx7Yh6qCEtiGcdiJ7MzvCcHNzQ0hICO4x\ns8n8wIEDdgtVXFyM+fPn46effsK3336LPn36oKCgAElJScjLy0NJSQlGjx6Nc+fOtemiq7QRBuC8\nbUM4wrCOXG1DOO1EUrBphPHf//3f8PLyQo8ePTBnzhxkZGTgwIEDpi97WrJkCd5+++0Wt6Wnp2Pm\nzJnQarXw9fWFv78/cnNz7ZpDKmwbog6ObhvCluLkaGYLxuLFi3H06FGsXbsWly5dwqhRozBt2jSc\nsvMFAdLT06HT6TBkyJAWt5eWlkKn05l+1ul0KCkpsWsWKT36qDhV8Nprciche1q6VNxS/emn9nl+\nTjuRnNw7u4Ofnx8mTpyImpoafPLJJ/jpp58QZuNWkJiYGJSVlbW5ffXq1TAajS3WJzoaIpnb3rti\nxQrT9waDwbTDS25Go3gm4+BB528bQu3TasXR5MSJQGysdG1D2pt22rqVIwnquuzsbGRnZ1v1GLNr\nGBcuXMC2bduQnp6OgQMHYvr06Rg/fjy62/F00pkzZzBq1Cj0uD1pfunSJfj4+OD48eP46Hb/hZSU\nFADA2LFjsXLlSkRHR7d8Qwpcw2jOmdqGcA2j66RqG8LdTuQoNm2rdXNzQ2hoKBISEtCzZ88WT+io\nK+4NGjSozaJ3bm6uadH7/PnzbUYZSi8YgNg2RK8H/uu/5E7SMRaMrquuFkeTmzZZ3zaEvZ1IDpZ8\ndpqdklq+fLnpw7i6ulraZBZqXgz0ej0SExOh1+vh7u6OtLQ0pz1xvm6d2DZk+nTnbRtCHfP0BNLS\nxAVoS9uGcNqJlI7tzWXy4YfAli3iX5BKOOjVHo4wbDdjhrjFNjXV/H047URKIEkvKbKP+fPFBdL1\n6+VOQva0Zo14Crz15kLudiJnxBGGjJTeNoQjDGk0bxtSW8tDdqRMvOKeE3jjDfFkcHq68v6qZMGQ\nhiCIowYPD/HfNaedSIkkKRjvvvtuiyfSaDTo1asXIiIibD6PYQ/OVjCU3DaEBUM6Fy+KaxTPPMPd\nTqRMkhSMpKQknDhxAhMmTIAgCPjyyy8RGhqKX375BVOnTsWyZcskDW0rZysYAHDsGDB1KnD2LNC7\nt9xp/sCCQaQekhSMxx57DHv37oWnpycAcYvtE088gczMTEREROCHH36QLrEEnLFgAOI++1u3xFPC\nSsGCQaQekuySunLlCjw8PEw/a7ValJeXo0ePHrhT6UeVnYjRCGRmim1DiIiUqNNeUrNmzUJ0dDQS\nEhIgCAJ2796NpKQk3LhxA3q93hEZVaFXL3HnzHPPOUfbECJSH4t2SeXl5eHo0aPQaDQYNmwYIiMj\nHZGtS5x1SqqJktqGcEqKSD0k21bb0NCAsrIy1NfXm9pxDBw4UJqUEnP2glFaKrYNOXBA/rYhLBhE\n6iFJwVi3bh1WrlyJfv36oVuzHhanT5+WJqXEnL1gAMppG8KCQaQekhQMPz8/5Obmmr1Uq9K4QsFo\nbAQMBiAxEVi4UL4cLBhE6iHJLqmBAwea2puTY7i5ARs2ACtXAsXFcqchIhJ1uktq0KBBGDFiBOLi\n4kzbax11PQw1CwoS20e88IIy24YQkfp0WjAGDhyIgQMHoq6uDnV1daYLKJH9paSIbUM+/1x5bUOI\nSH3YfFDh5GwbwjUMIvWwadF70aJFWLNmDSZMmNDuE2dkZEiTUmKuVjAA+dqGsGAQqYdNl2h96qmn\nAACvvPKKtKnIakajeCbj4EFg+HC50xCRWnFKykns2gUsW+bYtiEcYRCph01TUqGhoR0+8ffff29b\nOjtx1YIBOL5tCAsGkXrYNCW1e/duAEBaWhoAcYpKEARs3bpVwohkjXXrxLYh06fL3zaEiNSn0ymp\nsLAwnGp1Bfvw8HCcPHnSrsG6ypVHGIBj24ZwhEGkHpKc9BYEAUeOHDH9fPToUZf+QFa6+fMBrRZY\nv17uJESkNp0WjM2bNyM5ORkPPPAAHnjgASQnJ2Pz5s12DbVu3ToEBwcjJCSkxSVgjUYjAgICEBQU\nhKysLLtmUCq2DSEiuVi8S6qyshIA0KtXL7sGOnDgAN58803s2bMHWq0WV65cwb333ouCggIkJSUh\nLy8PJSUlGD16NM6dOwc3t5Y1z9WnpJq88QZw4oR924ZwSopIPWxa9G5SW1uLHTt2oKioCPX19aYn\nXr58uTQpW1m/fj1ef/11aLVaAMC9994LAEhPT8fMmTOh1Wrh6+sLf39/5Obm4uGHH7ZLDqVj2xAi\ncrROp6QmTpyIjIwMaLVaeHp6wtPTE3fddZfdAhUWFuLQoUN4+OGHYTAYcOLECQBAaWkpdDqd6X46\nnQ4lJSV2y6F0Hh7iye9Fi4Br1+ROQ0Rq0OkIo6SkBF999ZWkLxoTE4OysrI2t69evRr19fW4du0a\ncnJykJeXh8TERPz888/tPo+5JogrVqwwfW8wGGAwGKSIrTiPPgokJACvveb4tiFE5Nyys7ORnZ1t\n1WM6LRiPPvoovv/+ewwZMqSrudrYt2+f2d+tX78ekydPBgA89NBDcHNzw2+//QYfHx8UN1vlvXTp\nEnx8fNp9juYFw9WxbQgRdUXrP6ZXrlzZ6WM6nZI6fPgwIiIiEBgYiNDQUISGhkpaPFpLSEjA/v37\nAQDnzp1DXV0d+vbti/j4eGzbtg11dXW4ePEiCgsLERUVZbcczqJXL/FA33PPAbW1cqchIlfW6Qhj\n7969jshhMnfuXMydOxehoaHw8PDAxx9/DADQ6/VITEyEXq+Hu7s70tLSeF2O2xISgH/+E1i92nFt\nQ4hIfSzaVnv48GGcP38ec+bMwZUrV1BdXY1BgwY5Ip/V1LKttrXSUrFtyIED0rUN4bZaIvWQ5KT3\nihUr8Pbbb8NoNAIA6urq8OSTT0qTkCRz//3AqlXiSfCGBrnTEJEr6rRg7Ny5E+np6aattD4+Pqiq\nqrJ7MLIe24YQkT11WjDuuOOOFqepb9y4YddA1HVsG0JE9tRpwZg2bRoWLFiAiooKbNiwAaNGjcK8\nefMckY26ICgIePFF4IUXABUu5RCRHVm06J2VlWVq9hcbG4uYmBi7B+sqtS56N1dXJ7YNWbHCtrYh\nXPQmUg+brrjXnitXrqBv376K3s7KgiE6dgyYOhU4exbo3btrz8GCQaQeNu2S+uabb2AwGDB58mSc\nPHkSISEhCA0Nhbe3t8PPZpD1mrcNISKSgtkRRkREBIxGIyorKzF//nxkZmbi4Ycfxo8//ogZM2a0\nuQqfUnCE8YfKSvFMxiefdK1tCEcYROph0wijoaEBY8aMwbRp03DfffeZ2ogHBQUpekqK/sC2IUQk\nJbMFo3lRuPPOOx0ShqSXkCCOMlavljsJETk7s1NS3bp1Q4/bcxE3b95E9+7dTb+7efOm6WJKSsMp\nqba62jaEU1JE6iH5LilnwILRvg8/BLZsAY4cAbp1s+wxLBhE6iFJLylyDWwbQkS24ghDRX78EXjs\nMSA/HxgwoPP7c4RBpB4cYVALbBtCRLZgwVCZlBTgwgXg88/lTkJEzoYFQ2U8PICNG4FFi4Br1+RO\nQ0TOhAVDhdg2hIi6ggVDpYxGIDMTOHhQ7iRE5CxYMFSKbUOIyFosGCrGtiFEZA2ew1C5jtqG8BwG\nkXrwHAb9O/BaAAALcElEQVR16v77gVWrxJPgDQ1ypyEiJVNcwcjNzUVUVBTCw8Px0EMPIS8vz/Q7\no9GIgIAABAUFmS4ZS7Zj2xAisoTipqQMBgNef/11xMbGYu/evXj77bdx4MABFBQUICkpCXl5eSgp\nKcHo0aNx7tw5uLm1rHmckuqa9tqGcEqKSD2cckrqvvvuQ2VlJQCgoqICPj4+AID09HTMnDkTWq0W\nvr6+8Pf3R25urpxRXQrbhhBRZ9zlDtBaamoq/vznP2Pp0qVobGzEN998AwAoLS01XfUPAHQ6HUpK\nSuSK6ZJSUoDwcLFtyLRpcqchIqWRpWDExMSgrKysze2rV6/G2rVrsXbtWkyaNAmfffYZ5s6di337\n9rX7POYuFbtixQrT9waDAQaDQYrYLq+pbcjUqcDo0XKnISJ7ys7ORnZ2tlWPUdwaRs+ePXH9+nUA\ngCAIuPvuu1FZWYnU1FQAQEpKCgBg7NixWLlyJaKjo1s8nmsYtktOBm7dArZu5RoGkVo45RqGv78/\nDt7uV7F//34EBgYCAOLj47Ft2zbU1dXh4sWLKCwsRFRUlJxRXVZT25CbN+VOQkRKorg1jA0bNuCF\nF17Av//9b3Tv3h0bNmwAAOj1eiQmJkKv18Pd3R1paWlmp6TINk1tQyZNkjsJESmJ4qakbMUpKel8\n/TUwapTcKYjIESz57GTBICIi51zDICIiZWLBICIii7BgEBGRRVgwiIjIIiwYRERkERYMIiKyCAsG\nERFZhAWDiIgswoJBREQWYcEgIiKLsGAQEZFFWDCIiMgiLBhERGQRFgwiIrIICwYREVmEBYOIiCzC\ngkFERBZhwSAiIouwYBARkUVYMIiIyCIsGEREZBFZCsZnn32GwYMHo1u3bsjPz2/xO6PRiICAAAQF\nBSErK8t0+7fffovQ0FAEBARg0aJFjo5MRKR6shSM0NBQ7Ny5E48//niL2wsKCrB9+3YUFBQgMzMT\nycnJEAQBAPD8889j06ZNKCwsRGFhITIzM+WILrvs7Gy5I9iNK783gO/P2bn6+7OELAUjKCgIgYGB\nbW5PT0/HzJkzodVq4evrC39/fxw/fhyXL19GVVUVoqKiAABPP/00du3a5ejYiuDK/9G68nsD+P6c\nnau/P0soag2jtLQUOp3O9LNOp0NJSUmb2318fFBSUiJHRCIi1XK31xPHxMSgrKysze1vvvkmJkyY\nYK+XJSIiexFkZDAYhG+//db0s9FoFIxGo+nn2NhYIScnR7h8+bIQFBRkuv1//ud/hAULFrT7nH5+\nfgIAfvGLX/zilxVffn5+nX5m222EYSnh9qI2AMTHxyMpKQlLlixBSUkJCgsLERUVBY1Gg549e+L4\n8eOIiorCP//5T7z00kvtPt/58+cdFZ2ISFVkWcPYuXMnBgwYgJycHMTFxWHcuHEAAL1ej8TEROj1\neowbNw5paWnQaDQAgLS0NMybNw8BAQHw9/fH2LFj5YhORKRaGqH5n/hERERmKGqXlC0yMzMRFBSE\ngIAAvPXWW3LHkdTcuXPh7e2N0NBQuaPYRXFxMUaMGIHBgwcjJCQEa9eulTuSpGpraxEdHY2wsDDo\n9Xq8/vrrckeSXENDA8LDw11yQ4uvry+GDBmC8PBw09Z+V1JRUYGpU6ciODgYer0eOTk55u/c1QVr\nJamvrxf8/PyEixcvCnV1dcLQoUOFgoICuWNJ5tChQ0J+fr4QEhIidxS7uHz5snDy5ElBEAShqqpK\nCAwMdKl/f4IgCDdu3BAEQRBu3bolREdHC4cPH5Y5kbTeffddISkpSZgwYYLcUSTn6+srXL16Ve4Y\ndvP0008LmzZtEgRB/O+zoqLC7H1dYoSRm5sLf39/+Pr6QqvVYsaMGUhPT5c7lmQee+wx9O7dW+4Y\ndtO/f3+EhYUBADw9PREcHIzS0lKZU0mrR48eAIC6ujo0NDSgT58+MieSzqVLl7Bnzx7MmzevxSYW\nV+Kq76uyshKHDx/G3LlzAQDu7u7o1auX2fu7RMEoKSnBgAEDTD83Hfgj51NUVISTJ08iOjpa7iiS\namxsRFhYGLy9vTFixAjo9Xq5I0nm5ZdfxjvvvAM3N5f4OGlDo9Fg9OjRiIyMxMaNG+WOI6mLFy/i\n3nvvxZw5c/Dggw9i/vz5qKmpMXt/l/g33LSTipxbdXU1pk6dijVr1sDT01PuOJJyc3PDqVOncOnS\nJRw6dMhl2kx88cUX6NevH8LDw132r/CjR4/i5MmT2Lt3L95//30cPnxY7kiSqa+vR35+PpKTk5Gf\nn4+77roLqampZu/vEgXDx8cHxcXFpp+Li4tbtBIh5bt16xamTJmCJ598EgkJCXLHsZtevXohLi4O\nJ06ckDuKJI4dO4aMjAwMGjQIM2fOxP79+/H000/LHUtS9913HwDg3nvvxaRJk5CbmytzIunodDro\ndDo89NBDAICpU6e26SDenEsUjMjISBQWFqKoqAh1dXXYvn074uPj5Y5FFhIEAc8++yz0ej0WL14s\ndxzJ/fbbb6ioqAAA3Lx5E/v27UN4eLjMqaTx5ptvori4GBcvXsS2bdswcuRIfPzxx3LHkkxNTQ2q\nqqoAADdu3EBWVpZL7Vbs378/BgwYgHPnzgEA/vWvf2Hw4MFm7y/7SW8puLu747333kNsbCwaGhrw\n7LPPIjg4WO5Ykpk5cyYOHjyIq1evYsCAAXjjjTcwZ84cuWNJ5ujRo/jkk09MWxcB8boornI48/Ll\ny5g9ezYaGxvR2NiIp556CqNGjZI7ll242vRweXk5Jk2aBECcvpk1axbGjBkjcypprVu3DrNmzUJd\nXR38/Pzw0Ucfmb0vD+4REZFFXGJKioiI7I8Fg4iILMKCQUREFmHBICIii7BgEBGRRVgwiIjIIiwY\npFr2bj/y97//HTdv3rTq9Xbv3u1y7fnJdfAcBqmWl5eX6RSvPQwaNAgnTpzAPffc45DXI7I3jjCI\nmrlw4QLGjRuHyMhIPP744/jpp58AAM888wwWLVqEYcOGwc/PDzt27AAgdqFNTk5GcHAwxowZg7i4\nOOzYsQPr1q1DaWkpRowY0eJU93/+538iLCwMjzzyCH799dc2r79lyxa8+OKLHb5mc0VFRQgKCsKc\nOXPwH//xH5g1axaysrIwbNgwBAYGIi8vzx7/mEit7H1xDiKl8vT0bHPbyJEjhcLCQkEQBCEnJ0cY\nOXKkIAiCMHv2bCExMVEQBEEoKCgQ/P39BUEQhM8++0x44oknBEEQhLKyMqF3797Cjh07BEFoe+Ed\njUYjfPHFF4IgCMJrr70mrFq1qs3rb9myRVi4cGGHr9ncxYsXBXd3d+HMmTNCY2OjEBERIcydO1cQ\nBEFIT08XEhISrP3HQmSWS/SSIpJCdXU1vvnmG0ybNs10W11dHQCxR1JTF93g4GCUl5cDAI4cOYLE\nxEQAMF3rwhwPDw/ExcUBACIiIrBv374O85h7zdYGDRpkahg3ePBgjB49GgAQEhKCoqKiDl+DyBos\nGES3NTY24u6778bJkyfb/b2Hh4fpe+H20p9Go2lxHQihgyVBrVZr+t7NzQ319fWdZmrvNVu74447\nWjxv02MsfQ0iS3ENg+i2nj17YtCgQfj8888BiB/Q33//fYePGTZsGHbs2AFBEFBeXo6DBw+afufl\n5YXr169blaGjgkMkNxYMUq2amhoMGDDA9PX3v/8dW7duxaZNmxAWFoaQkBBkZGSY7t+8dXfT91Om\nTIFOp4Ner8dTTz2FBx980HRN5Oeeew5jx441LXq3fnx7rcBb327u+9aPMfezq7UbJ3lxWy2RjW7c\nuIG77roLV69eRXR0NI4dO4Z+/frJHYtIclzDILLR+PHjUVFRgbq6OixfvpzFglwWRxhERGQRrmEQ\nEZFFWDCIiMgiLBhERGQRFgwiIrIICwYREVmEBYOIiCzy//MEB9W2RSPfAAAAAElFTkSuQmCC\n",
       "text": [
        "<matplotlib.figure.Figure at 0x5cc52f0>"
       ]
      }
     ],
     "prompt_number": 20
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 3.3.5,Page No.105"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "import numpy as np\n",
      "%matplotlib inline\n",
      "\n",
      "#Initilization of Variables\n",
      "\n",
      "F_C=20 #KN #Force at Pt C\n",
      "F_D=40 #KN #Force at pt D\n",
      "w=20 #KN.m #u.d.l \n",
      "L_AD=L_DB=2 #m #Length of AD & DB\n",
      "L_BC=1 #m #Length of BC\n",
      "L=5 #m #Length of Beam\n",
      "\n",
      "#Calculations\n",
      "\n",
      "#LEt R_A and R_B be the reactions at A & B respectively\n",
      "#R_A+R_B=100 \n",
      "#Now Taking Moment at B,M_B we get\n",
      "R_A=-(F_C*L_BC-F_D*L_DB-w*L_AD*(L_AD*2**-1+L_DB))*(L_AD+L_DB)**-1\n",
      "R_B=100-R_A\n",
      "\n",
      "#Shear Force Calculations\n",
      "\n",
      "#S.F At pt C\n",
      "V_C1=0 #KN\n",
      "V_C2=-F_C #KN\n",
      "\n",
      "#S.F At PT B\n",
      "V_B1=V_C2 #KN\n",
      "V_B2=V_C2+R_B #KN\n",
      "\n",
      "#S.F At Pt D\n",
      "V_D1=V_B2 #KN\n",
      "V_D2=V_D1-F_D #KN\n",
      "\n",
      "#S.F At Pt A\n",
      "V_A1=V_D2-w*L_AD #KN\n",
      "V_A2=V_A1+R_A #KN\n",
      "\n",
      "#Bending Moment Calculations\n",
      "\n",
      "#B.M At Pt C\n",
      "M_C=0 \n",
      "\n",
      "#B.M At Pt B\n",
      "M_B=F_C*L_BC\n",
      "\n",
      "#B.M At Pt D\n",
      "M_D=F_C*(L_BC+L_DB)-R_B*L_DB\n",
      "\n",
      "#B.M At Pt A\n",
      "M_A=F_C*L-R_B*(L_DB+L_AD)+F_D*L_AD+w*L_AD*L_AD*2**-1\n",
      "\n",
      "#Result\n",
      "print \"The Shear Force and Bending Moment Diagrams are the results\"\n",
      "\n",
      "#Plotting the Shear Force Diagram\n",
      "\n",
      "X1=[0,0,L_BC,L_BC,L_BC+L_DB,L_BC+L_DB,L_BC+L_DB+L_AD,L_BC+L_DB+L_AD]\n",
      "Y1=[V_C1,V_C2,V_B1,V_B2,V_D1,V_D2,V_A1,V_A2]\n",
      "Z1=[0,0,0,0,0,0,0,0]\n",
      "plt.plot(X1,Y1,X1,Z1)\n",
      "plt.xlabel(\"Length x in m\")\n",
      "plt.ylabel(\"Shear Force in kN\")\n",
      "plt.show()\n",
      "\n",
      "#Plotting the Bendimg Moment Diagram\n",
      "\n",
      "Y2=[M_C,M_B,M_D,M_A]\n",
      "X2=[0,L_BC,L_BC+L_DB,L_BC+L_DB+L_AD]\n",
      "Z2=[0,0,0,0]\n",
      "plt.plot(X2,Y2,X2,Z2)\n",
      "plt.xlabel(\"Lenght in m\")\n",
      "plt.ylabel(\"Bending Moment in kN.m\")\n",
      "plt.show()"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The Shear Force and Bending Moment Diagrams are the results\n"
       ]
      },
      {
       "metadata": {},
       "output_type": "display_data",
       "png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEPCAYAAACtCNj2AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3X9YlfX9x/HnQdHCH1OXohM3uATEgyWoiVkmiPijlEgN\nw3JMs3Zptaxm4bWtcM6gNJf9sLUyddXUGl+FrEiaHpcrowzniqW4RJFfM8mpqUPh/v5x4lYEPKgc\n7nPg9bguLu7z4+Z+X+fyOi/vz31/Pm+bYRgGIiIigI/VBYiIiOdQKIiIiEmhICIiJoWCiIiYFAoi\nImJSKIiIiMnyUKiqqiIyMpKJEycCUFFRQVxcHKGhoYwZM4YjR45YXKGISOtheSgsW7YMu92OzWYD\nID09nbi4OPbs2UNsbCzp6ekWVygi0npYGgoHDx7k3XffZdasWdTMocvKyiI5ORmA5ORkNmzYYGWJ\nIiKtiqWh8OCDD7J48WJ8fM6WUV5ejr+/PwD+/v6Ul5dbVZ6ISKtjWShs3LiRHj16EBkZSUMrbdhs\nNnNYSURE3K+tVQf+6KOPyMrK4t133+XUqVMcPXqU6dOn4+/vT1lZGT179qS0tJQePXrU2Tc4OJh/\n//vfFlQtIuK9+vbty969ey/8JsMDOBwOY8KECYZhGMa8efOM9PR0wzAMIy0tzXj00UfrvN9DyvYI\njz/+uNUleAx9FmfpszhLn8VZjfnutPzuoxo1w0QpKSnk5OQQGhrK5s2bSUlJsbgyEZHWw7Lho3ON\nHDmSkSNHAtCtWzc++OADiysSEWmdPOZMQS5NdHS01SV4DH0WZ+mzOEufxcWxfT/O5FVsNluDdyyJ\niEj9GvPdqTMFERExKRRERMSkUBAREZNCQURETAoFERExecQ8Bbk01dWwZAmcOGF1JeJpQkNh2jSr\nqxBvpDMFL/btt/D441ZXIZ7mm2/gt7+1ugrxVpqn4MUOH3b+j/DwYasrEU/y1VeQkOD8LXIuzVMQ\nEZGLolAQERGTQkFEREwKBRERMSkURETEpFAQERGTZaFw6tQpoqKiiIiIwG63M3/+fAAqKiqIi4sj\nNDSUMWPGcOTIEatKFBFpdSwLhSuuuIItW7awc+dOdu3axZYtW9i2bRvp6enExcWxZ88eYmNjSU9P\nt6pEEZFWx9LhIz8/PwAqKyupqqqia9euZGVlkZycDEBycjIbNmywskQRkVbF0lCorq4mIiICf39/\nYmJiCA8Pp7y8HH9/fwD8/f0pLy+3skQRkVbF0gXxfHx82LlzJ//9738ZO3YsW7ZsqfW6zWbDZrPV\nu29qaqq5HR0drT6sIiLncTgcOByOi9rHY9Y+WrhwIVdeeSWvvPIKDoeDnj17UlpaSkxMDF+dt4iL\n1j5y0tpHUh+tfSQN8ei1j7755hvzzqKTJ0+Sk5NDZGQk8fHxrF69GoDVq1eTkJBgVYkiIq2OZcNH\npaWlJCcnU11dTXV1NdOnTyc2NpbIyEgSExNZsWIFgYGBvPnmm1aVKCLS6njM8NHF0PCRk4aPpD4a\nPpKGePTwkYiIeB6FgoiImBQKIiJiUiiIiIhJoSAiIiaFgoiImBQKIiJiUiiIiIhJoSAiIiaFgoiI\nmBQKIiJiUiiIiIhJoSAiIiaFgoiImBQKIiJiUiiIiIjJslAoKioiJiaG8PBwBgwYwLPPPgtARUUF\ncXFxhIaGMmbMGLNlp4iIuJ9loeDr68vvf/97vvzyS7Zv384LL7zAv/71L9LT04mLi2PPnj3ExsaS\nnp5uVYkiIq2OZaHQs2dPIiIiAOjYsSP9+/enuLiYrKwskpOTAUhOTmbDhg1WlSgi0up4xDWFwsJC\n8vLyiIqKory8HH9/fwD8/f0pLy+3uDoRkdajrdUFHD9+nMmTJ7Ns2TI6depU6zWbzYbNZqt3v9TU\nVHM7Ojqa6OhoN1YpIuJ9HA4HDofjovaxGYZhuKcc106fPs2ECRMYP348c+fOBSAsLAyHw0HPnj0p\nLS0lJiaGr776qtZ+NpsNC8v2GIcPQ2io87dIja++goQE52+RczXmu9Oy4SPDMLjrrruw2+1mIADE\nx8ezevVqAFavXk1CQoJVJYqItDqWnSls27aNG2+8kWuuucYcIkpLS2Po0KEkJiZy4MABAgMDefPN\nN+nSpUvtonWmAOhMQeqnMwVpSGO+Oy27pnDDDTdQXV1d72sffPBBM1cjIiLgIXcfiYiIZ1AoiIiI\nSaEgIiImhYKIiJgUCiIiYlIoiIiISaEgIiImhYKIiJgUCiIiYlIoiIiISaEgIiImhYKIiJgUCiIi\nYlIoiIiISaEgIiKmBvspxMTE1Pt8TUOczZs3u6ciERGxTIOhsHjxYnO7Jgi2b9/Ok08+SY8ePZrk\n4DNnzuSdd96hR48e/POf/wSgoqKCqVOnsn///gY7r4mIiHs0OHw0ZMgQ8+fYsWM8+uij/PnPf+al\nl17is88+a5KDz5gxg+zs7FrPpaenExcXx549e4iNjSU9Pb1JjiUiIq5dsB1ndnY2ixYtol27dvz6\n179ucEjpUo0YMYLCwsJaz2VlZbF161YAkpOTiY6OVjCIiDSTBkPh2muv5dChQ/zyl7/kuuuuA+Dz\nzz83Xx80aJBbCiovL8ff3x8Af39/ysvL3XIcERGpq8FQ6NChAx06dCAjI4OMjIw6r2/ZssWthYHz\nWkbN9YzzpaammtvR0dFER0e7vR4REW/icDhwOBwXtU+DoVDzh6qrq/HxqX3p4dSpUxddXGP5+/tT\nVlZGz549KS0tbfCi9rmhICIidZ3/H+YFCxa43MflPIVZs2bVenz8+HFuuummi6+ukeLj41m9ejUA\nq1evJiEhwW3HEhGR2lyGQu/evZkzZw4A3377LWPGjGH69OlNcvCkpCSGDx/O7t276dOnDytXriQl\nJYWcnBxCQ0PZvHkzKSkpTXIsERFxzWYYhuHqTfPmzePo0aPs2LGDlJQUpkyZ0hy1Nchms9GIslu8\nw4chNNT5W6TGV19BQoLzt8i5GvPd2eA1hZqLyzabjWHDhrFw4UKuvfZabDYb//d//8ekSZOatloR\nEbFcg6Hw9ttv17rzJyIigjNnzrBx40YAhYKISAvUYCisWrWqGcsQERFPoFVSRUTEpFAQERGTQkFE\nREwXXBAPnLOXMzIyKCws5MyZM4DzjqTHHnvM7cWJiEjzchkKt9xyC126dGHw4MFcccUVzVGTiIhY\nxGUoFBcX8/777zdHLSIiYjGX1xSGDx/Orl27mqMWERGxmMszhQ8//JCVK1cSFBRE+/btAec1BQWF\niEjL4zIU3nvvveaoQ0REPECDoXD06FE6d+5M586dm7MeERGxUIOhkJSUxDvvvMOgQYPqdD+z2Wx8\n/fXXbi9ORESaV4Oh8M477wBQWFjYXLWIiIjFPHJGc3Z2NmFhYYSEhPDkk09aXY6ISKvhcaFQVVXF\nfffdR3Z2Nvn5+axZs4Z//etfVpclItIqeFwo5ObmEhwcTGBgIL6+vtx+++1kZmZaXZaISKvQqFCo\nmasAcOjQIfbt2+e2goqLi+nTp4/5OCAggOLiYrcdT0REznIZCqmpqTz11FOkpaUBUFlZyZ133um2\ngs6/00lERC5ffn7j3udy8tr69evJy8tj8ODBAPTu3Ztjx45dVnEX0rt3b4qKiszHRUVFBAQE1Hmf\nLfqc8AgEgtxWkmf7BdgWWF2EeJwk/bsQYB9QeHG7uAyF9u3b4+Nz9oTiu+++u8iqLs6QIUMoKCig\nsLCQH/3oR6xbt441a9bUeZ/hMNxahzc4fBhCQ52/RWp89RUkJDh/i9TYtg1GjHA9EuNy+Oi2227j\n5z//OUeOHOGPf/wjsbGxzJo1q0mKrE/btm15/vnnGTt2LHa7nalTp9K/f3+3HU9ERM6yGYbh8r/c\nmzZtYtOmTQCMHTuWuLg4txd2ITabjUaU3eLpTEHqozMFqU/NmYKr706Xw0f79u1jxIgRjBkzBoCT\nJ09SWFhIYGBgkxQqIiKew+Xw0ZQpU2jTps3ZHXx8mDJliluLEhERa7gMhaqqKtq1a2c+bt++PadP\nn3ZrUSIiYg2XoXDVVVfVmlGcmZnJVVdd5daiRETEGi6vKfzhD3/gjjvu4L777gOcM4xfe+01txcm\nIiLN74KhUFVVxR/+8Ac++eQTc8Jap06dmqUwERFpfhcMhTZt2rBt2zYMw1AYiIi0Ai6HjyIiIrjl\nllu47bbb8PPzA5zzBCZNmuT24kTk0mgaj1wql6Fw6tQpunXrxubNm2s9r1AQ8Uy9ekFlJTzwADz1\nFLRvb3VF4k0aNaPZ02hGs5NmNEtDvv0W7roL9u+HdesgONjqisRqjZ3R7PKW1KKiIm699Va6d+9O\n9+7dmTx5MgcPHmyyQkWk6XXtChkZMHMmXHcdrF1rdUXiLVyGwowZM4iPj6ekpISSkhImTpzIjBkz\nmqM2EbkMNhvcey9s2gSPPQZ33w0nTlhdlXg6l6Fw6NAhZsyYga+vL76+vvzsZz/jP//5T3PUJiJN\nIDISduyAkydh6NDGN1uR1sllKPzwhz/ktddeo6qqijNnzvD6669rRrOIl+nUCV57DR5+GEaOhFdf\n1R1KUj+XofDqq6/y5ptv0rNnT3r16sVbb71l9msWEe9hs8GMGeBwwNKlMH06uLGJonipBkNh+/bt\nAAQGBvL2229z6NAhDh06RGZmJj/+8Y+brUARaVrh4ZCbC1deCYMHw86dVlcknqTBUJg9e7a5fd11\n1zXpQd966y3Cw8Np06YNn3/+ea3X0tLSCAkJISwszGzsIyJNy88PXn4ZFiyAuDh44QUNJ4mTy+Ej\ncE5ga0pXX30169ev58Ybb6z1fH5+PuvWrSM/P5/s7GzmzJlDdXV1kx5bRM5KSoKPP3ZeY5gyBY4c\nsboisVqDoVBVVUVFRQWHDx82t8/9uRxhYWGEhobWeT4zM5OkpCR8fX0JDAwkODiY3NzcyzqWiFxY\ncDB89BEEBDjvVPp+5FhaqQaXuTh69CiDBw8GwDAMcxucM4q//vrrJi+mpKSEYcOGmY8DAgIoLi5u\n8uOISG3t28OyZRATA7fcAvPmwUMPgU+jxhKkJWkwFAoLCy/rD8fFxVFWVlbn+SeeeIKJEyc2+u/Y\nbLbLqkNEGi8hwXm2kJQEmzfD6tXQvbvVVUlzcrkg3qXKycm56H169+5NUVGR+fjgwYP07t273vem\npqaa29HR0URHR1/08USkrp/8BLZuhd/8BgYNgtdfd85tEO/jcDhwOBwAHDjQuH0sXRAvJiaGJUuW\nmENT+fn5TJs2jdzcXIqLixk9ejR79+6tc7agBfGctCCeuFt2tnNuw+zZ8KtfQZs2Vlckl6rJFsRz\nh/Xr19OnTx+2b9/OzTffzPjx4wGw2+0kJiZit9sZP348y5cv1/CRiIXGjXMukeFwOG9dLS21uiJx\ntwueKZw5c4bw8HB2797dnDW5pDMFJ50pSHOpqoJFi+DFF2HVKhg71uqK5GI1yZlC27ZtCQsLY//+\n/U1anIh4lzZtnCutrl0Ls2bB/Plw+rTVVYk7uLzQXFFRQXh4OEOHDqVDhw6A83/qWVlZbi9ORDzL\nyJHw+eeQnOzcXrPGeWFaWg6XobBw4cLmqENEvET37rBxIzz9tHMp7j/+0Tm3QVoGteP0YrqmIFbb\nvt05pyE+Xv2gPV2T3X308ccfc+2119KxY0d8fX3x8fGhc+fOTVaoiHivYcOcw0lFRTB8OOzda3VF\ncrlchsJ9993Hn//8Z0JCQjh16hQrVqxgzpw5zVGbiHgB9YNuWRo1TyEkJISqqiratGnDjBkzyM7O\ndnddIuJF1A+65XAZCh06dOB///sfAwcO5JFHHmHp0qUazxeReqkftPdzGQp/+tOfqK6u5vnnn8fP\nz4+DBw+SkZHRHLWJiBdSP2jv1qi7j06cOEFRURH9+vVrjppc0t1HTrr7SDzdl1/C1KkQEeGcDd2p\nk9UVtV5NdvdRVlYWkZGRjP1+XnteXh7x8fFNU6WItGg1/aD9/Jz9oPPyrK5IXHEZCqmpqXzyySd0\n7doVgMjISLc02BGRlsnPzznBbcECGDNG/aA9nctQ8PX1pUuXLrV3UjsmEblI6gftHVx+u4eHh/PG\nG29w5swZCgoKuP/++xk+fHhz1CYiLYz6QXs+l6Hw3HPP8eWXX9K+fXuSkpLo3LkzzzzzTHPUJiIt\nUE0/6N//3rlm0uLFUF1tdVVSQ2sfeTHdfSTebv9+57BSly7qB+1uTXb30e7du7n77ruJi4sjJiaG\nmJgYRo0adVnFzZs3j/79+zNw4EAmTZrEf//7X/O1tLQ0QkJCCAsLY9OmTZd1HBHxbDX9oAcOdPaD\n3rrV6orE5ZnCNddcw+zZsxk0aBBtvm/QarPZzL7KlyInJ4fY2Fh8fHxISUkBID093ezR/Omnn5o9\nmvfs2VPnwrbOFJx0piAtifpBu1djzxRc9lPw9fVl9uzZTVYYQFxcnLkdFRVlzpDOzMwkKSkJX19f\nAgMDCQ4OJjc3l2HDhjXp8UXE89T0g77zTmdP6DfegF69rK6q9WkwFCoqKjAMg4kTJ/LCCy8wadIk\n2p+zWHq3bt2apIBXX32VpKQkAEpKSmoFQEBAAMXFxfXuV1LSJIf3ahUVVlcg0rR+9CPIyXH2gx40\nSP2grdBgKAwaNAibzWY+XrJkiblts9lcTmCLi4ujrKyszvNPPPEEEydOBGDRokW0a9eOadOmNfh3\nzq3hXP36pZrb7dpF07599AXraansdqsrEGlaNf2gR450njXccQcsXAi+vlZX5n0cDgcOhwOAAwca\nt49ldx+tWrWKl19+mb/+9a9cccUVgPO6AmBeZxg3bhwLFiwgKiqq1r66piDSOhw65OwHfeSI+kFf\nrsu+++jTTz+ltLTUfLx69Wri4+P5xS9+QcVljltkZ2ezePFiMjMzzUAAiI+PZ+3atVRWVrJv3z4K\nCgoYOnToZR1LRLxXTT/oW291LsW9YYPVFbV8DYbCPffcY15D+Nvf/kZKSgrJycl07tyZe+6557IO\nev/993P8+HHi4uKIjIw0O7nZ7XYSExOx2+2MHz+e5cuXNzh8JCKtg48PzJsHmZnw4IPwwAPwv/9Z\nXVXL1eDw0cCBA/nHP/4BwL333kv37t1JTU2t85oVNHwk0jp9+y3MmgWFhbBunXPZDGmcyx4+qqqq\n4vTp0wB88MEHxMTEmK+dOXOmicoUEWm8rl3hL39RP2h3avDuo6SkJEaOHMlVV12Fn58fI0aMAKCg\noKDOqqkiIs2lph/08OHOBj5//atzLSU/P6sraxkuePfRxx9/TFlZGWPGjKFDhw4A7Nmzh+PHjzNo\n0KBmK/J8Gj4SEYBjx5wzoHfuhDff1C3aF9LY4SMtiCciXs0wnJPcHnkEnnzSuVSG7k+pq8kWxBMR\n8WQ2mzMItm6FpUth+nTnGYRcGoWCiLQIdrv6QTcFhYKItBjqB335FAoi0uKc2w968mTn/AZpHIWC\niLRINf2g+/RxrriqftCNo1AQkRZL/aAvnkJBRFq8hATnRej162HCBOfqq1I/hYKItArn9oOOjFQ/\n6IYoFESk1fD1hbQ0eOUVuP12511KVVVWV+VZFAoi0urU9IPeuhXi4tTe91wKBRFplWr6QUdHOye7\nvf++1RV5BoWCiLRaNf2g16519mlISYHvOwa0WpaEwm9+8xsGDhxIREQEsbGxFBUVma+lpaUREhJC\nWFgYmzZtsqI8EWllRo6Ezz+HXbuc2/v3W12RdSxZJfXYsWN06tQJgOeee45//OMfvPLKK+Tn5zNt\n2jQ+/fRTiouLGT16NHv27MHHp3Z2aZVUEXGH6mp4+mlYsgReesl5K2tL4dGrpNYEAsDx48e56qqr\nAMjMzCQpKQlfX18CAwMJDg4mNzfXihJFpBVSP2gLryn86le/4sc//jGrVq1i/vz5AJSUlBAQEGC+\nJyAggOLiYqtKFJFWatgw53DSwYPODm9791pdUfNpsB3n5YqLi6OsrKzO80888QQTJ05k0aJFLFq0\niPT0dObOncvKlSvr/Tu2BrplpKammtvR0dFER0c3RdkiIsDZftDLlzv7QT/7rHOhPW/icDhwOBwA\nHDjQuH0s77x24MABbrrpJr744gvS09MBSElJAWDcuHEsWLCAqKioWvvomoKINKe8PGc/6JEjvbcf\ntEdfUygoKDC3MzMziYyMBCA+Pp61a9dSWVnJvn37KCgoYOjQoVaUKCJiiox0TnY7eRKGDoX8fKsr\nch+3DR9dyPz589m9ezdt2rShb9++vPjiiwDY7XYSExOx2+20bduW5cuXNzh8JCLSnDp1gtdec/aD\nHjmy5faDtnz46FJo+EhErJSfD4mJEBEBL77oDAxP59HDRyIi3qwl94NWKIiIXIKaftC//S2MHdty\n+kErFERELsPttzvbfraUftAKBRGRy3RuP+jISO/uB61QEBFpAjX9oJ95xrv7QSsURESakLf3g1Yo\niIg0MW/uB61QEBFxg5p+0CtWeFc/aIWCiIgbjR3rXf2gFQoiIm7mTf2gFQoiIs3AW/pBKxRERJqR\np/eDViiIiDSz7t1h40aYNMm5FPeGDVZXdJZCQUTEAj4+8Mtfnu0H/YtfeEY/aIWCiIiFavpBFxd7\nRj9ohYKIiMVq+kHPnOnsB71mjXW1WBoKTz/9ND4+PlRUVJjPpaWlERISQlhYGJs2bbKwOhGR5mOz\nwb33wqZN8PjjcPfdcOJE89dhWSgUFRWRk5PDT37yE/O5/Px81q1bR35+PtnZ2cyZM4dqb1xRSkTk\nEp3fD/rLL5v3+JaFwkMPPcRTTz1V67nMzEySkpLw9fUlMDCQ4OBgcnNzLapQRMQaNf2gH37YOeHt\n1Vebr4GPJaGQmZlJQEAA11xzTa3nS0pKCAgIMB8HBARQXFzc3OWJiFjOZoMZM5zLYyxdCnfeCceO\nuf+4bd31h+Pi4igrK6vz/KJFi0hLS6t1veBCjaRtNlu9z6empprb0dHRREdHX3KtIiKeqqYf9Ny5\nziUy1q1zDjE1hsPhwOFwAHDgQOP2sRkX+kZ2gy+++ILY2Fj8/PwAOHjwIL179+aTTz5h5cqVAKSk\npAAwbtw4FixYQFRUVO2ibbYLBomISEu0dq1zPsNjjzkvSjfwf+Z6bdsGI0a4/u5s9lA4X1BQEDt2\n7KBbt27k5+czbdo0cnNzKS4uZvTo0ezdu7fO2YJCQURaq717YepUZ8+GFSuct7M2RmNDwfJ5Cud+\n4dvtdhITE7Hb7YwfP57ly5c3OHwkItIaubsftOVnCpdCZwoiIs41k37+c+dyGQ8/7Fw6oyFec6Yg\nIiKXxh39oBUKIiJe7Px+0N/fbHTJFAoiIl7u3H7QSUmX1w9aoSAi0kI0RT9ohYKISAtyuf2gdfeR\niEgLtXWrc3mMO+5wnkWMGuUFk9cuhUJBRKRxDh2C5GRnT+jiYt2SKiLSqtX0g547t3Hv15mCiEgr\n0ZjvTp0piIiISaEgIiImhYKIiJgUCiIiYlIoiIiISaEgIiImS0IhNTWVgIAAIiMjiYyM5L333jNf\nS0tLIyQkhLCwsFp9nEVExP0sCQWbzcZDDz1EXl4eeXl5jB8/HoD8/HzWrVtHfn4+2dnZzJkzh+rq\naitK9BqOy10ntwXRZ3GWPouz9FlcHMuGj+qbQJGZmUlSUhK+vr4EBgYSHBxMbm6uBdV5D/2DP0uf\nxVn6LM7SZ3FxLAuF5557joEDB3LXXXdx5MgRAEpKSggICDDfExAQQHFxsVUlioi0Om4Lhbi4OK6+\n+uo6P1lZWcyePZt9+/axc+dOevXqxcMPP9zg37HZbO4qUUREzmdYbN++fcaAAQMMwzCMtLQ0Iy0t\nzXxt7Nixxvbt2+vs07dvXwPQj370ox/9XMRP3759XX4nt8UCpaWl9OrVC4D169dz9dVXAxAfH8+0\nadN46KGHKC4upqCggKFDh9bZf+/evc1ar4hIa2FJKDz66KPs3LkTm81GUFAQL730EgB2u53ExETs\ndjtt27Zl+fLlGj4SEWlGXrl0toiIuIfXzWjOzs4mLCyMkJAQnnzySavLsczMmTPx9/c3h95as6Ki\nImJiYggPD2fAgAE8++yzVpdkmVOnThEVFUVERAR2u5358+dbXZLlqqqqiIyMZOLEiVaXYqnAwECu\nueYaIiMj6x2Wr+FVZwpVVVX069ePDz74gN69e3PttdeyZs0a+vfvb3Vpze7DDz+kY8eO/PSnP+Wf\n//yn1eVYqqysjLKyMiIiIjh+/DiDBw9mw4YNrfLfBcCJEyfw8/PjzJkz3HDDDSxZsoQbbrjB6rIs\ns3TpUnbs2MGxY8fIysqyuhzLBAUFsWPHDrp163bB93nVmUJubi7BwcEEBgbi6+vL7bffTmZmptVl\nWWLEiBF07drV6jI8Qs+ePYmIiACgY8eO9O/fn5KSEourso6fnx8AlZWVVFVVufwSaMkOHjzIu+++\ny6xZs9StERr1GXhVKBQXF9OnTx/zsSa3yfkKCwvJy8sjKirK6lIsU11dTUREBP7+/sTExGC3260u\nyTIPPvggixcvxsfHq77q3MJmszF69GiGDBnCyy+/3OD7vOqT0p1IciHHjx9nypQpLFu2jI4dO1pd\njmV8fHzYuXMnBw8e5G9/+1urXeZh48aN9OjRg8jISJ0lAH//+9/Jy8vjvffe44UXXuDDDz+s931e\nFQq9e/emqKjIfFxUVFRrWQxpvU6fPs3kyZO58847SUhIsLocj/CDH/yAm2++mc8++8zqUizx0Ucf\nkZWVRVBQEElJSWzevJmf/vSnVpdlmZq5Yd27d+fWW29tcF05rwqFIUOGUFBQQGFhIZWVlaxbt474\n+HiryxKLGYbBXXfdhd1uZ+7cuVaXY6lvvvnGXEvs5MmT5OTkEBkZaXFV1njiiScoKipi3759rF27\nllGjRvGnP/3J6rIsceLECY4dOwbAd999x6ZNmxq8c9GrQqFt27Y8//zzjB07FrvdztSpU1vtHSZJ\nSUkMHz6cPXv20KdPH1auXGl1SZb5+9//zuuvv86WLVvMHh3Z2dlWl2WJ0tJSRo0aRUREBFFRUUyc\nOJHY2Fjr9G82AAADwElEQVSry/IIrXn4uby8nBEjRpj/LiZMmMCYMWPqfa9X3ZIqIiLu5VVnCiIi\n4l4KBRERMSkURETEpFAQERGTQkFEREwKBRERMSkUpEVx9/IWzzzzDCdPnmzy47399tuteil48Rya\npyAtSqdOncyZm+4QFBTEZ599xg9/+MNmOZ5Ic9OZgrR4//73vxk/fjxDhgzhxhtvZPfu3QD87Gc/\n44EHHuD666+nb9++ZGRkAM5VRufMmUP//v0ZM2YMN998MxkZGTz33HOUlJQQExNTa5bwr3/9ayIi\nIrjuuuv4z3/+U+f4c+fOZeHChQC8//77jBw5ss57Vq1axf3333/Bus5VWFhIWFgYM2bMoF+/ftxx\nxx1s2rSJ66+/ntDQUD799NPL/+CkdTJEWpCOHTvWeW7UqFFGQUGBYRiGsX37dmPUqFGGYRhGcnKy\nkZiYaBiGYeTn5xvBwcGGYRjGW2+9Zdx0002GYRhGWVmZ0bVrVyMjI8MwDMMIDAw0Dh8+bP5tm81m\nbNy40TAMw3jkkUeM3/3ud3WOf+LECSM8PNzYvHmz0a9fP+Prr7+u855Vq1YZ99133wXrOte+ffuM\ntm3bGl988YVRXV1tDB482Jg5c6ZhGIaRmZlpJCQkuPysROrT1upQEnGn48eP8/HHH3PbbbeZz1VW\nVgLOtXBqVlTt378/5eXlAGzbto3ExEQAsydBQ9q1a8fNN98MwODBg8nJyanzniuvvJKXX36ZESNG\nsGzZMoKCgi5Yc0N1nS8oKIjw8HAAwsPDGT16NAADBgygsLDwgscQaYhCQVq06upqunTpQl5eXr2v\nt2vXztw2vr+8ZrPZaq2/b1zgspuvr6+57ePjw5kzZ+p9365du+jevXujm0LVV9f52rdvX+vYNftc\nqA4RV3RNQVq0zp07ExQUxF/+8hfA+QW7a9euC+5z/fXXk5GRgWEYlJeXs3XrVvO1Tp06cfTo0Yuq\nYf/+/SxdutRscFLfOvYXCh6R5qRQkBblxIkT9OnTx/x55plneOONN1ixYgUREREMGDCgVvP2c5dT\nrtmePHkyAQEB2O12pk+fzqBBg/jBD34AwD333MO4cePMC83n73/+8syGYTBr1iyefvppevbsyYoV\nK5g1a5Y5hNXQvg1tn79PQ49b8zLRcnl0S6pIPb777js6dOjA4cOHiYqK4qOPPqJHjx5WlyXidrqm\nIFKPCRMmcOTIESorK3nssccUCNJq6ExBRERMuqYgIiImhYKIiJgUCiIiYlIoiIiISaEgIiImhYKI\niJj+H1U+eMmY8O6MAAAAAElFTkSuQmCC\n",
       "text": [
        "<matplotlib.figure.Figure at 0x5f26c10>"
       ]
      },
      {
       "metadata": {},
       "output_type": "display_data",
       "png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEPCAYAAACtCNj2AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3X1U1GX+//HnINhmmN2Y2hENwxtEMBA3NK3GFTRNyTQx\n7EbL2i2PlZlb+vueTDt5w1rtt1KyNSWzNm0zRVwlrISMUszgu3kw71ZSUSw3SUldAuf3xycnb0AG\nmJnPZ2Zej3PmBMPMfN6hznuu631d19vmcDgciIiIAEFmByAiItahpCAiIk5KCiIi4qSkICIiTkoK\nIiLipKQgIiJOpiWF/fv3069fP7p160Z0dDSvvvoqAD/++CNJSUl07tyZAQMGUF5eblaIIiIBx2bW\nPoWysjLKysqIjY2loqKC+Ph4Vq1aRUZGBi1btuTpp58mLS2No0ePMmfOHDNCFBEJOKaNFNq0aUNs\nbCwAoaGhdO3aldLSUlavXs2YMWMAGDNmDKtWrTIrRBGRgGPaSOFsJSUl3HrrrWzbto327dtz9OhR\nABwOB1dddZXzexER8SzTC80VFRWMGDGCV155hebNm5/zM5vNhs1mMykyEZHAE2zmxX/55RdGjBjB\nfffdx7BhwwBo3bo1ZWVltGnThkOHDtGqVasLntexY0f27Nnj7XBFRHxaREQEu3fvvuhjTBspOBwO\nxo0bR1RUFBMnTnTen5yczJIlSwBYsmSJM1mcbc+ePTgcjoC9ffCBg1atHHzxhYPJk5+jZUsH33xj\nflxm35577jnTY7DKTb8L/S5qurnyYdq0pJCfn88777zDhg0biIuLIy4ujuzsbKZMmcL69evp3Lkz\nn376KVOmTDErREtauhQmTIDsbOjdGy67DJ57zrjPYXp1SER8nWnTR3379uX06dM1/uzjjz/2cjS+\nYcECmDkTPv0Uunb97f5HHoE334RlyyA11bz4RMT3mV5oFte89BKkpUFe3rkJwW63ExwM8+fD5Mlw\n7Jh5MZrNbrebHYJl6HfxG/0u6scSS1Lry2az4YNhN4jDAc8/D3//O3z8MbRrV/tjH3gArr4aXnzR\ne/GJiO9w5b1TScHCHA74859h/XrIyYHWrS/++O+/h27dYMMGiI72Towi4jtcee/U9JFFnT4N48fD\nxo3Gm3xdCQGgVSsVnUWkcZQULKiqCsaOheJiY8roqqtcf+4jj0B5uVF0FhGpL00fWUxlpbGC6Oef\n4cMPoVmz+r9Gfj6kpMD27XD55e6PUUR8k6aPfMzJkzBsmDH1k5nZsIQA0KcPDBhgFKhFROpDIwWL\nOH4chg6FsDB46y0IbuQOEhWdReR8Gin4iKNHISkJunSBt99ufEIAFZ1FpGGUFEz2/ffQr58x5bNg\nAQS58U9ERWcRqS9NH5motBT694dRo2D6dPDEKeEqOovIGdq8ZmF79xoJ4dFHjQ1qnqSdziICSgqW\n9e23Rg1h6lRjg5qnqegsIqBCsyUVFRk1hBde8E5CABWdRcR1SgpetGkTDBwIr70GY8Z499oqOouI\nKzR95CW5uUbB9623YPBgc2JQ0VkksKmmYBHr1hkjg+XLjakjM6noLBK4lBQsYMUKo3awapXRPtNs\nKjqLBC4Vmk12fj9lK1DRWUQuRknBQxYsgP/3/4x+ynFxZkdzLhWdRaQ2mj7ygJdegnnz4JNP4Prr\nzY6mZio6iwQe1RS8rD79lK1ARWeRwKKk4EX17adsBSo6iwQWyxeaH3zwQVq3bk1MTIzzvh9//JGk\npCQ6d+7MgAEDKC8vNzFC1zSkn7IVqOgsIuczNSk88MADZGdnn3PfnDlzSEpKYufOnfTv3585c+aY\nFJ1rGtNP2QpUdBaRs5k+fVRSUsLQoUP55ptvAIiMjCQvL4/WrVtTVlaG3W7n22+/Pec5Vpk+ckc/\nZStQ0VkkMFh++qgmhw8fpvWv8y+tW7fm8OHDJkdUM3f1U7YC9XQWkTPc0PjRc2w2G7ZaOs9Mnz7d\n+bXdbsdut3snKNzfT9kK0tKMovPYsSo6i/iL3NxccnNz6/UcS04f5ebm0qZNGw4dOkS/fv0sNX10\n9CgMGgQ33ACvv+7e9plmmzcPPvjAKJZ7oguciJjLJ6ePkpOTWbJkCQBLlixh2LBhJkf0G0/2U7YC\nFZ1FxNSRQmpqKnl5eRw5coTWrVvz/PPPc8cdd5CSksK+ffsIDw/n/fff54orrjjneWaMFLzRT9kK\nVHQW8V/avOYm3uynbAXa6Szin5QU3MDb/ZStQDudRfyTT9YUrMSMfspWoJ3OIoFLSaEWZvZTtgIV\nnUUCk6aPamCFfspWoKKziH9RTaEBrNRP2QpUdBbxH0oK9WS1fspWoKKziP9QobkerNhP2QpUdBYJ\nLEoKWLufshWo6CwSOAJ++sgX+ilbgYrOIr5PNYWL8LV+ylagorOIb1NSqIUv9lO2AhWdRXybCs01\n8NV+ylagorOI/wuopODr/ZStQEVnEf8WMNNH/tJP2QpUdBbxTW6ZPsrKyiIuLo4rr7yS5s2b07x5\ncy73sXcCf+qnbAXq6Sziv+ocKURERLBy5Uqio6MJskirsfqMFPyxn7IVqOgs4nvcMlIICwujW7du\nlkkI9XH0qNELoUsXePttJQR3UtFZxD/VOVLYtGkT06ZNo1+/fjRt2tR4ks3GpEmTvBJgTVzJdt9/\nb0xx9O9vrKv31/aZZqqqgp494ZlnjHqNiFibW0YKzz77LKGhoZw6dYqKigoqKio4fvy424L0hNJS\nuOUWuOMOJQRPCg6G+fNh8mQ4dszsaETEHeocKURHR7Nt2zZvxeOSi2W7QOunbAXa6SziG9wyUhg8\neDAfffSR24LypG+/NUYIkycrIXhTWhosWQIW++wgIg1Q50ghNDSUEydO0LRpU0JCQown2WwcM3G+\noKZsV1QEgwbBnDmB2T7TbPPmwQcfGKuRNF0nYk0Bc/bRpk1G/WD+fLjrLhMDC2BVVfD738PTT6vo\nLGJVPnv2UXZ2NpGRkXTq1Im0tLSLPjY3F5KTISNDCcFMKjqL+IcGJYU4D3aiqa6uZsKECWRnZ1Nc\nXMx7773H9u3ba3zsunXGcQvLl8PgwR4LSVx0003a6Szi6xqUFAoLC90dh1NBQQEdO3YkPDyckJAQ\n7r77bjIzMy943IoVxuF2mZnQr5/HwpF6UtFZxLdZbvqotLSUdmd1vAkLC6O0tPSCx6mfsjVpp7OI\nNbn677HWgx86dOhQ65NsNhv//ve/6x2UK2wuLl0p62Kjx5O/fhMO1B6umKEfBGkaScRce4GS+j2l\n1qSwZcsW59c2m43Tp0+zfPlyXnzxRXr06NHACOvWtm1b9u/f7/x+//79hIWFXfA4R64+hlrZF1/A\nyJE6XlvECpYtgylT4Dvq/tBd6/RRy5YtadmyJVdddRVZWVnY7Xa+/PJL1q5dy4oVK9wa8Nl69uzJ\nrl27KCkpobKykuXLl5OcnOyx64lnqOgsYg2bN8Pjj8Pq1a49vtaRQmVlJYsXL+avf/0rffv2JTMz\nk44dO7orztoDCg5m3rx5DBw4kOrqasaNG0fXrl09fl1xv7Q043jtsWN1vLaIGfbtg+HDYdEi6N7d\ntefUunktLCyM4OBgnnjiCdq3b++c63c4HNhsNoYPH+62wOurIZ3XxBza6SxijooK6NsX7rsPnnrK\nuK9RO5rHjh3rfJGaZGRkNDzaRlJS8B3a6SzifdXVxgjhmmtg4cLfPpC55ZiLU6dO8bvf/e6c+/7z\nn/9w9dVXNy7qRlBS8C0qOot419NPQ0EB5OTAr21wADcdczF8+HB++eUX5/eHDh0iKSmp4dFKwFHR\nWcR7MjJg5Upjg+/ZCcFVdSaFO++8k5SUFKqrqykpKWHgwIHMmTOnIbFKANNOZxHPy8szlp5mZRk9\nThrCpVNS582bR3Z2Nt999x0LFiygT58+Dbuam2j6yDep6CziOXv2QJ8+8M47kJhY82MaVVN46aWX\nznmRt99+m5iYGOLi4nyiR7NYj4rOIp5RXm4c+fP440bXydq48t5Z6z6F48ePn7Py6M4778Rms1FR\nUVH/iEX47XjtkSPh9ttVdBZxh6oqGDUKkpIunhBc5RdNdsS3qKeziPtMmAC7d8OaNcYHr4sJmM5r\n4lu+/97Y6bxhg3Y6izTG/PmQnm4s+27Rou7HKymIZanoLNI4OTlGP/r8fLj+etee47PtOMX/PfII\n/PSTcXqjiNTP9u1w773w/vuuJwRX1TlS+P7771m4cCElJSVUVVUZT7LZWLx4sXsjqQeNFPyDdjqL\n1N+RI9CrFzz7rDFSqA+3TB/17t2bW265hfj4eIKCgpwvPGLEiPpF40ZKCv5DRWcR1/33v8Yqo5tu\ngobsIXZLUoiNjaWoqKj+V/cgJQX/oaKziGscDnjwQWNPwooVENSAyX+31BSGDBnCP//5z/pfXcQF\n6uks4pq5c6GoCJYubVhCcFWdI4XQ0FBOnDhB06ZNCQkJMZ5ks3Hs2DHPRVUHjRT8i3Y6i1zcqlXG\nB6dNm6CG7sQu05JU8RkqOovUrKjIqCOsXWt8eGqMRiWF7du307VrV77++usan9ijR4/GRdcISgr+\nSUVnkXMdOgQJCca/iZSUxr9eo5LCww8/zMKFC7Hb7TV2X9uwYUPjI2wgJQX/pKKzyG9OngS73Tgn\nbNo097ympo/E52ins4ix6CI11Sgov/uu+/4taEez+BztdBaBGTOgpAQWLfL+hyONFMRyVHSWQLZs\nmdE9bdMmaNPGva+t6SPxWSo6SyDavBmGDoWPP4bu3d3/+m6ZPurfv79L99XHP/7xD7p160aTJk0u\nWN00e/ZsOnXqRGRkJDk5OY26jvgu9XSWQLNvHwwfbkwZeSIhuKrWlgwnT57kxIkT/PDDD/z444/O\n+48dO0ZpaWmjLhoTE8PKlSv505/+dM79xcXFLF++nOLiYkpLS0lMTGTnzp3OM5ckcJy901lFZ/F3\nFRWQnAyTJhkjBTPV+m77xhtv0LNnT3bs2EF8fLzzlpyczIQJExp10cjISDp37nzB/ZmZmaSmphIS\nEkJ4eDgdO3akoKCgUdcS36WiswSC6mq45x7o2dNICmardaQwceJEJk6cyKuvvsrjjz/ulWAOHjxI\nr169nN+HhYU1elQivks9nSUQTJ1qfPj5xz+sMSKuo6MnPP7443zxxRfn9FMAuP/++y/6vKSkJMrK\nyi64f9asWQytx/iopo1zANOnT3d+bbfbsdvtLr+m+I6bboIBA+D551V0Fv+TkQErVxorjZo2df/r\n5+bmkpubW6/n1JkU7r33Xv79738TGxtLkyZNnPfXlRTWr19fr0AA2rZty/79+53fHzhwgLZt29b4\n2LOTgvi3tDRjp/PYsdrpLP4jL89YepqXZ6y084TzPzDPmDGjzufUmRS2bt1KcXFxrZ/YG+vs5VHJ\nycmMHj2aSZMmUVpayq5du7jxxhs9cl3xHSo6i7/ZswdGjTJ2K0dGmh3Nuepc1hMdHc2hQ4fcetGV\nK1fSrl07Nm3axO23386gQYMAiIqKIiUlhaioKAYNGkR6errHkpH4FhWdxV+Ul8OQIcYHncREs6O5\nUJ2b1+x2O0VFRdx4441ccsklxpNsNlavXu2VAGuizWuBSTudxddVVRmLJrp0gVdf9f713bKj+UyR\n4uwXs9ls3Hrrre6JsgGUFAKXdjqLL5swAXbvhjVrjNV13ua2Yy5KSkrYvXs3iYmJnDhxgqqqKi43\n8aOakkLg0vHa4qvmz4f0dGPE26KFOTG45ZiLv/3tb4wcOdK5+/jAgQPceeed7olQpJ7U01l8UU4O\nvPACZGWZlxBcVWdSmD9/Pp9//rlzZNC5c2e+//57jwcmUhsVncWXbN8O994L778P119vdjR1qzMp\nXHLJJc4CM0BVVZVWBImpzux0njwZjh0zOxqR2h05YpxlNHcu3Hyz2dG4ps6kcOuttzJz5kxOnDjB\n+vXrGTlyZL12JIt4wtk7nUWs6L//NU49vesuGDPG7GhcV2ehubq6mkWLFjmPsR44cCAPPfSQqaMF\nFZoFVHQW63I44MEHjT0JK1YYbTWtQE12xO+pp7NY0V/+Au+9Bxs3Qmio2dH8xi2rj7KysoiLi+PK\nK6+kefPmNG/e3NTlqCJnU9FZrGbVKmNjWlaWtRKCq+ocKURERLBy5Uqio6Mt0+xGIwU5m3Y6i1UU\nFUFSEqxdC7//vdnRXMgtI4WwsDC6detmmYQgcj4VncUKDh0yuqfNn2/NhOCqOkcKmzZtYtq0afTr\n14+mvx74bbPZmGRiiyCNFOR8KjqLmU6eBLvdONdo2jSzo6mdW0YKzz77LKGhoZw6dYqKigoqKio4\nfvy424IUcQftdBazOBzGmVwREfDss2ZH03h1jhSio6PZtm2bt+JxiUYKUpOqKmPY/vTTkJpqdjQS\nKKZPh+xsY5R66aVmR3NxbhkpDB48mI8++shtQYl4inY6i7ctW2a01Fy1yvoJwVV1jhRCQ0M5ceIE\nTZs2JSQkxHiSzcYxE//VaaQgF6PjtcUbNm82muV88gl07252NK7R5jUJSCo6i6ft2we9e8OCBcbZ\nRr7CbUkhMzOTzz77zNlcx+yzj5QUpC7a6SyeUlEBffvCfffBU0+ZHU39uCUpTJkyhS1btnDPPffg\ncDhYtmwZPXv2ZPbs2W4Ntj6UFKQuKjqLJ1RXG4fcXXMNLFzoex843JIUYmJiKCoqokmTJoBxQF5s\nbCzffPON+yKtJyUFcYV2Oou7Pf00FBQYTXN+3bblU9yy+shms1FeXu78vry8XP0UxCdop7O4U0YG\nrFxpnHrqiwnBVXW2jp46dSo9evTAbrcDkJeXx5w5czwdl4hbpKUZReexY1V0lobLy4MpU4z/Xn21\n2dF4lkuF5oMHD7JlyxZsNhs33ngjbdq08UZstdL0kdSHis7SGHv2QJ8+8M47kJhodjSN06jpo6+/\n/tp5KysrIywsjLZt23Lw4EG+/vrrRgX25z//ma5du3LDDTcwfPhwfvrpJ+fPZs+eTadOnYiMjHQ2\n9hFpDB2vLQ1VXm7sRXjuOd9PCK6qdaQQFBREdHQ0V9cyVtqwYUODL7p+/Xr69+9PUFAQU6ZMAWDO\nnDkUFxczevRotmzZQmlpKYmJiezcufOCE1o1UpD6UtFZ6quqyjjgrksXoz+CP2jUSOHll1+mefPm\nNGvWjAceeIDVq1ezYcMG560xkpKSnG/0CQkJHDhwADD2Q6SmphISEkJ4eDgdO3akoKCgUdcSARWd\npf4mTjSmG19+2exIvKvWpDBx4kTy8/N59dVXOXDgAP3792fkyJEUFRW5NYDFixczePBgwKhdhIWF\nOX8WFhZGaWmpW68ngSstDZYsAYud7ygWNH++UYNavtw4UyuQ1Pm/GxERwR133MGJEyd455132LFj\nB7GxsXW+cFJSEmVlZRfcP2vWLOeO6JkzZ9K0aVNGjx5d6+vUtvx1+vTpzq/tdrtzdZRIbc4+XltF\nZ6lNTg688ALk50OLFmZH0zi5ubnk5ubW6zm11hT27NnDsmXLyMzMpH379owaNYohQ4ZwqZuOAnzr\nrbdYuHAhn3zyCb/73e8AnEtdz9QZbrvtNmbMmEFCQsK5QaumIA2knc5yMdu3w623GnsRbr7Z7Gjc\nr1E7moOCgoiJiWHYsGFc/mtl7swLNrbzWnZ2Nk899RR5eXm0bNnSef+ZQnNBQYGz0Lx79+4LRgtK\nCtIYKjpLTY4cgV69jEY5Y8aYHY1nuPLeWev00bRp05xvxhUVFW4N7LHHHqOyspKkpCQAevfuTXp6\nOlFRUaSkpBAVFUVwcDDp6enaPS1ud3bRWcdrC8B//2ucaXTXXf6bEFylo7MlIOl4bTnD4YAHHzT2\nJKxYAUF1Hv7ju9xy9pGIP1JPZzlj7lwoKoKlS/07IbhKvwIJWNrpLKtWGRvTsrIgNNTsaKxB00cS\n0FR0DlxFRZCUBGvXGivSAoFb+im89NJL57yQzWajRYsWxMfHu7RfwROUFMSd1NM58Bw6BAkJxp95\nSorZ0XiPW5LC6NGj+eqrrxg6dCgOh4N//vOfxMTE8N1333HXXXfxzDPPuDVoVygpiDup6BxYTp4E\nu90412jaNLOj8S63JIWbb76ZdevWEfrrhFtFRQWDBw8mOzub+Ph4tm/f7r6IXaSkIO6m47UDg8Nh\nbFoMCoJ33w28P2u3rD764YcfaHpWm6GQkBAOHz5Ms2bNnDuRRXydis6BYcYMKCmBRYsCLyG4qs6z\nj+655x4SEhIYNmwYDoeDrKwsRo8ezc8//0xUVJQ3YhTxuOBg4xC0kSONaQUVnf3PsmVGS83Nm8FN\np/X4JZdWH23ZsoX8/HxsNht9+vShZ8+e3oitVpo+Ek9R0dk/bd5sNMv55BPo3t3saMzjlpoCQHV1\nNWVlZVRVVTmPnWjfvr17omwAJQXxFBWd/c++fdC7NyxYAL8e0Byw3JIUXnvtNWbMmEGrVq1o0qSJ\n8/5vvvnGPVE2gJKCeJKKzv6jogL69oX77oOnnjI7GvO5JSlERERQUFBQa1tOMygpiCfpeG3/UF1t\nHHJ3zTWwcKESPLhp9VH79u2dR2eLBIIzRefJk+HYMbOjkYaaOtVYUZaeroRQH3WOFB588EF27tzJ\n7bff7lya2th+Co2lkYJ4g4rOvisjA2bNgk2bjD9DMTSqn8IZ7du3p3379lRWVlJZWelssiPi79LS\njKLz2LEqOvuSvDyYMsX4rxJC/elAPJGLUNHZt+zZA336wDvvQGKi2dFYT6MKzU888QSvvPIKQ2tY\nw2Wz2Vi9erV7omwAJQXxFhWdfUd5ubH09PHH4dFHzY7GmhqVFL766it69uxJbm5ujU+02+2Nja/B\nlBTEm3S8tvVVVRk70bt0MfojSM3ctnnNapQUxNtUdLa2CRNg925Ys8ZYPSY1a1RSiImJuegL/+tf\n/2pcdI2gpCDepp3O1jV/vrHs9IsvoEULs6OxtkatPsrKygIgPT0dgPvuuw+Hw8G7777rxhBFfMPZ\nPZ1VdLaOnBx44QXIz1dCcJc6p49iY2MpKio65764uDgKCws9GtjFaKQgZlDR2Vq2b4dbb4UVK+Dm\nm82Oxje4ZUezw+Hg888/d36fn5+vN2QJSNrpbB1HjhiH282dq4TgbnUmhcWLFzN+/Hiuu+46rrvu\nOsaPH8/ixYsbddFnn32WG264gdjYWPr378/+/fudP5s9ezadOnUiMjKSnJycRl1HxN1uugkGDIDn\nnzc7ksBVWQkjRsBdd8GYMWZH439cXn30008/AdDCDRN3x48fp3nz5oBxCuv//d//8eabb1JcXMzo\n0aPZsmULpaWlJCYmsnPnToKCzs1dmj4SM6nobB6HA8aNg6NHjWmjoDo/1srZ3HLMxalTp1ixYgUl\nJSVUVVU5X3haIzpen0kIYPR8btmyJQCZmZmkpqYSEhJCeHg4HTt2pKCggF69ejX4WiLupqKzeebO\nhcJC2LhRCcFT6kwKd9xxB1dccQXx8fFu7cn8P//zPyxdupRLL72UgoICAA4ePHhOAggLC6O0tNRt\n1xRxl0ceMfr8LlumorO3rFplbEzbtAlCQ82Oxn/VmRRKS0v56KOP6v3CSUlJlJWVXXD/rFmzGDp0\nKDNnzmTmzJnMmTOHiRMnkpGRUePr1Hb43vTp051f2+12U3dYS+BRT2fvKiqChx+GtWshLMzsaHxH\nbm5uradS1KbOmsIf//hHJkyYQHcPNTbdt28fgwcPZtu2bcyZMweAKVOmAHDbbbcxY8YMEhISzg1a\nNQWxCO109rxDhyAhwfgdp6SYHY1vc8uS1I0bNxIfH0/nzp2JiYkhJiam0Qli165dzq8zMzOJi4sD\nIDk5mWXLllFZWcnevXvZtWsXN954Y6OuJeJJaWmwZAls22Z2JP7p5EkYNgweekgJwVvqnD5at26d\n2y86depUduzYQZMmTYiIiOD1118HICoqipSUFKKioggODiY9PV29G8TSVHT2HIfDGIlFRMCzz5od\nTeBwaUnqxo0b2b17Nw888AA//PADFRUVdOjQwRvx1UjTR2Il2unsGdOnQ3a2kWwvvdTsaPyDW05J\nnT59Olu3bmXHjh3s3LmT0tJSUlJSyM/Pd2uw9aGkIFaj47Xda9kyeOYZ2LwZ2rQxOxr/4ZaawsqV\nK8nMzOSyyy4DoG3bthw/ftw9EYr4Ce10dp/Nm+GxxyArSwnBDHUmhUsuueScHcU///yzRwMS8VUq\nOjfevn0wfDgsXgweWvAodagzKYwcOZI//elPlJeX87e//Y3+/fvz0EMPeSM2EZ9ydtFZs5v1V1EB\nycnw5JPGYXdiDpcKzTk5Oc7D6QYOHEhSUpLHA7sY1RTEqlR0bpjqamOE0LIlvPmmVnF5itvbcf7w\nww+0bNnS9GWiSgpiZSo619/TT0NBgdE0p2lTs6PxX40qNH/55ZfY7XaGDx9OYWEh0dHRxMTE0Lp1\na4/sXRDxFyo6109GBqxcaZx6qoRgvlpHCvHx8cyePZuffvqJhx9+mOzsbHr16sW3337L3XfffUE3\nNm/SSEGsTsdruyYvz9ipnJcHkZFmR+P/GjVSqK6uZsCAAYwcOZJrr73WeXppZGSk6dNHIlanonPd\n9uyBUaPg3XeVEKyk1qRw9hu/O4/MFgkUjzwCP/1kbMSSc5WXw5AhRuJMTDQ7GjlbrdNHTZo0oVmz\nZgCcPHmSS8/aZ37y5Elnwx0zaPpIfIWKzheqqjKOG+/SxeiPIN7j9tVHVqGkIL5Ex2ufa8IE2L0b\n1qwx+lKI9ygpiFiAis6/mT8f0tONEZQb2r1LPSkpiFjEvHnwwQeBfbx2Tg6MGQP5+XD99WZHE5jc\nciCeiDReoBedt2+He++F999XQrA6jRREvCRQi85HjkCvXkajnDFjzI4msGn6SMRiAq3oXFkJSUnQ\nuzf82oJdTKSkIGIxgVR0djhg3Dg4etQ4wiJIk9WmU01BxGICaafz3LlQWAhLlyoh+BL9UYl4WSAU\nnVetMjamZWVBaKjZ0Uh9aPpIxAT+XHQuKjLqCGvXGr0lxDo0fSRiUf56vPahQ0b3tPnzlRB8lUYK\nIibxt6KnMWysAAAMN0lEQVTzyZNgtxvnGk2bZnY0UhPLjxReeuklgoKC+PHHH533zZ49m06dOhEZ\nGelsASrij/yp6OxwGMttIyKM/Qjiu0xLCvv372f9+vVcd911zvuKi4tZvnw5xcXFZGdnM378eE6f\nPm1WiCIe5y9F5xkzoKQEFi0K3GM8/IVpSWHSpEn85S9/Oee+zMxMUlNTCQkJITw8nI4dO1JQUGBS\nhCKeFxxszL9PngzHjpkdTcMsW2a01Fy1Cs46YV98lClJITMzk7CwMLp3737O/QcPHiQsLMz5fVhY\nGKWlpd4OT8SrfLnovHkzPPaYsfS0TRuzoxF38Nhp5klJSZSVlV1w/8yZM5k9e/Y59YKLFT5qa/05\nffp059d2ux273d7gWEXMlpZmFJ3HjvWdovO+fTB8OCxeDOd9vhOLyM3NJTc3t17P8frqo23bttG/\nf39nV7cDBw7Qtm1bNm/eTEZGBgBTpkwB4LbbbmPGjBkkJCScG7RWH4kf8qXjtSsqoG9f4+TTyZPN\njkZc5RNnH3Xo0IGtW7dy1VVXUVxczOjRoykoKKC0tJTExER27959wWhBSUH8UVWVsbb/6achNdXs\naGpXXW2MEFq2hDfftH4Ck9+48t5pejO8s9/wo6KiSElJISoqiuDgYNLT02udPhLxN2eKziNHGmv9\nrbrTeepUY8XUP/6hhOCPTB8pNIRGCuLPrHy8dkYGzJxpFJivvtrsaKS+fGL6qCGUFMSfWXWnc16e\nMYr57DOIjDQ7GmkIy+9oFpELWXGn8549MGoU/P3vSgj+TklBxIKstNO5vByGDDESVWKi2dGIp2n6\nSMSirHC8dlWVUfTu0sXojyC+TTUFER9ndtF5wgTYvRvWrDFWR4lvU1IQ8XFmFp3nz4f0dGPE0qKF\nd68tnqGkIOIHzNjpnJMDY8ZAfj5cf713rimep9VHIn7A20Xn7duN4yvef18JIRBppCDiA7xVdD5y\nBHr1MhrljBnjueuIOTR9JOJHPF10rqyEpCTo3RvmzPHMNcRcSgoifsSTRWeHA8aNg6NHYcUKCNLE\nsl9STUHEj3hyp/PcuVBYCEuXKiEEOv3xi/gQTxSdV60yNqZlZUFoqPteV3yTpo9EfIw7i85FRUYd\nYe1ao5eD+DdNH4n4IXf1dD50CJKTjU1qSghyhkYKIj6osUXnkyfBbjfONZo2ze3hiUVp9ZGIH2vo\nTmeHw2j3GRQE776r7mmBRNNHIn6soUXnGTOgpAQWLVJCkAtppCDiw+pbdF62DJ55xmin2aaN5+MT\na9H0kUgAcHWn8+bNRrOcTz6B7t29E5tYi5KCSABwpei8b59xfMWCBTB0qHfjE+tQTUEkANS107mi\nwlh6+uSTSghSN1OSwvTp0wkLCyMuLo64uDjWrVvn/Nns2bPp1KkTkZGR5OTkmBGeiM+prehcXQ33\n3APx8fDUU+bEJr7FlKRgs9mYNGkShYWFFBYWMmjQIACKi4tZvnw5xcXFZGdnM378eE6fPm1GiD4j\nNzfX7BAsI5B/F8HBxia0yZPh2LHffhdTpxrJ4vXXA3elUSD/vWgI06aPaprXyszMJDU1lZCQEMLD\nw+nYsSMFBQUmROc79Bf+N4H+uzh7p3Nubi4ZGfDhh8app02bmh2deQL970V9mZYUXnvtNW644QbG\njRtHeXk5AAcPHiQsLMz5mLCwMEpLS80KUcTnpKXBkiWwZYux9HTNGmNlkoirPJYUkpKSiImJueC2\nevVqHn30Ufbu3UtRURHXXnstT11kstMWqGNekQZo1QqmT4d164zdypGRZkckPsdhsr179zqio6Md\nDofDMXv2bMfs2bOdPxs4cKBj06ZNFzwnIiLCAeimm2666VaPW0RERJ3vycGY4NChQ1x77bUArFy5\nkpiYGACSk5MZPXo0kyZNorS0lF27dnHjjTde8Pzdu3d7NV4RkUBhSlJ45plnKCoqwmaz0aFDB954\n4w0AoqKiSElJISoqiuDgYNLT0zV9JCLiRT65o1lERDzD53Y0Z2dnExkZSadOnUhLSzM7HNM8+OCD\ntG7d2jn1Fsj2799Pv3796NatG9HR0bz66qtmh2SaU6dOkZCQQGxsLFFRUUydOtXskExXXV1NXFwc\nQwN8O3d4eDjdu3cnLi6uxmn5M3xqpFBdXU2XLl34+OOPadu2Lb///e9577336Nq1q9mhed3GjRsJ\nDQ3l/vvv55tvvjE7HFOVlZVRVlZGbGwsFRUVxMfHs2rVqoD8ewFw4sQJmjVrRlVVFX379uXFF1+k\nb9++ZodlmpdffpmtW7dy/PhxVq9ebXY4punQoQNbt27lqquuuujjfGqkUFBQQMeOHQkPDyckJIS7\n776bzMxMs8Myxc0338yVV15pdhiW0KZNG2JjYwEIDQ2la9euHDx40OSozNOsWTMAKisrqa6urvNN\nwJ8dOHCAtWvX8tBDD+kQTXDpd+BTSaG0tJR27do5v9fmNjlfSUkJhYWFJCQkmB2KaU6fPk1sbCyt\nW7emX79+REVFmR2SaZ588knmzp1LUJBPvdV5hM1mIzExkZ49e7Jw4cJaH+dTvymtRJKLqaio4K67\n7uKVV14hNDTU7HBMExQURFFREQcOHOCzzz4L2GMe1qxZQ6tWrYiLi9MoAcjPz6ewsJB169Yxf/58\nNm7cWOPjfCoptG3blv379zu/379//znHYkjg+uWXXxgxYgT33nsvw4YNMzscS2jRogW33347X331\nldmhmOKLL75g9erVdOjQgdTUVD799FPuv/9+s8MyzZm9Yddccw133nlnrefK+VRS6NmzJ7t27aKk\npITKykqWL19OcnKy2WGJyRwOB+PGjSMqKoqJEyeaHY6pjhw54jxL7OTJk6xfv564uDiTozLHrFmz\n2L9/P3v37mXZsmX84Q9/4O233zY7LFOcOHGC48ePA/Dzzz+Tk5NT68pFn0oKwcHBzJs3j4EDBxIV\nFcWoUaMCdoVJamoqN910Ezt37qRdu3ZkZGSYHZJp8vPzeeedd9iwYYOzR0d2drbZYZni0KFD/OEP\nfyA2NpaEhASGDh1K//79zQ7LEgJ5+vnw4cPcfPPNzr8XQ4YMYcCAATU+1qeWpIqIiGf51EhBREQ8\nS0lBRESclBRERMRJSUFERJyUFERExElJQUREnJQUxK95+riL8PBwfvzxxwvuz8vL48svv6zxOVlZ\nWQF97LtYmymd10S8xdMblmw2W43n6mzYsIHmzZvTu3fvC342dOjQgD/bX6xLIwUJOHv27GHQoEH0\n7NmTW265hR07dgAwduxYnnjiCfr06UNERAQrVqwAjFNHx48fT9euXRkwYAC3336782cAr732GvHx\n8XTv3p0dO3ZQUlLCG2+8wV//+lfi4uL4/PPPz7n+W2+9xWOPPXbRa56tpKSEyMhIHnjgAbp06cI9\n99xDTk4Offr0oXPnzmzZssVTvyoJQEoKEnD++Mc/8tprr/HVV18xd+5cxo8f7/xZWVkZ+fn5rFmz\nhilTpgDw4Ycf8t1337F9+3aWLl3Kl19+ec4I5JprrmHr1q08+uijvPjii4SHh/PII48wadIkCgsL\nL2hwc/7opaZrnm/Pnj1MnjyZb7/9lh07drB8+XLy8/N58cUXmTVrlrt+NSKaPpLAUlFRwZdffsnI\nkSOd91VWVgLGm/WZE1a7du3K4cOHAfj8889JSUkBcPYoONvw4cMB6NGjBx9++KHzfldOkKntmufr\n0KED3bp1A6Bbt24kJiYCEB0dTUlJSZ3XEXGVkoIElNOnT3PFFVdQWFhY48+bNm3q/PrMm/r5dYPz\n3+wvueQSAJo0aUJVVVW9Y6rpmuc7cw0w+iWceU5QUFCDrilSG00fSUC5/PLL6dChAx988AFgvAn/\n61//uuhz+vTpw4oVK3A4HBw+fJi8vLw6r9O8eXPnUcXn0xmUYmVKCuLXTpw4Qbt27Zy3//3f/+Xd\nd99l0aJFxMbGEh0dfU4z97Pn+898PWLECMLCwoiKiuK+++6jR48etGjR4oJr2Ww253OGDh3KypUr\niYuLIz8/v9bH1XbNml67tu8D+UhocT8dnS3igp9//pnLLruM//znPyQkJPDFF1/QqlUrs8MScTvV\nFERcMGTIEMrLy6msrGTatGlKCOK3NFIQEREn1RRERMRJSUFERJyUFERExElJQUREnJQURETESUlB\nRESc/j+iaB8fTwtkoQAAAABJRU5ErkJggg==\n",
       "text": [
        "<matplotlib.figure.Figure at 0x5d473b0>"
       ]
      }
     ],
     "prompt_number": 19
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 3.3.6,Page No.107"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "import numpy as np\n",
      "%matplotlib inline\n",
      "\n",
      "#Initilization of Variables\n",
      "\n",
      "L_BC=L_EB=L_AD=1 #m #Length of spans BC,ED,AD\n",
      "L_ED=2 #m #Length of ED\n",
      "w=60 #KNm #u.d.l\n",
      "F_C=20 #KN Pt Load at C\n",
      "L=5 #m #Span of beam \n",
      "\n",
      "#Calculations\n",
      "\n",
      "#Let R_A & R_B be the reactions at A & B respectively\n",
      "#R_A+R_B=80 \n",
      "#Taking Moment At A,we get M_A\n",
      "R_B=(F_C*L+1*2**-1*L_ED*w*(2*3**-1*L_ED+L_AD))*(L_AD+L_ED+L_EB)**-1\n",
      "R_A=80-R_B\n",
      "\n",
      "#Shear Force Calculations\n",
      "\n",
      "#S.F At C\n",
      "V_C1=0 #KN\n",
      "V_C2=-F_C #KN\n",
      "\n",
      "#S.F At B\n",
      "V_B1=V_C2 #KN\n",
      "V_B2=V_C2+R_B #KN \n",
      "\n",
      "#S.F aT E\n",
      "V_E=V_B2 #KN\n",
      "\n",
      "#S.F AT D\n",
      "V_D=V_B2-1*2**-1*L_ED*w #KN\n",
      "\n",
      "#S.F At A\n",
      "V_A1=V_D #KN \n",
      "V_A2=V_D+R_A\n",
      "\n",
      "#Bending Moment Calculations\n",
      "\n",
      "#B.M at C\n",
      "M_C=0 #KN.m\n",
      "\n",
      "#B.M at B\n",
      "M_B=F_C*L_BC #KN.m\n",
      "\n",
      "#B.M at E\n",
      "M_E=F_C*(L_EB+L_BC)-R_B*L_EB #KN.m\n",
      "\n",
      "#B.M at D\n",
      "M_D=F_C*(L_ED+L_EB+L_BC)-R_B*(L_ED+L_EB)+1*2**-1*L_ED*w*1*3**-1*L_ED #KN.m\n",
      "\n",
      "#B.M  at A\n",
      "M_A=1*2**-1*L_ED*w*(2*3**-1*L_ED+L_AD)-R_B*(L_AD+L_ED+L_EB)+F_C*L\n",
      "\n",
      "#Result\n",
      "print \"The Shear Force and Bending Moment Diagrams are the results\"\n",
      "\n",
      "#Plotting the Shear Force Diagram\n",
      "\n",
      "X1=[0,0,L_BC,L_BC,L_EB+L_BC,L_ED+L_EB+L_BC,L_AD+L_ED+L_EB+L_BC,L_ED+L_EB+L_BC+L_AD]\n",
      "Y1=[V_C1,V_C2,V_B1,V_B2,V_E,V_D,V_A1,V_A2]\n",
      "Z1=[0,0,0,0,0,0,0,0]\n",
      "plt.plot(X1,Y1,X1,Z1)\n",
      "plt.xlabel(\"Length x in m\")\n",
      "plt.ylabel(\"Shear Force in kN\")\n",
      "plt.show()\n",
      "\n",
      "#Plotting the Bendimg Moment Diagram\n",
      "\n",
      "X2=[0,L_BC,L_BC+L_EB,L_EB+L_BC+L_ED,L_EB+L_BC+L_ED+L_AD]\n",
      "Y2=[M_C,M_B,M_E,M_D,M_A]\n",
      "Z2=[0,0,0,0,0]\n",
      "plt.plot(X2,Y2,X2,Z2)\n",
      "plt.xlabel(\"Lenght in m\")\n",
      "plt.ylabel(\"Bending Moment in kN.m\")\n",
      "plt.show()"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The Shear Force and Bending Moment Diagrams are the results\n"
       ]
      },
      {
       "metadata": {},
       "output_type": "display_data",
       "png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEPCAYAAACtCNj2AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3X1UVHX+B/D3IA9JaGrqkODZ4QgIA+ZMqKRpggRmykSp\nbFRKFJurm63tWU2PbVGm4CnbzIf29KRkT2qchPwZi62NqaWWS/bApligPE4pkZESMnN/f0xcQRkY\nZGa+c2fer3PmNMzcy32fOTYf7vd7P/erkiRJAhEREQAf0QGIiMh9sCgQEZGMRYGIiGQsCkREJGNR\nICIiGYsCERHJhBcFs9kMvV6P1NRUAEBDQwOSk5MRGRmJlJQUNDY2Ck5IROQ9hBeFtWvXQqvVQqVS\nAQDy8vKQnJyM48ePIykpCXl5eYITEhF5D6FFobq6Grt27UJ2djbaeuiKioqQmZkJAMjMzMSOHTtE\nRiQi8ipCi8IjjzyCZ555Bj4+F2OYTCao1WoAgFqthslkEhWPiMjrCCsKO3fuxNChQ6HX62HrThsq\nlUoeViIiIufzFXXgTz75BEVFRdi1axeam5tx9uxZzJkzB2q1GvX19QgODkZdXR2GDh162b7h4eH4\n7rvvBKQmIlKuESNG4MSJE11vJLkBo9EozZgxQ5IkSVq8eLGUl5cnSZIk5ebmSo8++uhl27tJbOFO\nn5akq656QnQMt7Fs2RNSeLgkbd8uOol4TzzxhOgIboOfxUX2fHcKv/qoTdsw0dKlS7F7925ERkZi\nz549WLp0qeBkpBT+/sAbbwB/+QtQWys6DZEyCRs+am/y5MmYPHkyAGDQoEH48MMPBScipYqPB+bP\nB7KygA8+AHzc5s8eImXg/zIK5+eXIDqC20hISAAALF8ONDYCGzaIzSNS22dB/Cx6SvX7OJOiqFQq\nm1cseZMzZ4DISOt/qaPycmDCBGDvXkCrFZ2GyD3Y893JMwXySBERwMqVwD33AC0totMQKQeLAnms\nP/0JCA0FnnhCdBIi5WBRII+lUgGvvAJs3gzs2yc6DZEysCiQR1OrgZdeAubOBc6eFZ2GyP2xKJDH\nS00FUlKAhx8WnYTI/bEokFdYswY4cAB4913RSYjcG4sCeYWgIHY7E9mDRYG8RvtuZ4tFdBoi98Si\nQF6F3c5EXXOLex8RuYqfn3UYacIEICmJ3c5El+KZAnkddjsT2caiQF6J3c5EnWNRIK/EbmeizrEo\nkNditzPR5VgUyKux25moIxYF8nrsdia6iEWBvB67nYkuYlEgArudidqwKBD9jt3OROxoJpKx25mI\nZwpEHbDbmbydsKLQ3NyM+Ph46HQ6aLVaLFu2DADQ0NCA5ORkREZGIiUlBY2NjaIikpditzN5M5Uk\nSZKog587dw6BgYFobW3FxIkT8eyzz6KoqAiDBw/GkiVLsHr1avz000/Iy8vrsJ9KpYLA2G7jzBkg\nMtL6X3IskwnQ6YBt24BJk0SnIXIMe747hQ4fBQYGAgBaWlpgNpsxcOBAFBUVITMzEwCQmZmJHTt2\niIxIXordzuSthBYFi8UCnU4HtVqNxMRExMTEwGQyQa1WAwDUajVMJpPIiOTF2O1M3kjo1Uc+Pj74\n4osv8PPPP2Pq1Kn46KOPOryvUqmgUqk63TcnJ0d+npCQgISEBCcmJW+1Zg2g11u7nWfNEp2GqGeM\nRiOMRmOP9hE6p9DeihUr0LdvX7zyyiswGo0IDg5GXV0dEhMT8e2333bYlnMKVpxTcI1DhwCDASgt\nBYYNE52G6Mq59ZzC6dOn5SuLzp8/j927d0Ov18NgMCA/Px8AkJ+fj7S0NFERiQCw25m8i7Azha++\n+gqZmZmwWCywWCyYM2cOFi9ejIaGBqSnp+PUqVPQaDTYtm0bBgwY0DE0zxQA8EzBlS5cACZOBO69\nF1i4UHQaoitjz3en2wwf9QSLghWLgmuVl1u7nffuZbczKZNbDx8RKQ27nckbsCgQ9QC7ncnTsSgQ\n9QDXdiZPx6JA1EPsdiZPxqJAdAXY7UyeikWB6ApxbWfyRCwKRFeIazuTJ2JRIOoFdjuTp2FRIOol\nru1MnoRrNBP1Etd2Jk/CMwUiB2C3M3kKFgUiB2G3M3kCFgUiB2G3M3kCFgUiB2K3MykdiwKRg7Hb\nmZSMRYHICdjtTErFokDkBOx2JqViUSByEnY7kxKxKBA5EbudSWnY0UzkROx2JqXhmQKRk7HbmZSE\nRYHIBdjtTErBokDkAux2JqUQVhSqqqqQmJiImJgYxMbG4oUXXgAANDQ0IDk5GZGRkUhJSUFjY6Oo\niEQOxW5nUgKVJEmSiAPX19ejvr4eOp0OTU1NiIuLw44dO7Bp0yYMHjwYS5YswerVq/HTTz8hLy+v\nY2iVCoJiu5UzZ4DISOt/STnmzQN++8161kDkSvZ8dwo7UwgODoZOpwMABAUFITo6GjU1NSgqKkJm\nZiYAIDMzEzt27BAVkcgp2O1M7swt5hQqKytRWlqK+Ph4mEwmqNVqAIBarYbJZBKcjsix2O1M7kx4\nn0JTUxNmzpyJtWvXol+/fh3eU6lUUKlUne6Xk5MjP09ISEBCQoITUxI5Vvtu5w8+AHzc4s8z8jRG\noxFGo7FH+wibUwCACxcuYMaMGZg2bRoWLVoEAIiKioLRaERwcDDq6uqQmJiIb7/9tsN+nFOw4pyC\nsl24AEycCNx7L7Bwoeg05A3cek5BkiQ88MAD0Gq1ckEAAIPBgPz8fABAfn4+0tLSREUkcqq2buen\nngLKykSnIbISdqawf/9+3Hzzzbj++uvlIaLc3FyMGzcO6enpOHXqFDQaDbZt24YBAwZ0DM0zBQA8\nU/AUL70EvPgicOgQ4O8vOg15Mnu+O4UOH10pFgUrFgXPIEmAwQDExgK5uaLTkCdz6+EjIrJitzO5\nE5tXHyUmJnb6ettQz549e5yTiMgLte92PnoU6N9fdCLyVjaHjz7//POLG/1eCA4ePIjVq1dj6NCh\nHd53NQ4fWXH4yPOw25mcyWFzCkajEU8//TTOnz+Pxx57DNOmTXNYyCvBomDFouB5mpoAvd46tzBr\nlug05Gns+e7ssnmtuLgYK1euhL+/Px577DGbQ0pE5Bht3c4Gg3VhnmHDRCcib2PzTGHs2LH48ccf\n8fe//x3jx4+3btyuu/iGG25wTcJO8EzBimcKnisnB/j0U3Y7k2P1avio7bYRtm4z8dFHH/UuXS+w\nKFixKHgudjuTMzhkTsFiscDnkj9VmpubcdVVV/U+4RViUbBiUfBs5eXWIaS9e7m2MzmGQ/oUsrOz\nO/zc1NSE2267rXfJiKhbXNuZROi2KISEhGDBggUAgJ9++gkpKSmYM2eO04MREdd2Jtez65LUxYsX\n4+zZszhy5AiWLl2KWYKvlePwkRWHj7yDyQTodMC2bcCkSaLTkJL1ak6hoKCgwy9ZsWIFxo4di1tv\nvRUqlQp33nmn4xPbiUXBikXBe7z/PvDww+x2pt7pVVG47777Olx5JElSh583bdrkoJg9x6JgxaLg\nXdjtTL3Fu6R6OBYF78JuZ+ot3iWVyINwbWdyBRYFIgVpv7azxSI6DXkiFgUihVm+HGhsBDZsEJ2E\nPFGXN8QDrN3LBQUFqKysRGtrKwDruNTjjz/u9HBEdLm2tZ0nTACSktjtTI7VbVG4/fbbMWDAAMTF\nxQm9tQURXdS+25lrO5MjdXv1UWxsLL7++mtX5bELrz6y4tVH3o1rO1NPOeTqowkTJuDLL790WCgi\ncgyu7UzO0O2ZQnR0NE6cOIGwsDAEBARYd1KphBYKnilY8UyBAHY7k/0c0rxWWVnZ6esajeZKc/Ua\ni4IViwK1Ybcz2aNXw0dnz54FAPTv37/ThyPcf//9UKvVGDVqlPxaQ0MDkpOTERkZiZSUFDQ2Njrk\nWESebM0a4MAB4N13RSchpbNZFDIyMgBYl92Mi4vr8BgzZoxDDp6VlYXi4uIOr+Xl5SE5ORnHjx9H\nUlIS8vLyHHIsIk/GbmdyFOH3PqqsrERqaiq++uorAEBUVBT27t0LtVqN+vp6JCQk4Ntvv+2wD4eP\nrDh8RJfi2s7UFUXe+8hkMkGtVgMA1Go1TCaT4EREysFuZ+qtbpvXRFKpVB1u191eTk6O/DwhIQEJ\nCQmuCUXkxtjtTO0ZjUYYjcYe7eOWw0dGoxHBwcGoq6tDYmIih49s4PAR2fLSS8CLL7LbmTpy2PDR\nvn375EV1fvzxR1RUVPQ+nQ0GgwH5+fkAgPz8fKSlpTntWESeims705Xq9kwhJycHR44cwbFjx3D8\n+HHU1NQgPT0dBw4c6PXBMzIysHfvXpw+fRpqtRpPPfUUbr/9dqSnp+PUqVPQaDTYtm0bBgwY0DE0\nzxQA8EyBusa1nelSDmleGz16NEpLSxEXF4fS0lIAwPXXX8+OZjfAokDdYbczteeQ4aOAgAD4tLu2\n7ddff+19MiJyidRUICXFWhiI7NFtUZg9ezbmzZuHxsZGvPTSS0hKSkJ2drYrshGRA7DbmXrCrquP\nSkpKUFJSAgCYOnUqkpOTnR6sKxw+suLwEdnr0CHrbbZLS4Fhw0SnIVEcMqdQUVGB4OBg9O3bFwBw\n/vx5mEwm3hDPDbAoUE+w25kcMqcwa9Ys9OnT5+IOPj6YNWtW79MRkUux25ns0W1Hs9lshn+77peA\ngABcuHDBqaGIyPHY7Uz26PZMYfDgwSgsLJR/LiwsxODBg50aioico/3azi0totOQO+p2TuHEiRO4\n5557UPv7/XhDQ0OxZcsWhIeHuyRgZzinYMU5BboSXNvZe9nz3dnl8JHZbMa//vUvHDp0CL/88gsA\noF+/fo5LSEQu17a2s04H3HYbu52poy6Hj/r06YP9+/dDkiT069ePBYHIQ6jV1pvmzZ0L/L7IIhEA\nO4aP/vznP6O2thazZ89GYGCgdSeVCnfeeadLAnaGw0dWHD6i3uLazt6l18NHANDc3IxBgwZhz549\nHV4XWRSIyDHWrAH0emu3M680J8AN1lO4EjxTsOKZAjkCu529h0Oa16qqqnDHHXdgyJAhGDJkCGbO\nnInq6mqHhSQiseLjgfnzgawswGIRnYZE67YoZGVlwWAwoLa2FrW1tUhNTUVWVpYrshGRi7DbmdrY\ntZ7C0aNHu33NlTh8ZMXhI3Kk8nJrt/Pevex29lQOGT669tprsWXLFpjNZrS2tuKNN95gRzORB2K3\nMwF2FIXXXnsN27ZtQ3BwMK677jps375dXq+ZiDwL13Ymm8NHBw8exI033ujqPHbh8JEVh4/IGbi2\ns+fq1fDR/Pnz5efjx493XCoicmvsdvZudi210dzc7OwcRORGuLaz97LZ0Ww2m9HQ0ABJkuTn7Q0a\nNMjp4YhIHHY7eyebcwoajQYqlQoAIEmS/Bywjkt9//33rknYCc4pWHFOgZyN3c6exSFrNItQXFyM\nRYsWwWw2Izs7G48++miH91kUrFgUyBW4trPncEifgquZzWY89NBDKC4uRllZGd5++23873//Ex2L\nyGux29m7uF1ROHz4MMLDw6HRaODn54e77rqrw3KgRORabWs7P/UUUFYmOg05m9sVhZqaGgwfPlz+\nOTQ0FDU1NQITERG7nZXvhx/s267L9RRaW1sRExODY8eOOSKTXdpPaHe5XUK77TQAwpwSx/09DKie\nFB2CvEYaEMB1nZWjAkBlz3bpsij4+voiKioKJ0+exB/+8IcrD9YDISEhqKqqkn+uqqpCaGjoZdtJ\nRk40c6KZXI3dzsq1fz8waVL3f3R3u/JaQ0MDYmJiMG7cOFx99dUArH/NFxUV9T5lJ8aMGYPy8nJU\nVlZi2LBh2Lp1K95++22nHIuIeqZ9t/PRo0D//qITkaN1WxRWrFjhihwyX19frF+/HlOnToXZbMYD\nDzyA6Ohol2YgIttSU4GdO63dzlzb2fO4ZZ9Cd9inYMXhIxKlqcna7Zyby25npWgbPup1n8Knn36K\nsWPHIigoCH5+fvDx8UF/njMSebWgIOtlqn/5C1BbKzoNOVK3ReGhhx7CW2+9hYiICDQ3N+PVV1/F\nggULXJGNiNwY13b2THb1KURERMBsNqNPnz7IyspCcXGxs3MRkQIsXw78/DO7nT1JtxPNV199NX77\n7TeMHj0aS5YsQXBwMMfziQiAtdt5yxbr2s5JSVzb2RN0e6bw+uuvw2KxYP369QgMDER1dTUKCgpc\nkY2IFIDdzp7FrquPzp07h6qqKowcOdIVmbrFq4+sePURuQtJst5iOzbWekUSuR+HXX1UVFQEvV6P\nqVOnAgBKS0thMBgck5KIPIJKBbzyirVvYd8+0WmoN7otCjk5OTh06BAGDhwIANDr9UIX2CEi98S1\nnT1Dt0XBz88PAwYM6LgTV9ogok5wbWfl6/bbPSYmBm+++SZaW1tRXl6OhQsXYsKECa7IRkQKtGYN\ncOCAdW1nUp5ui8K6devwzTffICAgABkZGejfvz+ef/55V2QjIgVit7Oy8d5HCsarj8idcW1n92Lv\n1UfdNq8dO3YMzz77LCorK9Ha2grA+qW8Z88exyQlIo+0fLl1zYUNG4CFC0WnIXt1WxRmz56N+fPn\nIzs7G3369AFg/+poROS92O2sTN0WBT8/P8yfP98VWYjIw7Tvdj50CPD3F52IumNzpK+hoQFnzpxB\namoqNmzYgLq6OjQ0NMgPIiJ7/OlPQGgo8MQTopOQPWxONGs0GpvDRCqVSmgDGyearTjRTErBtZ3F\n6/VEc2VlpaMzEZGX4trOymFz+Oizzz5DXV2d/HN+fj4MBgMefvhhDh8RUY+x21kZbBaFBx98EAEB\nAQCAjz/+GEuXLkVmZib69++PBx980GUBichzsNvZ/dkcPrJYLBg0aBAAYOvWrZg3bx5mzpyJmTNn\nYvTo0S4LSESeo63b2WCwXqo6bJjoRHQpm2cKZrMZFy5cAAB8+OGHSExMlN9ra2IjIuopru3s3mwW\nhYyMDEyePBkGgwGBgYGY9PslA+Xl5ZfdNZWIqCe4trP7slkUli9fjjVr1iArKwv79++Xb5ctSRLW\nrVvXq4Nu374dMTEx6NOnD/773/92eC83NxcRERGIiopCSUlJr45DRO6prdv5qaeAsjLRaai9Ljua\nx48ff9lrkZGRvT7oqFGj8N5772HevHkdXi8rK8PWrVtRVlaGmpoa3HLLLTh+/DjXbyDyQOx2dk9C\nvm2joqI6LS6FhYXIyMiAn58fNBoNwsPDcfjwYQEJicgV2O3sftzqT/Da2lqEhobKP4eGhqKmpkZg\nIiJyJq7t7H66vSHelUpOTkZ9ff1lr69atQqpqal2/x5bt9rIycmRnyckJCAhIaGnEYnIDbDb2XmM\nRiOMRiMA4NQp+/ZxWlHYvXt3j/cJCQlBVVWV/HN1dTVCQkI63bZ9USAiZUtNBXbutHY7b94sOo3n\naP8H8/79wKZNT3a7j/Dho/Y3ZzIYDHjnnXfQ0tKCiooKlJeXY9y4cQLTEZGrsNvZPQgpCu+99x6G\nDx+OgwcPYvr06Zg2bRoAQKvVIj09HVqtFtOmTcPGjRu5oA+Rl+Dazu6BazQrGG+dTZ6Iazs7h723\nzuZHTkRuhd3OYjltopmI6EpwbWexeKZARG6nfbdzS4voNN6FRYGI3BK7ncVgUSAit8RuZzFYFIjI\nbbXvdj57VnQa78CiQERujWs7uxaLAhG5PXY7uw6LAhG5PXY7uw6LAhEpAtd2dg0WBSJSDHY7Ox87\nmolIMdjt7Hw8UyAiRWG3s3OxKBCR4rDb2XlYFIhIcdjt7DwsCkSkSOx2dg4WBSJSLHY7Ox6LAhEp\nGrudHYtFgYgUjd3OjsWiQESKx25nx2FRICKPwG5nx2BHMxF5BHY7OwbPFIjIY7DbufeEFIXFixcj\nOjoao0ePxp133omff/5Zfi83NxcRERGIiopCSUmJiHhEpGDsdu4dIUUhJSUF33zzDY4ePYrIyEjk\n5uYCAMrKyrB161aUlZWhuLgYCxYsgIWzRkTUA+x27h0hRSE5ORk+PtZDx8fHo7q6GgBQWFiIjIwM\n+Pn5QaPRIDw8HIcPHxYRkYgUjN3OV074RPNrr72GjIwMAEBtbS1uvPFG+b3Q0FDU1NR0ut+CBS6J\n59aam0UnIHJfqanAzp3A9OnAqFGi04hXV2ffdk4rCsnJyaivr7/s9VWrViE1NRUAsHLlSvj7++Pu\nu++2+XtUKlWnr588mSM/j4hIQGRkQq/yKpXBIDoBkfv65z+Bt97y3knn48eNKC839mgfpxWF3bt3\nd/n+5s2bsWvXLvznP/+RXwsJCUFVVZX8c3V1NUJCQjrd///+L8chOYnIcwUGAtnZolOIlPD7w0ql\nerLbPYTMKRQXF+OZZ55BYWEhrrrqKvl1g8GAd955By0tLaioqEB5eTnGjRsnIiIRkVcSMqewcOFC\ntLS0IDk5GQAwfvx4bNy4EVqtFunp6dBqtfD19cXGjRttDh8REZHjqSRJkkSH6CmVSgUFxiYiEsqe\n7052NBMRkYxFgYiIZCwKREQkY1EgIiIZiwIREclYFIiISMaiQEREMhYFIiKSsSgQEZGMRYGIiGQs\nCkREJGNRICIiGYsCERHJWBSIiEjGokBERDIWBSIikrEoEBGRjEWBiIhkLApERCRjUSAiIhmLAhER\nyVgUiIhIJqQo/OMf/8Do0aOh0+mQlJSEqqoq+b3c3FxEREQgKioKJSUlIuIREXktIUVhyZIlOHr0\nKL744gukpaXhySefBACUlZVh69atKCsrQ3FxMRYsWACLxSIiomIYjUbREdwGP4uL+FlcxM+iZ4QU\nhX79+snPm5qaMHjwYABAYWEhMjIy4OfnB41Gg/DwcBw+fFhERMXgP/iL+FlcxM/iIn4WPeMr6sDL\nly/Hli1b0LdvX/mLv7a2FjfeeKO8TWhoKGpqakRFJCLyOk47U0hOTsaoUaMue7z//vsAgJUrV+LU\nqVPIysrCokWLbP4elUrlrIhERHQpSbCTJ09KMTExkiRJUm5urpSbmyu/N3XqVOngwYOX7TNixAgJ\nAB988MEHHz14jBgxotvvZCHDR+Xl5YiIiABgnUfQ6/UAAIPBgLvvvht/+9vfUFNTg/LycowbN+6y\n/U+cOOHSvERE3kJIUVi2bBmOHTuGPn36YMSIEXjxxRcBAFqtFunp6dBqtfD19cXGjRs5fERE5EIq\nSZIk0SGIiMg9KK6jubi4GFFRUYiIiMDq1atFxxHm/vvvh1qtxqhRo0RHEa6qqgqJiYmIiYlBbGws\nXnjhBdGRhGlubkZ8fDx0Oh20Wi2WLVsmOpJwZrMZer0eqampoqMIpdFocP3110Ov13c6LN9GUWcK\nZrMZI0eOxIcffoiQkBCMHTsWb7/9NqKjo0VHc7l9+/YhKCgIc+fOxVdffSU6jlD19fWor6+HTqdD\nU1MT4uLisGPHDq/8dwEA586dQ2BgIFpbWzFx4kQ8++yzmDhxouhYwjz33HM4cuQIfvnlFxQVFYmO\nI0xYWBiOHDmCQYMGdbmdos4UDh8+jPDwcGg0Gvj5+eGuu+5CYWGh6FhCTJo0CQMHDhQdwy0EBwdD\np9MBAIKCghAdHY3a2lrBqcQJDAwEALS0tMBsNnf7JeDJqqursWvXLmRnZ0NBf/86jT2fgaKKQk1N\nDYYPHy7/zOY2ulRlZSVKS0sRHx8vOoowFosFOp0OarUaiYmJ0Gq1oiMJ88gjj+CZZ56Bj4+ivuqc\nQqVS4ZZbbsGYMWPw8ssv29xOUZ8Ur0SirjQ1NWHWrFlYu3YtgoKCRMcRxsfHB1988QWqq6vx8ccf\ne+1tHnbu3ImhQ4dCr9fzLAHAgQMHUFpaig8++AAbNmzAvn37Ot1OUUUhJCSkwx1Vq6qqEBoaKjAR\nuYsLFy5g5syZuPfee5GWliY6jlu45pprMH36dHz++eeiowjxySefoKioCGFhYcjIyMCePXswd+5c\n0bGEue666wAAQ4YMwR133GHzvnKKKgpjxoxBeXk5Kisr0dLSgq1bt8JgMIiORYJJkoQHHngAWq22\ny1umeIPTp0+jsbERAHD+/Hns3r1bbg71NqtWrUJVVRUqKirwzjvvYMqUKXj99ddFxxLi3Llz+OWX\nXwAAv/76K0pKSmxeuaioouDr64v169dj6tSp0Gq1+OMf/+i1V5hkZGRgwoQJOH78OIYPH45NmzaJ\njiTMgQMH8MYbb+Cjjz6CXq+HXq9HcXGx6FhC1NXVYcqUKdDpdIiPj0dqaiqSkpJEx3IL3jz8bDKZ\nMGnSJPnfxYwZM5CSktLptoq6JJWIiJxLUWcKRETkXCwKREQkY1EgIiIZiwIREclYFIiISMaiQERE\nMhYF8ijOvr3F888/j/Pnzzv8eO+//75X3wqe3Af7FMij9OvXT+7cdIawsDB8/vnnuPbaa11yPCJX\n45kCebzvvvsO06ZNw5gxY3DzzTfj2LFjAID77rsPf/3rX3HTTTdhxIgRKCgoAGC9y+iCBQsQHR2N\nlJQUTJ8+HQUFBVi3bh1qa2uRmJjYoUv4scceg06nw/jx4/HDDz9cdvxFixZhxYoVAIB///vfmDx5\n8mXbbN68GQsXLuwyV3uVlZWIiopCVlYWRo4ciXvuuQclJSW46aabEBkZic8++6z3Hxx5J4nIgwQF\nBV322pQpU6Ty8nJJkiTp4MGD0pQpUyRJkqTMzEwpPT1dkiRJKisrk8LDwyVJkqTt27dLt912myRJ\nklRfXy8NHDhQKigokCRJkjQajXTmzBn5d6tUKmnnzp2SJEnSkiVLpKeffvqy4587d06KiYmR9uzZ\nI40cOVL6/vvvL9tm8+bN0kMPPdRlrvYqKiokX19f6euvv5YsFosUFxcn3X///ZIkSVJhYaGUlpbW\n7WdF1Blf0UWJyJmamprw6aefYvbs2fJrLS0tAKz3wmm7o2p0dDRMJhMAYP/+/UhPTwcAeU0CW/z9\n/TF9+nQAQFxcHHbv3n3ZNn379sXLL7+MSZMmYe3atQgLC+sys61clwoLC0NMTAwAICYmBrfccgsA\nIDY2FpWVlV0eg8gWFgXyaBaLBQMGDEBpaWmn7/v7+8vPpd+n11QqVYf770tdTLv5+fnJz318fNDa\n2trpdl9377KBAAABP0lEQVR++SWGDBli96JQneW6VEBAQIdjt+3TVQ6i7nBOgTxa//79ERYWhnff\nfReA9Qv2yy+/7HKfm266CQUFBZAkCSaTCXv37pXf69evH86ePdujDCdPnsRzzz0nL3DS2X3suyo8\nRK7EokAe5dy5cxg+fLj8eP755/Hmm2/i1VdfhU6nQ2xsbIfF29vfTrnt+cyZMxEaGgqtVos5c+bg\nhhtuwDXXXAMAePDBB3HrrbfKE82X7n/p7ZklSUJ2djbWrFmD4OBgvPrqq8jOzpaHsGzta+v5pfvY\n+tmbbxNNvcNLUok68euvv+Lqq6/GmTNnEB8fj08++QRDhw4VHYvI6TinQNSJGTNmoLGxES0tLXj8\n8cdZEMhr8EyBiIhknFMgIiIZiwIREclYFIiISMaiQEREMhYFIiKSsSgQEZHs/wFJvODf5hYcpQAA\nAABJRU5ErkJggg==\n",
       "text": [
        "<matplotlib.figure.Figure at 0x5fc3ed0>"
       ]
      },
      {
       "metadata": {},
       "output_type": "display_data",
       "png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEPCAYAAACtCNj2AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XtUVPXaB/DvcNNjoKUEnuNIsECTWzHqEUurMbl4w7so\nlJVmZa4uvtZJrKNhvQqUWmLZMRPtttLTMQUzSUuwRBO8lYr3nEIQLxkJoi8C8/4xZ+9kYJhhZs/s\nPTPfz1qsmM3M7CeWax72/u7nt1V6vV4PIiIiAB5yF0BERMrBpkBERCI2BSIiErEpEBGRiE2BiIhE\nbApERCSSrSmUlZVh0KBBiIyMRFRUFLKzswEAly9fRnx8PHr27ImEhARUVVXJVSIRkdtRyTWnUFlZ\nicrKSsTExKCmpgZ9+vTBxo0bsXr1avj7++Oll15CVlYWfv/9d2RmZspRIhGR25HtSKFr166IiYkB\nAPj6+iI8PBzl5eXIy8vDo48+CgB49NFHsXHjRrlKJCJyO7IdKdxMp9PhgQcewOHDhxEUFITff/8d\nAKDX69G5c2fxMRER2ZfsQXNNTQ3GjRuHpUuXws/Pr8nPVCoVVCqVTJUREbkfLzl3fuPGDYwbNw6T\nJ0/G6NGjAQCBgYGorKxE165dce7cOQQEBDR7XVhYGE6fPu3ocomInFpoaChOnTrV6nNkO1LQ6/V4\n/PHHERERgZkzZ4rbR44ciQ8//BAA8OGHH4rN4manT5+GXq93y6/r1/WYMkWPu+/W45df9HjxxVfh\n76/HoUPy1yb316uvvip7DUr54u+Cv4uWviz5Y1q2plBUVIRPPvkEBQUF0Gg00Gg0yM/PR1paGrZt\n24aePXti+/btSEtLk6tExbl4EYiLA37/Hdi5EwgKAm65BXj1VeCZZwC97OkQETk72U4fDRw4EI2N\njS3+7JtvvnFwNcp3+DAwciSQkgK8/jrgcVM7nz4dWLUKWLvW8HMiImvJHjSTeZs3Aw8+CLz2GrBg\nQdOGoNVq4eUFvPsu8OKLwJUr8tUpN61WK3cJisHfxZ/4u2gbRVyS2lYqlQpOWHab6fXA4sXAkiXA\n+vXAPfe0/vwpU4AuXYBFixxTHxE5F0s+O9kUFOr//g94+mlg/34gL8+QH5hz4QIQGQkUFABRUfav\nkYiciyWfnTx9pEAtBcqWCAhg6ExEtmFTUJjDh4HYWOD++w2njHx92/b66dOBP/4whM5ERG3F00cK\nsnmzIRdYsgR4+GHr32fXLmDCBODoUaBjR+nqIyLnxkzBSbQ1ULYEQ2ciMsam4ASsCZQtwdCZiIwx\naFY4awNlSzB0JiJrsCnIxNZA2RIMnYmorXj6SAZSBcqWYOhMRAJmCgpjj0DZEgydiQhgU1AUewXK\nlmDoTEQAg2bFsGegbAmGzkRkKTYFO3NEoGwJhs5EZAmePrIjRwbKlmDoTOTemCnIRK5A2RIMnYnc\nF5uCDOQMlC3B0JnIfTFodjC5A2VLMHQmotbI2hSmTp2KwMBAREdHi9suX76M+Ph49OzZEwkJCaiq\nqpKxQsspJVC2BENnIjJF1qYwZcoU5OfnN9mWmZmJ+Ph4nDhxAoMHD0ZmZqZM1VmutXsoKxHv6UxE\npsieKeh0OiQlJeHQoUMAgF69emHHjh0IDAxEZWUltFotjh071uQ1SskUlBwoW4KhM5F7seSz08tB\ntVjs/PnzCAwMBAAEBgbi/PnzMlfUspsD5R9+UGZ+YE5WliF0fuwxhs5EZKDoEx0qlQoqlUruMppx\nhkDZEgydiciY4o4UhNNGXbt2xblz5xAQENDi89LT08XvtVottFqtQ+o7fBgYORJISQFef135+YE5\n06cDq1YZQueUFLmrISIpFRYWorCwsE2vUVym8NJLL6FLly6YPXs2MjMzUVVV1SxslitTUNqEslQ4\n6UzkHhQ/vJaSkoIdO3bg0qVLCAwMxGuvvYZRo0YhOTkZv/76K4KDg/Hvf/8bt956a5PXObopOHug\nbAmGzkSuT/FNwVqObApKn1CWijDpXFho+C8RuR5ONNvIVQJlSzB0JiKATcEkZ5pQlsr06UBVFSed\nidwZTx+1wFUDZUswdCZyXcwU2sgdAmVLMHQmck1sCm3gLoGyJRg6E7kmBs0WcqdA2RIMnYncl9s3\nBXcMlC3B0JnIPbn16SN3DpQtwdCZyLUwUzCBgbLlGDoTuQ42hRYwUG4bhs5EroNBsxEGym3H0JnI\nvbhNU2CgbD2GzkTuwy1OHzFQth1DZyLn5/aZAgNlaTF0JnJubt0UGChLj6EzkXNz26CZgbJ9MHQm\ncn0u1xQYKNsXQ2ci1+ZSp48YKDsGQ2ci5yTJ6aNNmzZBo9Hgtttug5+fH/z8/NBRYZ8Eer0h/Hzi\nCSA3lw3B3u69F0hIAF57Te5KiEhqZo8UQkNDsWHDBkRFRcHDwzFnm/Lz8zFz5kw0NDRg2rRpmD17\ndpOf39ztGCjLg6EzkfOR5EhBrVYjMjLSYQ2hoaEBzzzzDPLz81FaWorPPvsMR48ebfG5DJTlw9CZ\nyDV5mXtCVlYWhg4dikGDBsHHxweAodvMmjXLLgUVFxcjLCwMwcHBAIBJkyYhNzcX4eHhTZ53+DAw\nciSQkgK8/jrgoJ5FN5k+HVi1yhA6p6TIXQ0RScFsU5g7dy78/Pxw/fp11NXV2b2g8vJydO/eXXys\nVquxZ8+eZs978EEGynLz8gLefdcQOg8fztCZSMnq6y17ntmmcO7cOWzbts3WeiymUqkset7FCBUm\nfwBM/gBAMIAQe1ZFrXoS6PSW3EUQUTNnAOja9hKzTWHYsGH4+uuvkZiYaF1RbdStWzeUlZWJj8vK\nyqBWq5s9T1/IE9lKwdCZSPmGDgXyYf6PbrNXH/n6+qK2thY+Pj7w9vY2vEilwpUrV6Sp1Eh9fT3u\nvPNOfPvtt/jb3/6Gfv364bPPPmuSKUh15zWSzjvvGIYFt28HLDzYIyIH0emAvn2B336T4Oqjmpoa\nNDY24vr166iurkZ1dbXdGgIAeHl54Z133kFiYiIiIiIwceLEZiEzKQ8nnYmU64MPLM9fXWqimeS1\naxeQnGyYdPbzk7saIgKAGzeAO+4AvvkGiIy004J4Go3GquLItd17LxAfD8yfL3clRCTYvBkIDQUi\nIix7Po8USFIMnYmUZehQIDUVmDzZze+nQPJh6EykDELAXFYG/OUvNjaFkBDTF/6rVCr8/PPPNhVr\nCzYFZauvB/7+d+CllzjpTCSnf/4TqKkB3n7b8NimpnDp0qU/n6RSobGxEevWrcOiRYvQp08frF+/\nXrrK24hNQfkYOhPJ6+aAWcgTbFoQz9/fH/7+/ujcuTM2bdoErVaL3bt346uvvpK1IZBzYOhMJK+2\nBswCk0cKdXV1yMnJwVtvvYWBAwdizpw5CAsLk6JWm/FIwTkwdCaSz80Bs8Cm00dqtRpeXl54/vnn\nERQUJK5JpNfroVKpMHbsWOmqbyM2BefB0JnI8YwDZoFNTeGxxx4T36Qlq1evtqpYKbApOA+GzkSO\nZxwwCyS5JPX69eto3759k22//fYbunTpYl21EmBTcC4MnYkcp6WAWSDJndfGjh2LGzduiI/PnTuH\n+Ph466olt8TQmchxrA2YBWabwpgxY5CcnIyGhgbodDokJiYiMzPTur2R28rKAj78EDhyRO5KiFzb\nihXAk09a/3qLJprfeecd5Ofn45dffsG//vUvDBgwwPo9SoCnj5wTQ2ci+zIVMAtsyhQWL17c5E0+\n+ugjREdHQ6PR2PUezZZgU3BODJ2J7MtUwCyw5LPT5J3Xqqurm1x5NGbMGKhUKtTU1FhXLbk94Z7O\nycnAiBEMnYmkdOMGkJNjCJhtwQXxyOGmTAG6dAEWLZK7EiLXsXEjsHgx8P33pp/DVVJJkTjpTCS9\nliaYjbEpkGIxdCaSjrmAWSDJnAKRPfCezkTSEe7B3FpDsJTZI4ULFy5g5cqV0Ol0qK+vN7xIpUJO\nTo7VO/3888+Rnp6OY8eOoaSkBL179xZ/lpGRgZycHHh6eiI7OxsJCQnNi+aRgkvgpDOR7VqbYDZm\n09VHglGjRuH+++9HfHw8PDw8xDe2RXR0NDZs2ICnnnqqyfbS0lKsW7cOpaWlKC8vR1xcHE6cOCHu\nl1zLzZPODJ2JrGPrBLMxs03h2rVryMrKkmZv/9WrV68Wt+fm5iIlJQXe3t4IDg5GWFgYiouL0b9/\nf0n3T8qRlWUIm6dMYehMZA1bJ5iNmf0TfMSIEdi8ebN0e2xFRUUF1Gq1+FitVqO8vNwh+yZ5BAQA\nr74KPPMMwDOCRG2j0wElJcD48dK9p9kjhbfffhsLFy6Ej48PvL29ARhOH125cqXV18XHx6OysrLZ\n9oULFyIpKcniAk2dqkpPTxe/12q10Gq1Fr8nKcv06cCqVYbQmZPORJYzFzAXFhaisLCwTe9ptilY\nO8G8bdu2Nr+mW7duKCsrEx+fPXsW3bp1a/G5NzcFcm6cdCZqO0smmI3/YJ5vwVLFJk8fHT16FACw\nf//+Fr+kcnMSPnLkSKxduxZ1dXU4c+YMTp48iX79+km2L1IuLq9N1DZSB8wCk5ekPvHEE1i5ciW0\nWm2Lp3AKCgqs3umGDRvw3HPP4dKlS+jUqRM0Gg22bNkCwHB6KScnB15eXli6dCkSExObF81LUl3S\nhQtAVBRQUMDQmcgcSyaYjXGimZwOJ52JzLN0gtkYJ5rJ6XDSmcg8KSeYjfFIgRSHk85EprVlgtkY\njxTIKTF0JjLNXgGzwGxTGDx4sEXbiKSUlQV89BHv6UxkTOoJZmMm5xSuXbuG2tpaXLx4EZcvXxa3\nX7lyhVPGZHcBAcC8eYZJZ4bORAbCBPMXX9hvHyabwooVK7B06VJUVFSgT58+4nY/Pz8888wz9quI\n6L846UzUlD0DZoHZoDk7OxvPPfec/SqwAoNm98HQmcjAloBZINmcwq5du5rcTwEAHnnkEeuqkgCb\ngnvhPZ2JLLsHszmSNIWHH34YP//8M2JiYuDp6SluX7ZsmfWV2YhNwb1w0pnIuglmY5I0hfDwcJSW\nltp8Yx0psSm4H046kzuzdoLZmCRzClFRUTh37pz1VRBJgJPO5M4cETALzB4paLVaHDx4EP369UO7\ndu0ML1KpkJeXZ//qTOCRgnti6EzuSIqAWSDJ6SPhBg03v5lKpcIDDzxgW3U2YFNwXwydyd1IETAL\nJLv6SKfT4dSpU4iLi0NtbS3q6+vRsWNH2yu0EpuC+2LoTO5GioBZIEmm8P7772PChAl46qmnABju\nhjZmzBjbqyOyws2Tzvy7gFydPe7BbI7ZpvDuu+9i586d4pFBz549ceHCBbsXRmQKQ2dyF44MmAVm\nm0K7du3EgBkA6uvrFXV5Krkf4Z7O//gHUF0tdzVE9iHcg9mei9+1xGxTeOCBB7BgwQLU1tZi27Zt\nmDBhApKSkhxRG5FJXF6bXJ29l8g2xWzQ3NDQgFWrVmHr1q0AgMTEREybNk3WowUGzQQwdCbXJmXA\nLFDsPZr/8Y9/4Msvv4SPjw9CQ0OxevVqdOrUCQCQkZGBnJwceHp6Ijs7GwkJCc2LZlOg/+KkM7ki\nqSaYjUly9dGmTZug0Whw2223wc/PD35+fjZfjpqQkIAjR47gxx9/RM+ePZGRkQEAKC0txbp161Ba\nWor8/HzMmDEDjY2NNu2LXBtDZ3JFcgTMArNNYebMmfjwww/x22+/obq6GtXV1bhy5YpNO42Pj4eH\nh2HXsbGxOHv2LAAgNzcXKSkp8Pb2RnBwMMLCwlBcXGzTvsi1MXQmVyNXwCww2xTUajUiIyPFD3Gp\n5eTkYNiwYQCAiooKqNXqJvvmXd7IHCF0fvVVuSshsp1cAbPA5J3XBFlZWRg6dCgGDRoEHx8fAIbz\nUrNmzWr1dfHx8aisrGy2feHCheLVSwsWLICPjw9SU1NNvo+pQDs9PV38XqvVQqvVmvk/IVeWlQX0\n72843H79dcBOf8MQ2Z2U92AuLCwUlyqylNmgOT4+Hn5+foiOjm5ytPCqjX+WrVmzBitXrsS3336L\n9u3bAwAyMzMBAGlpaQCAIUOGYP78+YiNjW1aNINmasHFi8C4cYC/P/DRR4Cvr9wVEbWNvQJmgSRX\nH0VFReHw4cOSFpafn48XXngBO3bsgL+/v7i9tLQUqampKC4uRnl5OeLi4nDq1KlmRwtsCmRKXZ0h\nfN6/H8jLA4KC5K6IyHL//CdQUwO8/bZ93l+Sq4+GDRuGr7/+WrKiAODZZ59FTU0N4uPjodFoMGPG\nDABAREQEkpOTERERgaFDh2L58uWcnqY28fEBVq0yXNvdvz+we7fcFRFZRu6AWWD2SMHX1xe1tbXw\n8fGBt7e34UUqlc1XINmCRwpkic2bDUttv/UW8NBDcldD1Dopl8g2RbHDa7ZiUyBLHTkCJCUBKSkM\noEnZ7DHBbEyyppCbm4vvvvtOvLmO3GsfsSlQWzCAJqWzd8AskCRTSEtLQ3Z2NiIjIxEeHo7s7GzM\nmTNHsiKJ7O322w23Mrz1VmDgQODXX+WuiKgpOSeYjZk9UoiOjsbBgwfh6ekJwLBAXkxMDA4dOuSQ\nAlvCIwWyhl4PLFliOG+7fj1wzz1yV0Qk7T2YzZHkSEGlUqGqqkp8XFVVxSuCyCmpVMALLwArVwKj\nRgGffip3RUTyTzAbMzvRPGfOHPTu3VucGN6xY4c4ZEbkjIYPNyy3nZQElJYygCZ5STnBLAWLguaK\nigqUlJRApVKhX79+6Nq1qyNqM4mnj0gKDKBJbo4KmAU2XX20f//+Jo+Fpwmnjnr37i1FjVZhUyCp\ncAKa5GTvCWZjNjUFDw8PREVFoUuXLi2+sKCgwPYKrcSmQFJiAE1ycGTALLDks9NkprBkyRJ8/vnn\n6NChAyZOnIgxY8bAz89P8iKJ5CYE0L16GQJoTkCTIygtYBaYzRROnz6NdevWYePGjbjjjjvwyiuv\nICYmxlH1tYhHCmQvnIAmR3HEBLMxSS5JDQ0NxahRo5CQkICSkhIcP35csgKJlCYyEtizx7D+zPjx\nhvO9RFLT6YCSEsO/MaUxeaRw+vRprF27Frm5uQgKCsLEiRMxYsQI/EUBI3c8UiB7YwBN9uTogFlg\nc9AcHR2N0aNHo2PHjk3e0JI7r9kTmwI5AgNosgc5AmaBTUHzvHnzxMtPa3gMTW6IATTZg1IDZgGX\nziayAANokoocAbOA91MgkhAnoMlWjp5gNibJ1UdEZMAluMlWSloi2xQ2BaI24D2gyVpKuQezOWZX\nSV28eHGTQw6VSoVOnTqhT58+Vg+xzZ07F3l5eVCpVOjSpQvWrFmD7t27AwAyMjKQk5MDT09PZGdn\nIyEhwap9ENkLA2iyhtIDZoHZTCE1NRV79+5FUlIS9Ho9Nm/ejOjoaPzyyy8YP348Zs+e3eadVldX\ni0tmLFu2DD/++CM++OADlJaWIjU1FSUlJSgvL0dcXBxOnDgBD6NUj5kCKQUDaLKUnAGzQJJMoays\nDPv378fixYuxZMkS7Nu3DxcuXMCOHTuwZs0aqwq7eQ2lmpoa+Pv7AzDcCzolJQXe3t4IDg5GWFgY\niouLrdoHkSNwAposoeQJZmNmm8LFixfh4+MjPvb29sb58+fRoUMHtG/f3uodv/LKKwgKCsKaNWvE\nez5XVFRArVaLz1Gr1SgvL7d6H0SOwACazHGGgFlgNlN46KGHEBsbi9GjR0Ov12PTpk1ITU3F1atX\nEdHKybH4+HhUVlY2275w4UIkJSVhwYIFWLBgATIzMzFz5kysXr26xfcxdevP9PR08XutViveGY5I\nDkIAvWSJIYDmBDQJhID5m28cv+/CwkIUFha26TUWzSmUlJSgqKgIKpUKAwYMQN++fa2tsZlff/0V\nw4YNw+HDh8XbfKalpQEAhgwZgvnz5yM2NrZp0cwUSME2bwamTGEATQYbNxqWSvn+e7krkXB4raGh\nAZWVlaivrxf/cg+yYYWwkydPokePHgAMQXNxcTE+/vhjMWguLi4Wg+ZTp041O1pgUyClYwBNAiUE\nzAJJmsKyZcswf/58BAQEwNPTU9x+6NAhqwsbP348jh8/Dk9PT4SGhuK9995DQEAAAMPppZycHHh5\neWHp0qVITExsXjSbAjkBTkCT3BPMxiRpCqGhoSguLjZ5W045sCmQs+AS3O5NriWyTZHkktSgoCBx\n6WwiahtOQLsvZ5lgNmb26qOQkBAMGjQIw4cPFy9Nlft+CkTOhBPQ7slZJpiNmW0KQUFBCAoKQl1d\nHerq6sSb7BBR2wwfDhQUGALo0lIG0K5uxQrnO0oAuHQ2kcMxgHZ9SguYBTYFzc8//zyWLl2KpKSk\nFt84Ly9PmiqtwKZAzo4BtGtTWsAssKkp7N27F3379jU5DSfnBDGbArkC3gPaNcl5D2ZzeOc1IifA\nCWjXoqQJZmOWfHaaDJqjo6NbfeOffvrJ+sqISMQA2rU4a8AsMHmkoNPpAADLly8HAEyePBl6vR6f\nfvopACArK8sxFbaARwrkihhAOz+lBswCSU4fxcTE4ODBg022aTQaHDhwwPYKrcSmQK6KAbRzU2rA\nLJBkolmv12Pnzp3i46KiIn4gE9kJJ6Cdl7NOMBszO7yWk5ODKVOm4I8//gAA3HrrrSbvfUBEtuME\ntHNy1glmYxZffSQ0hU6dOtm1IEvw9BG5Cy7B7TyUtES2KZJkCtevX8f69euh0+lQX18vvvG8efOk\nq7SN2BTInTCAVj6lB8wCSTKFUaNGIS8vD97e3vD19YWvry9uueUWyYokotbxHtDK50z3YDbH7JFC\nVFQUDh8+7Kh6LMIjBXJHnIBWJiVPMBuT5Ejh3nvv5aAakQIIAfTKlYYA+r8jQyQzVwmYBWaPFMLD\nw3Hq1CmEhISgXbt2hhfJPNHMIwVydwyglcMZAmaBJEGzMNlsLDg42Nq6bMamQMQAWgmcJWAWSHL6\nKDg4GGVlZSgoKEBwcDBuueUWyT6QFy9eDA8PD1y+fFnclpGRgR49eqBXr17YunWrJPshckUMoOXn\nSgGzwGxTSE9PxxtvvIGMjAwAQF1dHR5++GGbd1xWVoZt27bhjjvuELeVlpZi3bp1KC0tRX5+PmbM\nmIHGxkab90XkqjgBLR9XmWA2ZrYpbNiwAbm5ueJlqN26dUN1dbXNO541axbeeOONJttyc3ORkpIC\nb29vBAcHIywsDMXFxTbvi8iVMYCWh6sFzAKzTaFdu3bwuCnFunr1qs07zc3NhVqtxl133dVke0VF\nBdRqtfhYrVajvLzc5v0RuQNhCe65c4GXXwZ4kG1fzr5Etilm1z6aMGECnnrqKVRVVeH9999HTk4O\npk2bZvaN4+PjUVlZ2Wz7ggULkJGR0SQvaC2jUKlULW5PT08Xv9dqtbLeCY5IKSIjgT17DAH0uHHA\nxx8zgLYHnQ4oKQG++ELuSlpXWFho8u6Zpli09tHWrVvFD/HExETEx8dbVSAAHD58GIMHD0aHDh0A\nAGfPnkW3bt2wZ88ecaG9tLQ0AMCQIUMwf/58xMbGNi2aVx8RtYpLcNuX0pfINkXy23FevHgR/v7+\nJv96t0ZISAj27duHzp07o7S0FKmpqSguLkZ5eTni4uJw6tSpZvtjUyAyjxPQ9uFME8zGbLokdffu\n3dBqtRg7diwOHDiAqKgoREdHIzAwEFu2bJG0SEFERASSk5MRERGBoUOHYvny5ZI2ICJ3wgDaPlw1\nYBaYPFLo06cPMjIy8Mcff+CJJ55Afn4++vfvj2PHjmHSpEnN7sbmSDxSIGobYQJ60iTgf/+XE9C2\ncKYJZmM2nT66+Tac4eHhOHr0qPgz3o6TyPkIE9BdujCAtpazTTAbs+n00c2nbdq3by9dVUQkC2EC\n+rbbOAFtLVecYDZm8kjB09NTvELo2rVr+MtNv4Vr166JN9yRA48UiKzHANo6zhwwCyz57DQ5p9DQ\n0CB5QUQkP94D2jquHjALzA6vEZFrEiagk5IMQTQD6Na56gSzsTbNKSgFTx8RSYcBtHnOHjALJFk6\nm4hcGwNo89whYBawKRARl+BuhasukW0KmwIRAeAEtCnuEjALGDQTURMMoJtyl4BZwKCZiFrEANp1\nAmYBg2YishoDaPcKmAVsCkRkkjsH0O4WMAvYFIioVe4aQLtbwCxg0ExEFnG3ANrdAmYBg2YiahN3\nCKBdLWAWMGgmIskJAXTnzq4bQLtjwCxgUyCiNvPxMXxwPvKIYeltVwqg3TVgFrApEJFVVCpg1izg\n/fddK4B214BZIEtTSE9Ph1qthkajgUajwZYtW8SfZWRkoEePHujVqxe2bt0qR3lE1AZCAD13LvDy\ny0Bjo9wV2cZdA2aBLEHz/Pnz4efnh1mzZjXZXlpaitTUVJSUlKC8vBxxcXE4ceIEPIwucWDQTKQ8\nrhBAu2rALFB00NxSYbm5uUhJSYG3tzeCg4MRFhaG4uJiGaojorZyhQDanQNmgWxNYdmyZbj77rvx\n+OOPo6qqCgBQUVEBtVotPketVqO8vFyuEomojZw5gHb3gFlgt+G1+Ph4VFZWNtu+YMECPP3005g3\nbx4AYO7cuXjhhRewatWqFt9HpVK1uD09PV38XqvVQqvV2lwzEdlOCKDvvNO57gHtigFzYWEhCgsL\n2/Qa2YfXdDodkpKScOjQIWRmZgIA0tLSAABDhgzB/PnzERsb2+Q1zBSInMORI4YJ6EmTlD8BPXQo\nkJpqWOfJVSk2Uzh37pz4/YYNGxAdHQ0AGDlyJNauXYu6ujqcOXMGJ0+eRL9+/eQokYgkEBkJ7NkD\n7NxpCKFrauSuqGU6HVBSAowfL3cl8pNl7aPZs2fj4MGDUKlUCAkJwYoVKwAAERERSE5ORkREBLy8\nvLB8+XKTp4+IyDkIAfTTTxsC6Lw8IChI7qqaYsD8J9lPH1mDp4+InI9eb8gXFi8G/vMfQxCtBDdu\nAHfcYWhcrpQntESxp4+IyP0odQLaFQNmW3DpbCJyKKUtwe3uE8zGePqIiGShhAloV59gNsbTR0Sk\nWEqYgGbA3BybAhHJRs4JaE4wt4xNgYhkJVcAzYC5ZQyaiUgRHB1AM2BuGYNmIlIURwTQ7hYwCxg0\nE5HTcUSyPgBUAAAI10lEQVQAzYDZNDYFIlIcewbQDJhbx6ZARIpkrwCaAXPrGDQTkaJJHUAzYG4d\ng2YicgpSBNDuGjALGDQTkcuQIoBmwGwemwIROQ1bAmgGzJZhUyAip2JtAM2A2TIMmonIKbU1gGbA\nbBkGzUTk1CwJoN09YBYoOmhetmwZwsPDERUVhdmzZ4vbMzIy0KNHD/Tq1Qtbt26VqzwichKWBNAM\nmNtAL4Pt27fr4+Li9HV1dXq9Xq+/cOGCXq/X648cOaK/++679XV1dfozZ87oQ0ND9Q0NDc1eL1PZ\nilRQUCB3CYrB38Wf3PF30dio1y9erNf/7W96/a5df27ftq1A/9e/6vVHjshXm1JY8tkpy5HCe++9\nhzlz5sDb2xsAcPvttwMAcnNzkZKSAm9vbwQHByMsLAzFxcVylOg0CgsL5S5BMfi7+JM7/i5MBdAf\nfFDIgLkNZGkKJ0+exHfffYf+/ftDq9Vi7969AICKigqo1WrxeWq1GuXl5XKUSEROSgig584FXn4Z\n2LuXAXNb2O3qo/j4eFRWVjbbvmDBAtTX1+P333/HDz/8gJKSEiQnJ+Pnn39u8X1UKpW9SiQiFxUZ\nCezZYwigy8uB8ePlrsiJOOA0VjNDhgzRFxYWio9DQ0P1Fy9e1GdkZOgzMjLE7YmJifoffvih2etD\nQ0P1APjFL37xi19t+AoNDTX7+SzLnMLo0aOxfft2PPDAAzhx4gTq6urg7++PkSNHIjU1FbNmzUJ5\neTlOnjyJfv36NXv9qVOnZKiaiMj1ydIUpk6diqlTpyI6Oho+Pj746KOPAAARERFITk5GREQEvLy8\nsHz5cp4+IiJyIKccXiMiIvtwurWP8vPz0atXL/To0QNZWVlylyObqVOnIjAwENHR0XKXIruysjIM\nGjQIkZGRiIqKQnZ2ttwlyeb69euIjY1FTEwMIiIiMGfOHLlLkl1DQwM0Gg2SkpLkLkVWwcHBuOuu\nu6DRaFo8LS9wqiOFhoYG3Hnnnfjmm2/QrVs3/P3vf8dnn32G8PBwuUtzuO+//x6+vr545JFHcOjQ\nIbnLkVVlZSUqKysRExODmpoa9OnTBxs3bnTLfxcAUFtbiw4dOqC+vh4DBw7EokWLMHDgQLnLks2S\nJUuwb98+VFdXIy8vT+5yZBMSEoJ9+/ahc+fOrT7PqY4UiouLERYWhuDgYHh7e2PSpEnIzc2VuyxZ\n3HfffbjtttvkLkMRunbtipiYGACAr68vwsPDUVFRIXNV8unQoQMAoK6uDg0NDWY/BFzZ2bNn8dVX\nX2HatGlcLw2w6HfgVE2hvLwc3bt3Fx9zuI2M6XQ6HDhwALGxsXKXIpvGxkbExMQgMDAQgwYNQoQb\nj/L+z//8D95880142HL/ThehUqkQFxeHvn37YuXKlSaf51S/KV6JRK2pqanB+PHjsXTpUvhac69G\nF+Hh4YGDBw/i7Nmz+O6779xyyQsA+PLLLxEQEACNRsOjBABFRUU4cOAAtmzZgnfffRfff/99i89z\nqqbQrVs3lJWViY/LysqaLItB7uvGjRsYN24cHn74YYwePVruchShU6dOGD58uLiMjLvZtWsX8vLy\nEBISgpSUFGzfvh2PPPKI3GXJ5q9//SsAw1pzY8aMMbmunFM1hb59++LkyZPQ6XSoq6vDunXrMHLk\nSLnLIpnp9Xo8/vjjiIiIwMyZM+UuR1aXLl1CVVUVAODatWvYtm0bNBqNzFXJY+HChSgrK8OZM2ew\ndu1aPPjgg+JMlLupra1FdXU1AODq1avYunWrySsXnaopeHl54Z133kFiYiIiIiIwceJEt73CJCUl\nBffeey9OnDiB7t27Y/Xq1XKXJJuioiJ88sknKCgogEajgUajQX5+vtxlyeLcuXN48MEHERMTg9jY\nWCQlJWHw4MFyl6UI7nz6+fz587jvvvvEfxcjRoxAQkJCi891qktSiYjIvpzqSIGIiOyLTYGIiERs\nCkREJGJTICIiEZsCERGJ2BSIiEjEpkAuzd7LXQQHB+Py5cvNtu/YsQO7d+9u8TWbNm1y62XfSdlk\nufMakaPYe2BJpVK1uK5OQUEB/Pz8cM899zT7WVJSktuv7U/KxSMFcjunT5/G0KFD0bdvX9x///04\nfvw4AOCxxx7D888/jwEDBiA0NBTr168HYFh1dMaMGQgPD0dCQgKGDx8u/gwAli1bhj59+uCuu+7C\n8ePHodPpsGLFCrz11lvQaDTYuXNnk/2vWbMGzz77bKv7vJlOp0OvXr0wZcoU3HnnnXjooYewdetW\nDBgwAD179kRJSYm9flXkhtgUyO08+eSTWLZsGfbu3Ys333wTM2bMEH9WWVmJoqIifPnll0hLSwMA\nfPHFF/jll19w9OhRfPzxx9i9e3eTI5Dbb78d+/btw9NPP41FixYhODgY06dPx6xZs3DgwIFmN7gx\nPnppaZ/GTp8+jRdffBHHjh3D8ePHsW7dOhQVFWHRokVYuHChVL8aIp4+IvdSU1OD3bt3Y8KECeK2\nuro6AIYPa2GF1fDwcJw/fx4AsHPnTiQnJwOAeI+Cm40dOxYA0Lt3b3zxxRfidktWkDG1T2MhISGI\njIwEAERGRiIuLg4AEBUVBZ1OZ3Y/RJZiUyC30tjYiFtvvRUHDhxo8ec+Pj7i98KHunFuYPxh365d\nOwCAp6cn6uvr21xTS/s0JuwDMNwvQXiNh4eHVfskMoWnj8itdOzYESEhIfjPf/4DwPAh/NNPP7X6\nmgEDBmD9+vXQ6/U4f/48duzYYXY/fn5+4lLFxrgGJSkZmwK5tNraWnTv3l38evvtt/Hpp59i1apV\niImJQVRUVJObud98vl/4fty4cVCr1YiIiMDkyZPRu3dvdOrUqdm+VCqV+JqkpCRs2LABGo0GRUVF\nJp9nap8tvbepx+68JDRJj0tnE1ng6tWruOWWW/Dbb78hNjYWu3btQkBAgNxlEUmOmQKRBUaMGIGq\nqirU1dVh3rx5bAjksnikQEREImYKREQkYlMgIiIRmwIREYnYFIiISMSmQEREIjYFIiIS/T+6l7ug\nkeDZfAAAAABJRU5ErkJggg==\n",
       "text": [
        "<matplotlib.figure.Figure at 0x5d72c50>"
       ]
      }
     ],
     "prompt_number": 18
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 3.3.7,Page No.109"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "import numpy as np\n",
      "%matplotlib inline\n",
      "\n",
      "#Initilization of Variables\n",
      "\n",
      "L_BC=1 #m #Length of BC\n",
      "L_DB=2 #m #Length of DB\n",
      "L_AD=4 #m #Length 0f AD\n",
      "M_D=30 #KN.m #Moment at D\n",
      "w=45 #KN/m #u.d.l\n",
      "L=7 #m #Span of beam\n",
      "\n",
      "#Calculations\n",
      "\n",
      "#Let R_B & R_A be the Reactions at B & A respectively\n",
      "#R_B+R_A=180+P  ............(1)\n",
      "\n",
      "#Now Taking Moment about A,we get\n",
      "#R_B=7*P+390   ...............(2)\n",
      "\n",
      "#Since R_A & R_B Are Equal\n",
      "#2*R_B=180+P  ...................(3)\n",
      "\n",
      "#From equation 1 and 3 we get\n",
      "#3*(180+P)=7P+390\n",
      "#After simplifying Further above equation we get\n",
      "P=150*4**-1 #KN\n",
      "R_A=R_B=(180+P)*2**-1\n",
      "F_C=P\n",
      "\n",
      "#Shear Force Calculations\n",
      "\n",
      "#S.F At C\n",
      "V_C1=0 #KN\n",
      "V_C2=-P #KN\n",
      "\n",
      "#S.F At B\n",
      "V_B1=V_C2 #KN\n",
      "V_B2=V_C2+R_B #KN \n",
      "\n",
      "#S.F At D\n",
      "V_D=V_B2 #KN\n",
      "\n",
      "#S.F At A\n",
      "V_A1=V_D-w*L_AD #KN\n",
      "V_A2=V_A1+R_A #KN\n",
      "\n",
      "#Bending Moment Calculations\n",
      "\n",
      "#B.M at C\n",
      "M_C=0 #KN.m \n",
      "\n",
      "#B.M at B\n",
      "M_B=F_C*L_BC #KN.m\n",
      "\n",
      "#B.M at D\n",
      "M_D1=F_C*(L_BC+L_DB)-R_B*L_DB #KN.m\n",
      "M_D2=M_D1+M_D\n",
      "\n",
      "#B.M At A\n",
      "M_A=w*L_AD*L_AD*2**-1+M_D-R_B*(L_AD+L_DB)+P*L\n",
      "\n",
      "#Result\n",
      "print \"The Shear Force and Bending Moment Diagrams are the results\"\n",
      "\n",
      "#Plotting the Shear Force Diagram\n",
      "\n",
      "X1=[0,0,L_BC,L_BC,L_DB+L_BC,L_DB+L_BC+L_AD,L_DB+L_BC+L_AD]\n",
      "Y1=[V_C1,V_C2,V_B1,V_B2,V_D,V_A1,V_A2]\n",
      "Z1=[0,0,0,0,0,0,0]\n",
      "plt.plot(X1,Y1,X1,Z1)\n",
      "plt.xlabel(\"Length x in m\")\n",
      "plt.ylabel(\"Shear Force in kN\")\n",
      "plt.show()\n",
      "\n",
      "#Plotting the Bendimg Moment Diagram\n",
      "\n",
      "X2=[0,L_BC,L_DB+L_BC,L_DB+L_BC,L_AD+L_DB+L_BC]\n",
      "Y2=[M_C,M_B,M_D1,M_D2,M_A]\n",
      "Z2=[0,0,0,0,0]\n",
      "plt.plot(X2,Y2,X2,Z2)\n",
      "plt.xlabel(\"Lenght in m\")\n",
      "plt.ylabel(\"Bending Moment in kN.m\")\n",
      "plt.show()"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The Shear Force and Bending Moment Diagrams are the results\n"
       ]
      },
      {
       "metadata": {},
       "output_type": "display_data",
       "png": "iVBORw0KGgoAAAANSUhEUgAAAYwAAAEPCAYAAABRHfM8AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3X9c1fWhx/HXAYlNkcQNUYGJV1CEKEHz50MHmj+YgZLK\nQuevIr362Ky7e1de7x6bM0u709m0uDOvqdlKK+ePfujUFFMn2JRuK5qSQRcRzTKvhhkC3/vHt840\nhXNAOJ9z4P18PHjscH5w3jo7b77fz+f7+Tgsy7IQERFxwc90ABER8Q0qDBERcYsKQ0RE3KLCEBER\nt6gwRETELSoMERFxi9HCuO+++wgLCyMhIcF537lz5xg+fDjdu3dnxIgRnD9/3vnYokWLiImJITY2\nlp07d5qILCLSYhktjOnTp7Njx45r7lu8eDHDhw/n+PHjDBs2jMWLFwNQWFjIxo0bKSwsZMeOHcye\nPZuamhoTsUVEWiSjhTF48GBCQkKuuW/btm1MnToVgKlTp7JlyxYAtm7dSlZWFgEBAURFRREdHc3h\nw4c9nllEpKXyujGMM2fOEBYWBkBYWBhnzpwB4NSpU0RERDifFxERQVlZmZGMIiItkdcVxtUcDgcO\nh6POx0VExDNamQ7wbWFhYZw+fZqOHTtSXl5Ohw4dAAgPD6e0tNT5vJMnTxIeHn7d66Ojozlx4oTH\n8oqINAfdunXjww8/rPM5XneEkZ6ezrp16wBYt24dY8eOdd6/YcMGKisrKS4upqioiL59+173+hMn\nTmBZls9+/frXvzaeoSVmV37zX8pv9sudX7SNHmFkZWWxb98+Pv30UyIjI1mwYAFz584lMzOT1atX\nExUVxUsvvQRAXFwcmZmZxMXF0apVK3JycnRKSkTEg4wWxosvvnjD+3fv3n3D++fNm8e8efOaMpKI\niNTC605JtXTJycmmIzSYL2cH5TdN+b2fw7KsZrWBksPhoJn9kUREmpw7n506whAREbeoMERExC0q\nDBERcYsKQ0RE3KLCEBERt6gwRETELSoMERFxiwpDRETcosIQERG3qDBERMQtKgwREXGLCkNERNyi\nwhAREbeoMERExC0qDBERcYsKQ0RE3KLCEBERt6gwRETELa1MB5B/OHECTp82naLlCguD6GjTKUS8\nl/b09iK33w7+/tC6tekkLdPx4/DYYzBjhukkIp7nzmenjjC8SHU1vPgixMebTtIyFRXB3XdDYSEs\nXWqXt4j8g8YwRL4WEwN5efDee5CeDhcumE4k4l1UGCJXCQmB7dvhBz+AQYOgpMR0IhHvocIQ+ZaA\nAMjJgQcegAED4OBB04lEvIMKQ+QGHA6YMweefRYyMmD9etOJRMzToLdIHVJTYe9eSEuDv/8dHn0U\n/PRrlrRQ+qcv4kJ8POTnw759kJkJFRWmE4mYocIQcUNoKLz5JrRpA0OGQFmZ6UQinqfCEHFTYCCs\nXQsTJkD//nDkiOlEIp6lwhCpB4cD5s6F5cth1CjYtMl0IhHP0aC3SANkZECXLjBmjD0YPm+eXSYi\nzZmOMEQaKCnJHgzfsgWmTIHLl00nEmlaKgyRm9C5sz176quvYNgw+OQT04lEmo4KQ+QmtW4NGzbY\nhdGvH/ztb6YTiTQNrx3DiIqKIjg4GH9/fwICAjh8+DDnzp3jxz/+MR9//DFRUVG89NJLtGvXznRU\nEfz8YMEC6NEDhg61Z1ONHm06lUjj8tojDIfDQW5uLgUFBRw+fBiAxYsXM3z4cI4fP86wYcNYvHix\n4ZQi15o0CbZts9ehWrYMfHRrFpEb8trCAK7bzGPbtm1MnToVgKlTp7JlyxYTsUTqNGAAHDoEa9bA\nzJlw5YrpRCKNw2sLw+FwcNddd9GnTx9WrVoFwJkzZwgLCwMgLCyMM2fOmIwoUqsuXexVbsvLYeRI\nOHfOdCKRm+e1YxgHDx6kU6dOnD17luHDhxMbG3vN4w6HA0ctE9/nz5/vvJ2cnExycnITJhW5sbZt\n7Sm3jzxiXxn+2mvQvbvpVCK23NxccnNz6/Uan9jT+ze/+Q1BQUGsWrWK3NxcOnbsSHl5OSkpKfz9\n73+/5rm+vKd3fDy89JK2aG2O/vu/4T/+w96Cd+hQ02lErufOZ6dXnpK6dOkSFy9eBKCiooKdO3eS\nkJBAeno669atA2DdunWMHTvWZEwRt2Vn21Nvs7LgmWdMpxFpGK88JXXmzBkyMjIAqKqqYtKkSYwY\nMYI+ffqQmZnJ6tWrndNqRXxFSgocOAB33w2FhbB0Kfj7m04l4j6fOCVVHzolJd7u88/tFW8DA+1T\nVMHBphOJ+PApKZHmLCQEtm+HH/wABg2CkhLTiUTco8IQMSAgAHJy7Av8Bgywp+CKeDsVhoghDgfM\nmQPPPmsvl75+velEInXzykFvkZYkNRX27oW0NHtvjUcftdemEvE2+mcp4gXi4+29Nfbtg8xMqKgw\nnUjkeioMES8RGgpvvglt2sCQIVBWZjqRyLVUGCJeJDDQXhp9wgR7OZEjR0wnEvkHFYaIl3E4YO5c\nWL4cRo2CV14xnUjEpkFvES+VkWGvejtmDBw7BvPm2WUiYoqOMES8WFKSPRi+ZQtMmQKXL5tOJC2Z\nCkPEy3XubM+e+uore9/wTz4xnUhaKhWGiA9o3dpe7XbYMOjXD/72N9OJpCVSYYj4CD8/WLAAFi60\n99R4/XXTiaSlUWGI+JhJk2DbNnsdqmXLwEcXZxYfpMIQ8UEDBsChQ7BmDcycCVeumE4kLYEKQ8RH\ndelir3JbXg4jR8K5c6YTSXOnwhDxYW3b2lNuk5LsK8OPHzedSJozFYaIj/P3hyVL4OGHYfBg2LPH\ndCJprlQYIs1EdrY99TYrC555xnQaaY5UGCLNSEoKHDgAS5fCQw9BdbXpRNKc1LqWVEpKyg3vd3y9\nmM0eHfeKeKWYGMjLs1e8TU+HF1+E4GDTqaQ5qLUwfvvb3zpvf1MSeXl5PPHEE3To0KHpk4lIg4WE\nwPbt9hawgwbBq69CVJTpVOLrai2MPn36OG/n5uaycOFCvvzyS1auXElqaqpHwolIwwUEQE4OrFhh\nX7fxyit2eYg0VJ3Lm+/YsYPHHnuMW265hV/+8pe1nqYSEe/kcNhHGTEx9nLpS5fC5MmmU4mvqrUw\n7rzzTs6ePcu//du/MWDAAACOHj3qfDwpKanp04lIo0hNhb17IS0NPvjAXo/KT1NepJ4clnXjlWiS\nk5PtJ9SyY8vevXubLNTNcDgc1PJH8nrx8fDSS/b/ijSFs2ftI42wMHjuOXv/cBFw77Oz1sL4Rk1N\nDX7f+lXk8uXLfOc737n5hE1AhSFSt6++ghkz4L337EUMw8NNJxJv4M5np8uD0uzs7Gu+/+KLL/jR\nj350c8lExJjAQFi71p52278/HDliOpH4CpeFER4ezuzZswH4/PPPGTFiBJM1aibi0xwOmDsXli+H\nUaPsGVQirrg8JQXwi1/8ggsXLnDkyBHmzp3L+PHjPZGtQXRKSqR+CgrsC/z++Z9h3jy7TKTlualT\nUps2bWLTpk386U9/on///uTn55OYmIjD4eBPf/pTo4cVETMSEyE/3171dsoUuHzZdCLxVrUeYUyb\nNu2aGVKWZV3z/Zo1a5o+XQPoCEOkYS5dgmnToKwMNm8GLejQsjTKLClfo8IQabiaGpg/H9avt2dQ\nJSSYTiSe0iizpESk5fDzgwUL7Av7hg6F1183nUi8iQpDRK4zaZJ9hPHAA7BsGfjoQbs0Mp8rjB07\ndhAbG0tMTAxPPPGE6TgizdaAAXDoEKxZAzNnwpUrphOJaS7HMC5fvsymTZsoKSmhqqrKfpHDwa9+\n9SuPBLxadXU1PXr0YPfu3YSHh3PnnXfy4osv0rNnT+dzNIYh0rguXoSJE6Giwr5eo31704mkKTTK\nGMaYMWPYtm0bAQEBBAUFERQURBtDC9AcPnyY6OhooqKiCAgI4N5772Xr1q1Gsoi0FG3b2lNuk5Ls\nK8OPHzedSEypc3lzgLKyMv785z97IotLZWVlREZGOr+PiIggPz/fYCKRlsHfH5YsgdhYGDzY3sVv\n6FDTqcTTXB5hDBw4kHfffdcTWVyqbeVcEfGM7GzYsAGysuCZZ0ynkcbyyCPuPc/lEcb+/ftZs2YN\nXbt2JTAwELA/uE2USHh4OKWlpc7vS0tLiYiIuO55juSriiUK6Nr02RpFJtz2CqB1fcTbzYaZ5TDz\nN6aDSIMVAyX1e4nLQe+Skhv/xCgDGwRXVVXRo0cP3nzzTTp37kzfvn016C1iyOef2yve3nKLfdQR\nHGw6kTRUdDScOHETg94XLlwAIDg4+IZfJrRq1YqnnnqKkSNHEhcXx49//ONrykJEPCckBLZvhy5d\nYOBAKC42nUiaWq1HGKNHj+b1118nKirqurEDh8PBRx995JGA9aUjDBHPsixYsQIWLbKn3Q4aZDqR\n1Je7Rxi1jmG8/vWaALWdkhIRAXs59DlzICbG3v516VLQljnNk8tBbxERd6Smwt69kJYGH3xgr0fl\n53NrSUhd9H+niDSa+Hh7b4233rIHxCsqTCeSxqTCEJFGFRoKb74JQUEwZIi9v4Y0D24VxjfXYgCc\nPXuWYk2HEJE6BAbC2rX2UUb//nDkiOlE0hhcFsb8+fP5z//8TxYtWgRAZWUlP/nJT5o8mIj4NocD\n5s6F5cth1Ch7BpX4NpeD3ps3b6agoIDevXsD9tXWFy9ebPJgItI8ZGRAVBSkp8OxYzBvnl0m4ntc\nHmEEBgbid9VUhwqNYolIPSUm2oPhW7bAlClw+bLpRNIQLgtjwoQJzJw5k/Pnz/PMM88wbNgwsrOz\nPZFNRJqRzp1h3z746isYNgw++cR0Iqkvl2tJAezcuZOdO3cCMHLkSIYPH97kwRpKV3qLeLeaGpg/\nH9avt7eBTUgwnUhu+krvbxQXFzN48GBGjBgBwJdffklJSYmRxQdFxPf5+cGCBdCjh72nxtq1MHq0\n6VTiDpenpMaPH4+/v/8/XuDnx/jx45s0lIg0f5Mm2UcYDzwAy5bZa1KJd3NZGNXV1dxyyy3O7wMD\nA7mi3eBFpBEMGACHDsGaNTBzJuijxbu5LIzvf//71+ybvXXrVr7//e83aSgRaTm6dIGDB6G8HEaO\nhHPnTCeS2rgsjD/84Q88/vjjREZGEhkZyeLFi1m5cqUnsolIC9G2rT3lNinJvjL8+HHTieRG6hz0\nrq6u5g9/+AP5+fnOi/Xatm3rkWAi0rL4+8OSJRAbC4MHwwsv2NNvxXvUeYTh7+/PgQMHsCyLtm3b\nqixEpMllZ9tbvk6cCM88YzqNXM3ltNpevXoxZswYJkyYQOvWrQH7Wod77rmnycOJSMuUkgIHDsDd\nd0Nhob0p01WTNcUQl4Vx+fJl2rdvz549e665X4UhIk0pJgby8iAz096UacMGCA42naplc1kYa9eu\n9UAMEZHrhYTAG2/YW8AOHAivvgpdu5pO1XK5nCVVWlpKRkYGoaGhhIaGMm7cOE6ePOmJbCIiBARA\nTg7MmGGXxsGDphO1XC4LY/r06aSnp3Pq1ClOnTpFWloa06dP90Q2ERHAXg59zhx49ll7ufT1600n\naplcFsbZs2eZPn06AQEBBAQEMG3aND7RMpMiYkBqKuzdC7/+tb2vRk2N6UQti8vC+N73vsf69eup\nrq6mqqqK559/Xld6i4gx8fH23hpvvWVvAastejzHZWE8++yzvPTSS3Ts2JFOnTrx8ssvO/f3FhEx\nITQU3nwTgoJgyBAoKzOdqGWodZZUXl4e/fv3JyoqildffdWTmUREXAoMtJdGf+IJezmRLVvg652k\npYnUeoQxa9Ys5+0BAwZ4JIyISH04HDB3LixfDqNGwSuvmE7UvLm8DgPsi/dERLxVRgZERUF6Ohw7\nZg+IOxymUzU/tRZGdXU1586dw7Is5+2rtW/fvsnDNdSHH5pO0DBffWU6gYjvSky0B8PHjIG//x1W\nrYLvfMd0qual1j29o6KicHxd0ZZlOW+DvZbURx995JmE9eRwOOjWzTe37goIgD17oFMn00lEfNel\nSzBtmj0QvnkzdOhgOpH3c3dP71oLw1c5HK7/0CLSvNXUwPz59gV+27ZBQoLpRN7N3cJwOa1WRMTX\n+PnBggWwcCEMHQqvv246UfOgwhCRZmvSJPsI44EHYNky0MmHm6PCEJFmbcAAOHQI1qyBmTPhyhXT\niXxXnYVRVVVFjx49PJVFRKRJdOlir3JbXg4jR8K3Jn2Km+osjFatWhEbG8vHH3/sqTwiIk2ibVv7\navCkJPvK8OPHTSfyPS5PSZ07d474+HiGDh1KWloaaWlppKenN1mg+fPnExERQWJiIomJiWzfvt35\n2KJFi4iJiSE2NpadO3c2WQYRaZ78/WHJEnj4YRg82F6PStzn8krvRx991BM5nBwOBz//+c/5+c9/\nfs39hYWFbNy4kcLCQsrKyrjrrrs4fvw4fn4ahhGR+snOhm7d4N574dFH7c2ZxDWXhZGcnOyBGNe6\n0VzgrVu3kpWVRUBAAFFRUURHR3P48GH69+/v8Xwi4vtSUuDAAbj7bigshKVL7SMQqZ3LX88PHTrE\nnXfeSVBQEAEBAfj5+RHcxDuxr1ixgjvuuIP777+f8+fPA3Dq1CkiIiKcz4mIiKBMaxqLyE2IiYG8\nPHj/fUhLgwsXTCfybi4L46c//SkvvPACMTExXL58mdWrVzN79uybetPhw4eTkJBw3de2bduYNWsW\nxcXFvPPOO3Tq1Il//dd/rfXnOLS6mIjcpJAQeOMNeybVwIFQXGw6kfdya7XamJgYqqur8ff3Z/r0\n6fTq1YvFixc3+E137drl1vOys7NJS0sDIDw8nNLSUudjJ0+eJDw8/Iavmz9/vvN2cnKykdNqIuI7\nAgIgJwdWrLBL45VXYNAg06maVm5uLrm5uYD704xdriU1ZMgQdu3aRXZ2Np06daJjx46sW7eO//mf\n/7nZvDdUXl5Op69X31u2bBlvv/02L7zwAoWFhUycOJHDhw87B70//PDD644ytJaUiNyM7dth6lR7\nTGPyZNNpPMPdtaRcHmE899xz1NTU8NRTT7Fs2TJOnjzJpk2bGi3otz3yyCO88847OBwOunbtysqV\nKwGIi4sjMzOTuLg4WrVqRU5Ojk5JiUijS02FvXvtMY0PPrDXo9JkTJtbq9VeunSJ0tJSn7jqW0cY\nItIYzp61N2YKC4PnnoM2bUwnajqNtlrttm3bSExMZOTIkQAUFBQ06YV7IiLeIDTUvrAvKAiGDLH3\n12jpXBbG/Pnzyc/PJyQkBIDExESv3TxJRKQxBQbC2rUwYYK9nMiRI6YTmeWyMAICAmjXrt21L9IJ\nPRFpIRwOmDsXli+HUaPsGVQtlctB7/j4eP74xz9SVVVFUVERy5cvZ+DAgZ7IJiLiNTIyICoK0tPh\n2DGYN88uk5bE5aHCihUreP/99wkMDCQrK4vg4GCefPJJT2QTEfEqiYmQn2+vejt5Mly+bDqRZ2lP\nbxGRerp0CaZNswfCN2+GDh1MJ7o5jXYdxrFjx1iyZAklJSVUVVUB9ofynj17GiepiIiPad0aNmyA\n+fOhXz97G9iEBNOpmp7LI4zbb7+dWbNmkZSUhP/XSzk6HA569+7tkYD1pSMMEfGkF16Ahx6yt4Ad\nPdp0moZx9wjDZWH07t2bIz40l0yFISKedugQjBsHv/iFXR6+Nhh+04Vx7tw5LMtixYoVhIaGcs89\n9xAYGOh8vH379o2buJGoMETEhI8/tpcT6d8fnn7aXtDQV9x0YURFRdW6VpPD4fDai/dUGCJiysWL\nMHEiVFTY12t46e/V12m0U1K+RoUhIiZVV8Mjj9gD4a+9Bt27m07k2k2vJfX2229TXl7u/H7dunWk\np6czZ84czrm7eLqISAvj7w9LlsDDD8PgwfZ6VM1FrYUxY8YM55jFW2+9xdy5c5k6dSrBwcHM0I7p\nIiJ1ys62p95OnAjPPGM6TeOo9TqMmpoa58D2xo0bmTlzJuPGjWPcuHHccccdHgsoIuKrUlLgwAG4\n+24oLLQ3Zfr66gSfVOsRRnV1NVeuXAFg9+7dpKSkOB/75gI+ERGpW0wM5OXB++/bs6guXDCdqOFq\nLYysrCx++MMfkp6eTuvWrRk8eDAARUVF161eKyIitQsJgTfegC5d7D3Di4tNJ2qYOmdJHTp0iNOn\nTzNixAjafL3d1PHjx/niiy9ISkryWMj60CwpEfFWlgUrVsCiRfa020GDTCeyaVqtiIiX2r4dpk61\nxzQmTzadphEXHxQRkcaVmgp799pjGh98AAsXgi/sS+cDEUVEmp/4eHtvjf377S1gKypMJ3JNhSEi\nYkhoKOzeDUFBMGSIvb+GN1NhiIgYFBgIa9faRxn9+4M3Lw6uwhARMczhgLlzYflyGDXKnkHljTTo\nLSLiJTIyICoKxoyBY8dg3jzv2ltDRxgiIl4kMdG+MnzLFnvK7eXLphP9gwpDRMTLdO4M+/ZBZSUM\nGwaffGI6kU2FISLihVq3tle7HTYM+vWDv/3NdCIVhoiI1/LzgwUL4LHH7OJ4/XXDecy+vYiIuDJx\nImzdCg88AMuW2WtSmaDCEBHxAQMGwKFDsGYNzJwJX+8+4VEqDBERH9GlCxw8COXlMHIkeHq3bBWG\niIgPadvWnnKblGRfGX78uOfeW4UhIuJj/P1hyRJ4+GEYPBjefNMz76vCEBHxUdnZ9tTbiRNh5cqm\nfz8VhoiID0tJgQMH4He/g4cegurqpnsvI4Xx8ssvEx8fj7+/P0ePHr3msUWLFhETE0NsbCw7d+50\n3n/kyBESEhKIiYnhwQcf9HRkERGvFRNjLyfy/vv2pkwXLjTN+xgpjISEBDZv3syQIUOuub+wsJCN\nGzdSWFjIjh07mD17tnPLwFmzZrF69WqKioooKipix44dJqKLiHilkBB44w178cKBA6G4uPHfw0hh\nxMbG0r179+vu37p1K1lZWQQEBBAVFUV0dDT5+fmUl5dz8eJF+vbtC8CUKVPYsmWLp2OLiHi1gAB4\n+mn7Oo2BA+0puI3Jq8YwTp06RUREhPP7iIgIysrKrrs/PDycMm/fmkpExACHA372M3j2WXu59PXr\nG+9nN9l+GMOHD+f06dPX3f/444+TlpbWVG8LwPz58523k5OTSU5ObtL3ExHxNqmpsHevPabxwQew\ncKG9NtU3cnNzyc3NBdy/ALDJCmPXrl31fk14eDilpaXO70+ePElERATh4eGcPHnymvvDw8Nr/TlX\nF4aISEsVHw/5+XDPPfYWsM89B23a2I9d/cv088/D55//xuXPM35KyrpqFa309HQ2bNhAZWUlxcXF\nFBUV0bdvXzp27EhwcDD5+flYlsX69esZO3aswdQiIr4hNBR274agIBgyBG7mbL6Rwti8eTORkZHk\n5eUxevRoUlNTAYiLiyMzM5O4uDhSU1PJycnB8fX+hDk5OWRnZxMTE0N0dDSjRo0yEV1ExOcEBsLa\ntfZRRv/+cORIw36Ow7JMLZTbNBwOB83sjyQi0mg2b4YZM+C//gvGj7fvi46GEydcf3Y22RiGiIh4\nn4wM+1qNMWPg2DGYN8/916owRERamMRE+8rwMWPsGVSVle69zvigt4iIeF7nzrBvn10WV01OrZPG\nMEREWrCaGntcY/x415+dKgwREXHrs1OnpERExC0qDBERcYsKQ0RE3KLCEBERt6gwRETELSoMERFx\niwpDRETcosIQERG3qDBERMQtKgwREXGLCkNERNyiwhAREbeoMERExC0qDBERcYsKQ0RE3KLCEBER\nt6gwRETELSoMERFxiwpDRETcosIQERG3qDBERMQtKgwREXGLCkNERNyiwhAREbeoMERExC0qDBER\ncYsKQ0RE3KLCEBERt6gwRETELSoMERFxi5HCePnll4mPj8ff35+jR4867y8pKeG73/0uiYmJJCYm\nMnv2bOdjR44cISEhgZiYGB588EETsUVEWjQjhZGQkMDmzZsZMmTIdY9FR0dTUFBAQUEBOTk5zvtn\nzZrF6tWrKSoqoqioiB07dngyssfk5uaajtBgvpwdlN805fd+RgojNjaW7t27u/388vJyLl68SN++\nfQGYMmUKW7Zsaap4RvnyPzpfzg7Kb5ryez+vG8MoLi4mMTGR5ORkDhw4AEBZWRkRERHO54SHh1NW\nVmYqoohIi9SqqX7w8OHDOX369HX3P/7446Slpd3wNZ07d6a0tJSQkBCOHj3K2LFjef/995sqooiI\n1IdlUHJysnXkyBGXj586dcqKjY113v/CCy9YM2fOvOFrunXrZgH60pe+9KWvenx169bN5Wd2kx1h\nuMuyLOftTz/9lJCQEPz9/fnoo48oKirin/7pn2jXrh3BwcHk5+fTt29f1q9fz5w5c2748z788ENP\nRRcRaVGMjGFs3ryZyMhI8vLyGD16NKmpqQDs27ePO+64g8TERCZMmMDKlStp164dADk5OWRnZxMT\nE0N0dDSjRo0yEV1EpMVyWFf/ii8iIlILr5sl1VA7duwgNjaWmJgYnnjiCdNx6u2+++4jLCyMhIQE\n01HqrbS0lJSUFOLj47nttttYvny56Uj1cvnyZfr160evXr2Ii4vj3//9301HapDq6moSExNrnVTi\nzaKiorj99ttJTEx0Tp/3FefPn2f8+PH07NmTuLg48vLyTEdy27Fjx5wXSicmJnLrrbfW/d9vPcep\nvVJVVZXVrVs3q7i42KqsrLTuuOMOq7Cw0HSsennrrbeso0ePWrfddpvpKPVWXl5uFRQUWJZlWRcv\nXrS6d+/uc3//FRUVlmVZ1pUrV6x+/fpZ+/fvN5yo/pYuXWpNnDjRSktLMx2l3qKioqzPPvvMdIwG\nmTJlirV69WrLsux/P+fPnzecqGGqq6utjh07Wv/7v/9b63OaxRHG4cOHiY6OJioqioCAAO699162\nbt1qOla9DB48mJCQENMxGqRjx4706tULgKCgIHr27MmpU6cMp6qf1q1bA1BZWUl1dTXt27c3nKh+\nTp48yRtvvEF2dvY1E0l8iS/m/r//+z/279/PfffdB0CrVq249dZbDadqmN27d9OtWzciIyNrfU6z\nKIyysrJjFZu/AAAGPklEQVRr/pARERG6sM+QkpISCgoK6Nevn+ko9VJTU0OvXr0ICwsjJSWFuLg4\n05Hq5V/+5V/47W9/i5+fb/4n7XA4uOuuu+jTpw+rVq0yHcdtxcXFhIaGMn36dJKSknjggQe4dOmS\n6VgNsmHDBiZOnFjnc3zzX9e3OBwO0xEE+OKLLxg/fjy///3vCQoKMh2nXvz8/HjnnXc4efIkb731\nlk8t8/Daa6/RoUMHEhMTffK3dICDBw9SUFDA9u3befrpp9m/f7/pSG6pqqri6NGjzJ49m6NHj9Km\nTRsWL15sOla9VVZW8uqrrzJhwoQ6n9csCiM8PJzS0lLn96WlpdcsJSJN78qVK4wbN46f/OQnjB07\n1nScBrv11lsZPXo0f/3rX01Hcdtf/vIXtm3bRteuXcnKymLPnj1MmTLFdKx66dSpEwChoaFkZGRw\n+PBhw4ncExERQUREBHfeeScA48ePv2YFbl+xfft2evfuTWhoaJ3PaxaF0adPH4qKiigpKaGyspKN\nGzeSnp5uOlaLYVkW999/P3FxcTz00EOm49Tbp59+yvnz5wH48ssv2bVrF4mJiYZTue/xxx+ntLSU\n4uJiNmzYwNChQ3nuuedMx3LbpUuXuHjxIgAVFRXs3LnTZ2YLduzYkcjISI4fPw7Y4wDx8fGGU9Xf\niy++SFZWlsvnGb/SuzG0atWKp556ipEjR1JdXc39999Pz549Tceql6ysLPbt28dnn31GZGQkCxYs\nYPr06aZjueXgwYM8//zzzmmRAIsWLfKZiyvLy8uZOnUqNTU11NTUMHnyZIYNG2Y6VoP52inaM2fO\nkJGRAdineCZNmsSIESMMp3LfihUrmDRpEpWVlXTr1o01a9aYjlQvFRUV7N69262xI124JyIibmkW\np6RERKTpqTBERMQtKgwREXGLCkNERNyiwhAREbeoMERExC0qDGkRmnqpkieffJIvv/yy0d/v1Vdf\n9cnl+qV50nUY0iK0bdvWeTVxU+jatSt//etf+d73vueR9xMxQUcY0mKdOHGC1NRU+vTpw5AhQzh2\n7BgA06ZN48EHH2TQoEF069aNTZs2AfaKtrNnz6Znz56MGDGC0aNHs2nTJlasWMGpU6dISUm55grx\nX/7yl/Tq1YsBAwbwySefXPf+Dz30EI8++igAf/7zn/nhD3943XPWrl3Lz372szpzXa2kpITY2Fim\nT59Ojx49mDRpEjt37mTQoEF0796dt99+++b/4qTl8sC+HCLGBQUFXXff0KFDraKiIsuyLCsvL88a\nOnSoZVmWNXXqVCszM9OyLMsqLCy0oqOjLcuyrJdfftn60Y9+ZFmWZZ0+fdoKCQmxNm3aZFnW9RsA\nORwO67XXXrMsy7Iefvhha+HChde9/6VLl6z4+Hhrz549Vo8ePayPPvrouuesXbvW+ulPf1pnrqsV\nFxdbrVq1st577z2rpqbG6t27t3XfffdZlmVZW7dutcaOHevy70qkNs1iLSmR+vriiy84dOjQNcs5\nV1ZWAvZaTN+suNuzZ0/OnDkDwIEDB8jMzARw7ptRm1tuuYXRo0cD0Lt3b3bt2nXdc7773e+yatUq\nBg8ezO9//3u6du1aZ+bacn1b165dnQvgxcfHc9dddwFw2223UVJSUud7iNRFhSEtUk1NDe3ataOg\noOCGj99yyy3O29bXw3wOh+Oa/SasOob/AgICnLf9/Pyoqqq64fPeffddQkND3d7w60a5vi0wMPCa\n9/7mNXXlEHGHxjCkRQoODqZr16688sorgP3h++6779b5mkGDBrFp0yYsy+LMmTPs27fP+Vjbtm25\ncOFCvTJ8/PHH/O53v3NuHHSjPSDqKiURT1NhSItw6dIlIiMjnV9PPvkkf/zjH1m9ejW9evXitttu\nY9u2bc7nX71E+De3x40bR0REBHFxcUyePJmkpCTn/s0zZsxg1KhRzkHvb7/+20uOW5ZFdnY2S5cu\npWPHjqxevZrs7GznabHaXlvb7W+/prbvfW3pc/EumlYrUg8VFRW0adOGzz77jH79+vGXv/yFDh06\nmI4l4hEawxCph7vvvpvz589TWVnJr371K5WFtCg6whAREbdoDENERNyiwhAREbeoMERExC0qDBER\ncYsKQ0RE3KLCEBERt/w/DSM1oLe5H2sAAAAASUVORK5CYII=\n",
       "text": [
        "<matplotlib.figure.Figure at 0x5cb7750>"
       ]
      },
      {
       "metadata": {},
       "output_type": "display_data",
       "png": "iVBORw0KGgoAAAANSUhEUgAAAYwAAAEPCAYAAABRHfM8AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xtcz3f/x/HHt8SuEWZz2FVcWQcpWcnKLkZG0WhjDhPD\nZjab7ZodjMwO7LpSNn4j5rIZdh6XGTlGRuacs1mI6FpS5rAmOaT6/P54872c0rf6fvt8D6/77eZG\nX32/36eNXr1Pr7dB0zQNIYQQogxOegcQQghhG6RgCCGEMIkUDCGEECaRgiGEEMIkUjCEEEKYRAqG\nEEIIk1htwSguLiYoKIioqCgAzp49S3h4OD4+PkRERJCXl6dzQiGEcCxWWzCmTp2Kn58fBoMBgPj4\neMLDw0lPT6dTp07Ex8frnFAIIRyLVRaM48ePs2LFCoYOHcq1c4VLlixh8ODBAAwePJjFixfrGVEI\nIRyOVRaM119/nY8++ggnp//FO3nyJA0bNgSgYcOGnDx5Uq94QgjhkKyuYCxbtowGDRoQFBREaV1L\nDAaDcapKCCFE1aimd4Cbbd68mSVLlrBixQouXbrEuXPnGDhwIA0bNiQ3N5dGjRqRk5NDgwYNbvt8\nLy8vMjIyqji1EELYNk9PT44cOXLnT9KsWEpKita9e3dN0zTtrbfe0uLj4zVN07S4uDht9OjRt32O\nlf+RyvT+++/rHaHCbDm7pkl+vUl+fZnytdPqpqRudm3qKSYmhuTkZHx8fFi7di0xMTE6JzO/tWuh\nqEjvFEIIcXtWNyV1vQ4dOtChQwcA6tWrx5o1a3ROZDmffw7PPw+RkXonEUKI27P6EYYjWLQI3nsP\nvv0WduwIo7BQ70QVExYWpneESpH8+pL81s9wde7KbhgMhlJ3V1mjlBTo2xeSkqBVK4iIgKeeguee\n0zuZEMKRmPK1UwqGjnbvhi5dYP586NhRPbZ+PQwdCgcOQDWrnjAUQtgTU752ypSUTo4cgW7dYObM\n/xULgPbtoWFDWLBAv2xCCHE7MsLQQU4OtGsHo0fDCy/c+vsrV8KoUbB3LzhJSRdCVAEZYVihvDy1\nE2rIkNsXC4CuXaF6dViypGqzCSHEncgIowpdvKjWLIKCYMoUuFN3kx9/hLg4SE298+cJIYQ5yAjD\nihQVQb9+4O4OH39cdhHo0QMuXIDk5KrJJ4QQZZGCUQU0TU0/Xb4MX3xh2rqEkxOMGQOxsRaPJ4QQ\nJpGCUQXGjIG0NFi4UK1NmKpfPzh+HDZutFw2IYQwlRQMC5s8WS1eL18ONWuW77nVqqmdVDLKEEJY\nAykYFvTVV5CQAKtWwb33Vuw1Bg+G/fthxw7zZhNCiPKSgmEhy5ersxRJSdC4ccVfp0YNGDkSJkww\nXzYhhKgI2VZrAZs2Qc+esGwZhIRU/vUuXIAHHoCffgJ//8q/nhBC3Ey21epg/3548kn45hvzFAuA\nu++GESPUuQwhhNCLjDDMKDMTHnkEPvwQoqPN+9p//gmenrBtm/pZCCHMSUYYVej331Vr8lGjzF8s\nAOrUgZdegvh487+2EEKYQkYYZpCfrzrOPvYYfPCB5d7n9Gnw8VFNCSuzkC6EEDeT+zCqwOXLqk25\nlxf8+9+W7/s0ciRcuQJTp1r2fYQQjsVmp6SysrLo2LEj/v7+tGjRgoSEBADOnj1LeHg4Pj4+RERE\nkJeXp2vO4mJ4+mmoWxc++aRqmgS++SZ8/bWaAhNCiKpklSOM3NxccnNzCQwM5Pz58wQHB7N48WLm\nzp3Lfffdx6hRo5g4cSJ//PEH8TdN6lfVCEPTYPhwSE+HFSvUeYmqMny4WtOQXVNCCHOxmympHj16\n8Morr/DKK6+wfv16GjZsSG5uLmFhYRw8ePCGz62qgjFuHCxdCuvWQe3aFn+7G2RmQnCwurXvnnuq\n9r2FEPbJZqekrpeZmcnu3bsJDQ3l5MmTNGzYEICGDRty8uRJXTJ98gl89526Ga+qiwWAhwc8/jhM\nm1b17y2EcFxWXTDOnz9Pr169mDp1Kq6urjf8nsFgwKDDzULz5qmpoFWroEGDKn97o5gYmD4dzp/X\nL4MQwrFU0ztAaa5cuUKvXr0YOHAgPXr0ADBORTVq1IicnBwalPIVe9y4ccZfh4WFERYWZpZMq1er\nE9dr1kDTpmZ5yQpr1kxt5Z05U+2cEkKI8khJSSElJaVcz7HKNQxN0xg8eDD33nsvH3/8sfHxUaNG\nce+99zJ69Gji4+PJy8urskXv1FTo3l1dndqundlfvkL27lX3gx89CnfdpXcaIYQts9lF740bN9K+\nfXtatmxpnHaKi4sjJCSEvn378ttvv+Hh4cF//vMf6tate8NzLVEwDh6EsDCYNQuiosz60pUWFaWK\nxvDheicRQtgymy0YlWHugnH8OLRtq05wDx5stpc1m61b4amn1I4pFxe90wghbJVd7JLS05kzqj/U\nP/5hncUCoE0b8PZW3XGFEMKSZIRRioIC6Nz5f91nrdm6dTBsGBw4AM7OeqcRQtgiGWFU0JUr0Ls3\n+PrCxIl6pylbWBjcdx/88IPeSYQQ9kxGGDcpKYFBg1QH2oULoZrVbjy+0fLlMGYM7NkDTvJtgBCi\nnGSEUU6aBm+8Af/9rzqgZyvFAlRrdWdndS2sEEJYghSM68THw9q1qkfUX/6id5ryMRhg7FiIjVWF\nTwghzE0KxlWff67OWaxapdqV26Inn4Rz5+Cnn/ROIoSwR1IwgEWL4L33VLG4/36901Sck5Nax4iN\n1TuJEMIeOXzBSElRW1KXLVPnGWxddLRqf75pk95JhBD2xqELxu7d0LcvzJ8PrVrpncY8XFxg9GgZ\nZQghzM9ht9UeOQLt26sW4U8+WQXBqtClS+DpqRbv7aUQCiEsS7bVliInB7p0Ubfm2VuxANW5duRI\nmDBB7yRCCHvicCOMvDzo0EFNRY0dW4XBqlhBATzwgFqjad5c7zRCCGsn3WpvcvGiGlkEBcGUKers\ngj2LjYVDh+Crr/ROIoSwdlIwrlNUBL16Qc2aqrOrI7TPyMsDLy91+dMDD+idRghhzWQN4ypNgxde\ngMuX4YsvHKNYgDqAOGyYbTRQFEJYP4cYYcTEqLn8n35SIwxHcuqUuv/7l1/AzU3vNEIIayUjDGDy\nZFiyRHVzdbRiAVC/PjzzDEyapHcSIYStK7NgLF26lKCgIO655x5cXV1xdXWldu3aVZGt0r76ChIS\nVMuPe+/VO41+Ro6EL79Uow0hhKioMgvGa6+9xpdffsmZM2fIz88nPz+fc+fOVUW220pKSsLX1xdv\nb28m3mFyfvlyGDUKkpKgceMqDGiF/vpXtY14yhS9kwghbFmZaxgdOnRg7dq1OFvB3Z/FxcU0a9aM\nNWvW4ObmxkMPPcT3339P8+sOGhgMBjZu1OjZU/WHCgnRMbAVOXYMWreGjAzb7cYrhLAcU9Ywyrwi\naOLEiURGRtKxY0eqV69ufOE33njDPCnLITU1FS8vLzw8PADo168fiYmJNxQMUKe3v/lGisX1mjaF\n7t1VK5R33tE7jRDCFpU5JfXuu+9Sq1YtLl26xPnz5zl//jz5+flVke0W2dnZNL5ufsnd3Z3s7Oxb\nPm/KFIiIqMpktmHMGLWmc/683kmEENYkN9e0zytzhJGTk0NycnJl85iFwcSj2f0/NdD/06sfeABN\nLZXIBr0MrpP1DiGE0N0xILN8TymzYDz22GOsWrWKLl26VCyUGbm5uZGVlWX8OCsrC3d391s+T0ux\nq6MlZrV7t5qayshQTQqFEI7n0iU1PT1xOfTuDe+/D/ffX/Y35GUueteqVYsLFy5QvXp1XFxc1JMM\nBl12ShUVFdGsWTN++ukn/vrXvxISEnLbRW87O4todt26qaLx0kt6JxFCVKWSEvjuO9V4tVUriIsD\nX1/1e2ZZ9D5vRRPe1apVY/r06XTp0oXi4mKee+65Wxa8RdneeUfdzDd0qLpwSQhh/9asgbfeUjML\n334L7dqV/zUcojWIuNWjj8LgweqHEMJ+7d2rbuHMyID4eLWL9HbLwRZrDRIUFFSRpwkrMnasGo4W\nF+udRAhhCVlZqi1Qly4QFQVpaapjd2WudahQwdi9e3fF31FYhUcfVQf4fvxR7yRCCHPKy1MNVwMD\nVZeL9HR4+WXzTD/bffNBcXsGgxplxMaq9u9CCNt2+bI6g+bjA2fOwL598M9/gjlb/5W6htG0aemH\nFwwGA0ePHjVfCjOSNQzTaZr6LiQ2Vu2aEkLYnpIS+M9/4O23wd9frVP4+5f/dSq1S2r79u03vFBJ\nSQnz589n0qRJtGrVqvxphNW5fpTRrZv9X1krhL1Zt041WQWYMwfCwiz7fqVOSd13333cd9991KtX\nj6VLlxIWFsaWLVtYsWIFCxcutGwqUWV69YI//lB/8YQQtmH/fjUr8Nxz6vqCbdssXyzgDgWjsLCQ\nmTNn0rx5czZs2EBiYiLffvstfn5+lk8lqoyzs1ogi43VO4kQoizZ2er8VKdOEB4OBw7AU09V3bXT\npa5huLu7U61aNUaMGEGTJk2MfZw0TcNgMPDkk09WTcJykjWM8rtyBby94fvv4eGH9U4jhLjZuXPw\n4Yfw73/DCy+ocxXmvqbAlK+dpRaMZ555xvgitzN37tzKpbMQKRgVM2MGrFih7hARQliHwkL47DP4\n178gMhI++MByF8JVqmBcc+nSJe66qUvdmTNnuNdK7zyVglExly7BAw+oohEYqHcaIRybpsHChepK\nAi8vmDgRWra07Hua5aT3k08+yZUrV4wf5+TkEB4eXvl0wqrcdRe8+SZMmKB3EiEc24YNamp4wgQ1\nBbVypeWLhanKLBg9e/akb9++FBcXk5mZSZcuXYiPj6+KbKKKDRsGKSlw8KDeSYRwPAcPQo8eMHAg\n/OMfsGMHdO6sd6obmdR8cPr06SQlJfHf//6XmTNn0rZt26rIViEyJVU5//ynalL2xRd6JxHCMeTk\nwPjxqk3P6NGqjYced9VU6uDe5MmTb3iRrKwsHnzwQbZu3cq2bdt0udNbWN4rr6g502PH1D3gQgjL\nyM+HSZPURUZDhqgRRr16eqe6s1ILRn5+/g07pHr27InBYLCq+zGE+d1zj9q2d20LnxDCvK5cgdmz\n1aiic2fYuRM8PPROZRq5D0Pc4vff1S1c+/fDX/+qdxoh7IOmQWKiOijr7q6+KbOmLktm2VZra6Rg\nmMdrr6lT4FdnJoUQlbBli7rt7tw5+OgjiIiwvt5tUjBEhR0/rrbypafDfffpnUYI25SerrrIpqaq\nDSVPP62+EbNGFrtxT9g/d3fo3Vv11xdClM/vv6sNJG3bwkMPwaFD6jpkay0WpipzhPH7778za9Ys\nMjMzKSoqUk8yGJgzZ45FAr311lssW7aM6tWr4+npydy5c6lTpw4AcXFxzJkzB2dnZxISEoiIiLjl\n+TLCMJ+MDAgNVT9f/V8ghLiDggL4+GP1jdbAger6AFsZoZtlSurhhx+mffv2BAcH43S1JaLBYKBX\nr17mS3qd5ORkOnXqhJOTEzExMQDEx8eTlpZG//792b59O9nZ2XTu3Jn09HRjJuMfSAqGWQ0cCM2b\nq2G1EOL2iopg7lwYNw7at1fdnx94QO9U5VOpcxjXXLx4kYkTJ5otVFmubzsSGhpqvHsjMTGR6Oho\nXFxc8PDwwMvLi9TUVNq0aVNl2RzRmDHQsSOMGAE1a+qdRgjrommqYefo0dCgASxerKag7FWZaxjd\nu3dn+fLlVZHlFnPmzOGxxx4D4MSJE7i7uxt/z93dnezsbF1yORI/P2jXDmbN0juJENYlNVV9MxUT\no3Y+rVtn38UCTBhhTJkyhQkTJlC9enVcXFwANXQ5d+5chd80PDyc3NzcWx6fMGECUVFRAMTGxlK9\nenX69+9f6uuU1np93Lhxxl+HhYURVhVXUdmxt9+GJ56Al16CGjX0TiOEvjIy1NrExo3q8N3gwVCt\nzK+k1iclJYWUlJRyPccqt9V+8cUXzJo1i59++snYWv1aw8Nr6xpdu3Zl/PjxhIaG3vBcWcOwjMhI\n1Rht2DC9kwihj9On1b0U33wDr7+uzirZ0zRtpRa9Dxw4QPPmzdm1a9dtn9jKQkcUk5KSePPNN1m/\nfj33Xbe94Nqid2pqqnHR+8iRI7eMMqRgWMamTWoBPD3dNr+bEqKiLl6EqVNV36foaHj3XbVeYW8q\nVTCef/55Zs2aRVhY2G2nftatW2eelDfx9vamsLCQele7cD388MPMmDEDUFNWc+bMoVq1akydOpUu\nXbrc8nwpGJYTFqYunR84UO8kQlhecTF8/bUqEG3aqPspvL31TmU5ctJbmFVystottX9/1V06L0RV\n0zRYtQpGjYLatdWCtiPcdS8nvYVZde4MtWrBokV6JxHCMnbtgvBwtT7xz3/+7/Y7oUjBECYzGNTu\nkNhY9V2YEPYiMxMGDIBu3aBPHzWKfuIJ62sQqDcpGKJcoqJUP/+VK/VOIkTlnT2r7rIPDgYfHzh8\nWO0ElI0dt1dmwejUqZNJjwnH4OQkowxh+y5dUruemjWDCxfg11/h/ffVlKsoXakF4+LFi5w5c4ZT\np05x9uxZ44/MzEw5Ye3g+vSBU6dg/Xq9kwhRPiUl6hxFs2Zqq/iGDepmyUaN9E5mG0odeH366adM\nnTqVEydOEBwcbHzc1dWVV155pUrCCevk7KzaIcTGqq22QtiCNWvUJUZ33QXffqta3ojyKXNbbUJC\nAq+++mpV5ak02VZbNQoL1Z70//xHtUAXwlrt3auaA2ZkQHw8PPmkLGbfjtnOYWzevPmG+zAABg0a\nVPmEFiAFo+pMnw6rV8OSJXonEeJWWVnq0F1Skvr5hRfgajs8cRtmKRhPP/00R48eJTAwEOfrroua\nNm2aeVKamRSMqnPxour5v2qVus5VCGuQlwdxcfD55zB8uJqGql1b71TWzywFo3nz5qSlpZXaGdba\nSMGoWh99BDt3wrx5eicRju7yZZgxQxWLJ55Qlxm5uemdynaY5aR3ixYtyMnJMVsoYV9efBF++kk1\nJRRCDyUl8P336mbItWvVvRSzZkmxsIQyj6ecOnUKPz8/QkJCqHH1MgSDwcASmbgWgKuruuw+Ph4s\ndM27EKVat05NORkM6u+f7NqzrDKnpK5dsHH9cMVgMNChQweLh6sImZKqemfPgpcX7N4Nf/ub3mmE\nI9i/X23tTktTU1B9+khDzMoy2y6pzMxMjhw5QufOnblw4QJFRUXUttJVJCkY+hg9Gs6fh08+0TuJ\nsGfZ2epE9tKl6ibIF1+UWyDNxSxrGJ999hl9+vRh2NWr1o4fP07Pnj3Nk1DYjTfeUPPIstwlLOHc\nOXjnHbUbr359OHRItdqXYlG1yiwYn3zyCRs3bjSOKHx8fPj9998tHkzYloYN4emn4f/+T+8kwp4U\nFqrzPj4+anSxZ4+agqpbV+9kjqnMglGjRg3jYjdAUVGRzWyxFVXrrbdg9mw4c0bvJMLWaRosWAD+\n/rB8uTogOncuNG6sdzLHVmbB6NChA7GxsVy4cIHk5GT69OlDVFRUVWQTNqZxY9V2YepUvZMIW3bt\n0qK4ONUYcOVKORhqLcpc9C4uLmb27NmsXr0agC5dujB06FCrHWXIore+jhxR9x8fPSqna0X5HDig\ndj7t3asaW0ZHy86nqmTTd3pPnjyZt956i9OnT1OvXj0A4uLimDNnDs7OziQkJBAREXHL86Rg6G/A\nAAgIUP/4hShLTo46lf3jj+rvzMsvq46yomqZZZfU0qVLCQoK4p577sHV1RVXV1eLb6nNysoiOTmZ\nv123qT8tLY358+eTlpZGUlISw4cPp6SkxKI5RMWMGQNTpqiLaYQoTX6+2iLbooUajR46pG6/k2Jh\nvcosGK+99hpffvklZ86cIT8/n/z8fM6dO2fRUG+88QYffvjhDY8lJiYSHR2Ni4sLHh4eeHl5kZqa\natEcomJatFBz0J9/rncSYY2uXIGZM9XOp6NHVS+yjz6CqxMJwoqVWTDc3d3x9/fHqYomExMTE3F3\nd6flTatcJ06cwN3d/YZccvOf9Ro7Fj78UDWEEwLUzqfFi9V05Q8/qN1PX38NHh56JxOmKrOX1MSJ\nE4mMjKRjx45Ur14dUHNdb7zxRoXfNDw8nNzc3Fsej42NJS4uzrjADtxxTq20hfdx48YZfx0WFkaY\nNJipcq1bqy2RX30Fzz+vdxqhty1b1Lbrc+fULrqICLnESG8pKSnG1k+mKnPROzw8HFdXVwICAm4Y\nZbz//vsVCnkn+/fvp1OnTtx9992AOlXu5ubGtm3bmDt3LgAxV1dSu3btyvjx4wm96bo3WfS2Hj//\nDM8+q+amq5X5rYmwR+npak1r+3b45z/V4c7rrtURVsQsu6RatGjB/v37zRrMVE2bNmXnzp3Uq1eP\ntLQ0+vfvT2pqKtnZ2XTu3JkjR47cMsqQgmFd2reHYcPUzinhOE6ehA8+gPnz1cji1VfhL3/RO5W4\nE7PsknrsscdYtWqV2UKVx/XFwM/Pj759++Ln50dkZCQzZsyw2rMg4n/GjoUJE9SdBcL+FRSokYSf\nH1SvDgcPqsaUUizsQ5kjjFq1anHhwgWqV6+Oy9ULcQ0Gg8V3SlWUjDCsi6bBQw+pwiE9K+1XUZFq\n3TFunBpVxsaq63uF7bDpg3sVJQXD+ixaBP/6F+zYIQud9kbTYNkyNYpo0EBtj33oIb1TiYowW8FI\nTEzk559/Nl6cZM29pKRgWJ+SEtULaNIk6NpV7zTCXFJTYdQoOHVKbaF+7DH5hsCWmWUNIyYmhoSE\nBPz9/WnevDkJCQmMGTPGbCGF/XNyUpfdxMbqnUSYQ0YG9OunGk0OHKh6P3XrJsXCEZQ5wggICGDP\nnj04X90LV1xcTGBgIL/88kuVBCwvGWFYp6Ii8PVV9y63b693GlERp0+rqcVvvoHXX4fXXoOaNfVO\nJczFLCMMg8FAXl6e8eO8vDzZnSTKrVo11VhORhm258IF1Wrc1xeKi9U92mPHSrFwRGUepxozZgyt\nWrUynpZev3498fHxls4l7NCgQTB+vDrEJQuj1q+4WJ3Uf+891bJ+yxbw9tY7ldCTSYveJ06cYPv2\n7RgMBkJCQmjUqFFVZKsQmZKybgkJsHat6ikkrJOmQVKSWtCuU0ftfHr4Yb1TCUur1C6pXbt23fDx\ntU+7Nh3VqlUrc2Q0OykY1u3CBbU/PzlZNaET1mXnTlUosrNh4kR4/HFZzHYUlSoYTk5OtGjRgnvv\nvfe2T1y3bl3lE1qAFAzrN3Gi2lnz3Xd6JxHXZGaqdYl169QdFc89J/2/HE2lCsaUKVNYsGABdevW\n5amnnqJnz564urpaJKg5ScGwfufOgacnbN4sc+J6O3tWbUT44gvV7+nNN6FWLb1TCT2Y5eBeRkYG\n8+fPZ/Hixfztb39j7NixBAYGmjWoOUnBsA3vvw/Hj8Ps2XoncUyXLsH06Wq017u3+v9hxUuTogqY\nZVutp6cnTzzxBBEREWzfvp1Dhw6ZLaBwXK++qlqG/Pab3kkcS0mJOkfRrBls2gQbNsC//y3FQpim\n1BFGRkYG8+bNIzExkSZNmvDUU0/RvXt3/mLlbSdlhGE73npLfac7bZreSRzDmjXqv/ldd6mdT+3a\n6Z1IWJNKL3oHBATQo0cPateufcMLVvbGPUuSgmE7cnNVG+wDB6BhQ73T2K+9e9XOp6NHIT5etfSQ\nnU/iZqZ87Sx1H8R7771n3EJ7/vx58yYTAjUN0r8//N//qbl0YV6//QbvvgurVqmfX3gBrt5QIESF\nSHtzoavffoOgIDh8GOrV0zuNfcjLU608Pv8chg9X01BXJwmEKJVZFr2FsKQmTeCJJ9QJcFE5ly/D\nxx+Dj4/aLrtvn7r9ToqFMBcZYQjdpadD27Zqjt0GjvpYnZISdXf22LHg76/WKfz99U4lbI3cuCds\nRnS0mpoaNUrvJLZl3To15WQwqJ1PV3uEClFuZikYkydPvuGFDAYDderUITg42GIH+KZNm8aMGTNw\ndnamW7duTLy6IhoXF8ecOXNwdnYmISGBiIiIW54rBcM2/fILRESoUYaV79y2Cvv3q3bxaWlqvaJP\nH3VRlRAVValdUtfs3LmTHTt2EBUVhaZpLF++nICAAGbOnEnv3r0ZPXq02QKD6lG1ZMkS9u3bh4uL\nC6dOnQIgLS2N+fPnk5aWRnZ2Np07dyY9PR0n+VdiFwICICREnfx+5RW901iv7Gx1KnvpUnWL4cKF\nUKOG3qmEw9DK0K5dOy0/P9/4cX5+vvbII49oBQUFmq+vb1lPL7c+ffpoP/300y2PT5gwQYuPjzd+\n3KVLF23Lli23fJ4JfyRhpbZt07TGjTXt8mW9k1ifvDxNe/ttTatXT9NiYjTtjz/0TiTsjSlfO8v8\n9vzUqVNUr17d+LGLiwsnT57k7rvv5q677jJ7ATt8+DA///wzbdq0ISwsjB07dgDqTg53d3fj57m7\nu5OdnW329xf6CQlRLSu+/lrvJNajsFCdhPfxgRMnYM8eNQVVt67eyYQjKnNKasCAAYSGhtKjRw80\nTWPp0qX079+fgoIC/Pz8KvSm4eHh5Obm3vJ4bGwsRUVF/PHHH2zdupXt27fTt29fjh49etvXKe2q\n2HHjxhl/HRYWZrwtUFi/sWPh+edh8GDHbq+tafDDDzBmjOrom5wMLVvqnUrYk5SUFFJSUsr1HJN2\nSW3fvp1NmzZhMBho27YtrVu3rmjGMkVGRhITE0OHDh0A8PLyYuvWrXz++ecAxMTEANC1a1fGjx9P\naGjoDc+XRW/bpmnwyCPw8stq55Qj2rBB7XwqLIQPP4TOnfVOJByB2bbVFhcXk5ubS1FRkfG7+iZN\nmpgn5U0+/fRTTpw4wfjx40lPT6dz58789ttvpKWl0b9/f1JTU42L3keOHLlllCEFw/atXKm21+7d\n61g7fw4cUDuf9u5Vd1RERzvWn1/oyyy7pKZNm8b48eNp0KABzs7Oxsd/+eWXyie8jSFDhjBkyBAC\nAgKoXr06X331FQB+fn707dsXPz8/qlWrxowZM0qdkhK2rWtXeOcdWLIEevTQO43l5eTAuHHw44+q\nYMyfrzqzGAUlAAAUTklEQVTKCmFtyhxheHp6kpqaWupVrdZGRhj2YeFCdWI5NdV+O6vm58OkSeoi\noyFD1HqF9NMSejFLL6kmTZoY25sLUVV69oSCArXYa2+uXIGZM9XOp6NHYedOdUpbioWwdmVOSTVt\n2pSOHTvSrVs34/Zaa74PQ9gHJyd1MC02Vp0AtweaBosXq2mnxo1h+XJo1UrvVEKYrsyC0aRJE5o0\naUJhYSGFhYXGC5SEsLR+/dSp5o0bbf92uM2b1c6n/HzVmTciwn6n2oT9kuaDwqp99pm6+3vlSr2T\nVEx6ulqbSE2Ff/0Lnn4arts7IoTVqNS22hEjRjB16lSioqJu+8JLliwxT0ozk4JhXy5fBk9PNZVj\nweM/ZnfyJHzwgdrx9NZb8Oqr0lRRWLdKbasdOHAgAG+++aZ5UwlRDjVqwMiRMGGC2nZq7QoK1JWz\nU6bAoEFw8CDcd5/eqYQwD5mSElavoAAeeADWrrXei4GKimDuXHWeon17tVj/wAN6pxLCdJWakgoI\nCLjjC+/bt69y6SxECoZ9iouDX3+Fb77RO8mNNA2WLYPRo6FBA7U99qGH9E4lRPlVakpq6dKlAMyY\nMQNQU1SapvHtt9+aMaIQphk+XK1lZGSon61BaqpqYXLqlCoUjz0mO5+EfStzSiowMJA9e/bc8FhQ\nUBC7d++2aLCKkhGG/Xr3XcjNhVmz9M2RkaHOiGzaBOPHS2ddYR/MctJb0zQ2btxo/HjTpk3yBVno\nYsQI1TIkK0uf9z99WmUIDVWtxg8dgueek2IhHEeZI4ydO3fy7LPP8ueffwJQt25d5s6dSysrPaIq\nIwz79uabaoF56tSqe88LF9T7TZ6sOsi++65arxDCnpitvTlgLBh16tSpfDILkoJh306cgBYt1HZV\nS3/RLi6Gr76C996DNm3U1l5vb8u+pxB6MUvBuHTpEgsXLiQzM5OioiLjC7/33nvmS2pGUjDs3/Dh\nUKeO2jllCZoGSUlqQbtOHbWg/fDDlnkvIayFWQpGly5dqFu3LsHBwTfch2GtB/qkYNi/zEwIDoYj\nR+Cee8z72jt3qkKRnQ0TJ8Ljj8vOJ+EYzFIwWrRowf79+80azJKkYDiGZ55RB+PMNdAtLFR3Uqxd\nqxoeymK2cDRm2SX197//3WoP6QnHNWYMTJsG58+b5/XS01VX3PR0GDZMioUQt1NmwdiwYQPBwcH4\n+PgQEBBAQEAALVu2rIpsQpSqWTN49FF1EZG51Kqlfgghbq/M76NW2mpfaWH33n4bIiPh5ZelE6wQ\nVaHMEYaHhwdZWVmsW7cODw8PatasadE1gtTUVEJCQggKCuKhhx5i+/btxt+Li4vD29sbX19fVq9e\nbbEMwjY8+KBa/J4zR+8kQjgIrQzvv/++1r17d83b21vTNE07fvy49ve//72sp1VYhw4dtKSkJE3T\nNG3FihVaWFiYpmma9uuvv2oPPvigVlhYqB07dkzz9PTUiouLb3m+CX8kYUe2bNG0Jk00rbCwcq/z\nyy+a5u9vnkxC2CJTvnaWOcJYtGgRiYmJ1KxZEwA3Nzfy8/MtVsDuv/9+4yHBvLw83NzcAEhMTCQ6\nOhoXFxc8PDzw8vIiNTXVYjmEbWjTBry8rK+LrRD2qMw1jBo1auDk9L+6UlBQYNFA8fHxtGvXjpEj\nR1JSUsKWLVsAOHHiBG3atDF+nru7O9nZ2RbNImzD2LHw4ovqwiK5/lQIyymzYPTp04dhw4aRl5fH\nZ599xpw5cxg6dGil3jQ8PJzc3NxbHo+NjSUhIYGEhAR69uzJggULGDJkCMnJybd9HUMpJ6rGjRtn\n/HVYWBhhYWGVyiusW8eO6la7H36Ap57SO40QtiElJYWUlJRyPcekXlKrV682LjJ36dKF8PDwCgU0\nRe3atTl37hygOuXWrVuXP//8k/j4eABiYmIA6Nq1K+PHjyc0NPSG58vBPce0fLk6m7FnDziVOdF6\nq/37oV8/9bMQjsgsB/cAIiIimDRpEqNHj6Zz585mCVcaLy8v1q9fD8DatWvx8fEB4PHHH2fevHkU\nFhZy7NgxDh8+TEhIiEWzCNvx2GNqOmrZMr2TCGG/Sp2S2rJlC2PGjKFevXq8++67DBw4kNOnT1NS\nUsKXX35JZGSkRQJ99tlnvPzyy1y+fJm//OUvfPbZZwD4+fnRt29f/Pz8qFatGjNmzCh1Sko4HoNB\nncuIjYWoKOn/JIQllDolFRwcTFxcHH/++SfPP/88SUlJtGnThoMHD9KvX79bbuGzFjIl5biKi8Hf\nH6ZPh/IOhGVKSji6Sk1JFRcXExERQZ8+fbj//vuNO5R8fX3lO3thlZyd/zfKEEKYX6kF4/qicNdd\nd1VJGCEqKzpatT/ftEnvJELYn1LXMPbt24erqysAFy9eNP762sdCWCMXFxg9Wo0yVqzQO40Q9uWO\nU1L5+fnk5+dTVFRk/PW1j4WwVs88A3v3wq5deicRwr5UYMe6ENbtrrvgzTfVHdxCCPORgiHs0rBh\nsGEDHDigdxIh7IcUDGGXataEV1+FuDi9kwhhP+QiSmG3Xn4ZPD3h6FF1/7cQonJkhCHsVt26qovt\nxIl6JxHCPkjBEHbttddgwQKQTvhCVJ4UDGHX6teHwYNh0iS9kwhh+6RgCLs3ciR8+SWcOqV3EiFs\nmxQMYffc3KBvX5gyRe8kQtg2KRjCIYweDTNnQl6e3kmEsF1SMIRDaNoUunVTrc+FEBUjBUM4jDFj\nICEBzp/XO4kQtkkKhnAYzZtDhw5w9RJHIUQ5ScEQDuXtt2HyZLh0Se8kQtgeKRjCoQQFQWAgzJ2r\ndxIhbI8uBWPBggX4+/vj7OzMrpsuLYiLi8Pb2xtfX19Wr15tfHznzp0EBATg7e3NiBEjqjqysCNj\nx6p2IVeu6J1ECNuiS8EICAhg0aJFtG/f/obH09LSmD9/PmlpaSQlJTF8+HDjpeQvvfQSs2fP5vDh\nwxw+fJikpCQ9ogs78Pe/q11T332ndxIhbIsuBcPX1xcfH59bHk9MTCQ6OhoXFxc8PDzw8vJi27Zt\n5OTkkJ+fT0hICACDBg1i8eLFVR1b2JGxY1Xr8+JivZMIYTusag3jxIkTuLu7Gz92d3cnOzv7lsfd\n3NzIlm5yohI6dVLdbH/8Ue8kQtgOi92HER4eTm5u7i2PT5gwgaioKEu9LQDjxo0z/josLIywsDCL\nvp+wPQaDGmW8+y707q13GiGqXkpKCikpKeV6jsUKRnJycrmf4+bmRlZWlvHj48eP4+7ujpubG8eP\nH7/hcTc3t1Jf5/qCIURpuneHd96B5cvBw0PvNEJUrZu/mR4/fnyZz9F9SuraojbA448/zrx58ygs\nLOTYsWMcPnyYkJAQGjVqRO3atdm2bRuapvH111/To0cPHVMLe2AwqHMZsbFw3V9DIUQpdCkYixYt\nonHjxmzdupVu3boRGRkJgJ+fH3379sXPz4/IyEhmzJiBwWAAYMaMGQwdOhRvb2+8vLzo2rWrHtGF\nnendG86ehXXr9E4ihPUzaJp9fW9lMBiwsz+SsLAvvlBrGXXqwP79eqcRQh+mfO3UfUpKCL0NGADO\nznqnEML6ScEQDs/FBUaNUmsaQojSyZSUEEBhIezZA1fPhgrhcEz52ikFQwghhKxhCCGEMB8pGEII\nIUwiBUMIIYRJpGAIIYQwiRQMIYQQJpGCIYQQwiRSMIQQQphECoYQQgiTSMEQQghhEikYQgghTCIF\nQwghhEmkYAghhDCJFAwhhBAmkYIhhBDCJLoUjAULFuDv74+zszM7d+40Pp6cnEzr1q1p2bIlrVu3\nZt11Fy3v3LmTgIAAvL29GTFihB6xhRDCoelSMAICAli0aBHt27fHcN01Z/Xr12fZsmXs27ePL7/8\nkoEDBxp/76WXXmL27NkcPnyYw4cPk5SUpEd0i0tJSdE7QoXZcnaQ/HqT/NZPl4Lh6+uLj4/PLY8H\nBgbSqFEjAPz8/Lh48SJXrlwhJyeH/Px8Qq5ehzZo0CAWL15cpZmrii3/pbPl7CD59Sb5rZ/VrmEs\nXLiQ4OBgXFxcyM7Oxt3d3fh7bm5uZGdn65hOCCEcTzVLvXB4eDi5ubm3PD5hwgSioqLu+Nxff/2V\nmJgYkpOTLRVPCCFEeWk6CgsL03bu3HnDY1lZWZqPj4+2efNm42MnTpzQfH19jR9/99132rBhw277\nmp6enhogP+SH/JAf8qMcPzw9Pcv8mm2xEYaptOsuHc/Ly6Nbt25MnDiRhx9+2Pj4/fffT+3atdm2\nbRshISF8/fXXvPrqq7d9vSNHjlg8sxBCOCJd1jAWLVpE48aN2bp1K926dSMyMhKA6dOnk5GRwfjx\n4wkKCiIoKIjTp08DMGPGDIYOHYq3tzdeXl507dpVj+hCCOGwDNr13+ILIYQQpbDaXVLllZSUhK+v\nL97e3kycOFHvOOU2ZMgQGjZsSEBAgN5Ryi0rK4uOHTvi7+9PixYtSEhI0DtSuVy6dInQ0FACAwPx\n8/NjzJgxekeqkOLiYoKCgsrcVGKNPDw8aNmyJUFBQcbt87YiLy+P3r1707x5c/z8/Ni6davekUx2\n6NAh42xOUFAQderUufO/34osVluboqIizdPTUzt27JhWWFioPfjgg1paWprescrl559/1nbt2qW1\naNFC7yjllpOTo+3evVvTNE3Lz8/XfHx8bO6/f0FBgaZpmnblyhUtNDRU27Bhg86Jym/y5Mla//79\ntaioKL2jlJuHh4d25swZvWNUyKBBg7TZs2drmqb+/uTl5emcqGKKi4u1Ro0aab/99lupn2MXI4zU\n1FS8vLzw8PDAxcWFfv36kZiYqHescnnkkUe455579I5RIY0aNSIwMBCAWrVq0bx5c06cOKFzqvK5\n++67ASgsLKS4uJh69erpnKh8jh8/zooVKxg6dOgNG0lsiS3m/vPPP9mwYQNDhgwBoFq1atSpU0fn\nVBWzZs0aPD09ady4camfYxcFIzs7+4Y/pLu7uxzs00lmZia7d+8mNDRU7yjlUlJSQmBgIA0bNqRj\nx474+fnpHalcXn/9dT766COcnGzzn7TBYKBz5860bt2aWbNm6R3HZMeOHaN+/fo8++yztGrViuef\nf54LFy7oHatC5s2bR//+/e/4Obb5t+sm1/ejEvo5f/48vXv3ZurUqdSqVUvvOOXi5OTEnj17OH78\nOD///LNNtXlYtmwZDRo0ICgoyCa/SwfYtGkTu3fvZuXKlXzyySds2LBB70gmKSoqYteuXQwfPpxd\nu3ZRs2ZN4uPj9Y5VboWFhSxdupQ+ffrc8fPsomC4ubmRlZVl/DgrK+uGViLC8q5cuUKvXr14+umn\n6dGjh95xKqxOnTp069aNHTt26B3FZJs3b2bJkiU0bdqU6Oho1q5dy6BBg/SOVS73338/oBqQ9uzZ\nk9TUVJ0Tmcbd3R13d3ceeughAHr37s2uXbt0TlV+K1euJDg4mPr169/x8+yiYLRu3ZrDhw+TmZlJ\nYWEh8+fP5/HHH9c7lsPQNI3nnnsOPz8/XnvtNb3jlNvp06fJy8sD4OLFiyQnJxMUFKRzKtNNmDCB\nrKwsjh07xrx583j00Uf56quv9I5lsgsXLpCfnw9AQUEBq1evtpndgo0aNaJx48akp6cDah3A399f\n51Tl9/333xMdHV3m5+l+0tscqlWrxvTp0+nSpQvFxcU899xzNG/eXO9Y5RIdHc369es5c+YMjRs3\n5oMPPuDZZ5/VO5ZJNm3axDfffGPcFgkQFxdnM4crc3JyGDx4MCUlJZSUlDBw4EA6deqkd6wKs7Up\n2pMnT9KzZ09ATfEMGDCAiIgInVOZbtq0aQwYMIDCwkI8PT2ZO3eu3pHKpaCggDVr1pi0diQH94QQ\nQpjELqakhBBCWJ4UDCGEECaRgiGEEMIkUjCEEEKYRAqGEEIIk0jBEEIIYRIpGMJhWbp9iYeHB2fP\nnr3l8fXr17Nly5bbPmfp0qU22Z5fOAa7OLgnREVY+oCbwWC4bW+ndevW4erqesM1xNdERUXZ5H0W\nwjHICEOI62RkZBAZGUnr1q1p3749hw4dAuCZZ55hxIgRtG3bFk9PTxYuXAioLrfDhw+nefPmRERE\n0K1bN+PvgToFHBwcTMuWLTl06BCZmZl8+umnfPzxxwQFBbFx48Yb3v+LL77gH//4xx3f83qZmZn4\n+vry7LPP0qxZMwYMGMDq1atp27YtPj4+bN++3VL/qYQDkoIhxHVeeOEFpk2bxo4dO/joo48YPny4\n8fdyc3PZtGkTy5YtIyYmBoAff/yR//73vxw4cICvv/6aLVu23DByqV+/Pjt37uSll15i0qRJeHh4\n8OKLL/LGG2+we/du2rVrd8P73zzqud173iwjI4ORI0dy8OBBDh06xPz589m0aROTJk1iwoQJ5vpP\nI4RMSQlxzfnz59myZcsNLZ4LCwsB9YX8Whfe5s2bc/LkSQA2btxI3759AYx3aVzvySefBKBVq1b8\n+OOPxsdN6chT2nverGnTpsaGd/7+/nTu3BmAFi1akJmZWeb7CGEqKRhCXFVSUkLdunXZvXv3bX+/\nevXqxl9f+4J/8zrFzYWgRo0aADg7O1NUVFTuTLd7z5tdew9Q93pce46Tk1OF3lOI0siUlBBX1a5d\nm6ZNm/LDDz8A6gv0vn377victm3bsnDhQjRN4+TJk6xfv77M93F1dTW2876Z9AIV1kwKhnBYFy5c\noHHjxsYfU6ZM4dtvv2X27NkEBgbSokULlixZYvz869cXrv26V69euLu74+fnx8CBA2nVqtVt73Q2\nGAzG50RFRbFo0SKCgoLYtGlTqZ9X2nve7rVL+9jWWp0L6ybtzYWopIKCAmrWrMmZM2cIDQ1l8+bN\nNGjQQO9YQpidrGEIUUndu3cnLy+PwsJC3nvvPSkWwm7JCEMIIYRJZA1DCCGESaRgCCGEMIkUDCGE\nECaRgiGEEMIkUjCEEEKYRAqGEEIIk/w/Ax1NdOgaZEcAAAAASUVORK5CYII=\n",
       "text": [
        "<matplotlib.figure.Figure at 0x5d72690>"
       ]
      }
     ],
     "prompt_number": 17
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 3.3.8,Page No.110"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "import numpy as np\n",
      "%matplotlib inline\n",
      "\n",
      "#Initilization of Variables\n",
      "\n",
      "L=6 #m #Span Of beam\n",
      "w=30 #KN/m #u.d.l\n",
      "\n",
      "#Calculations\n",
      "\n",
      "#Due to Symmetry\n",
      "#Let R_B and R_C be the reactions at B & C Respectively\n",
      "R_B=R_C=w*L*2**-1 #KN\n",
      "\n",
      "#Let a be the overhang.The Max -ve moment occurs at the support and max +ve moment at middle of the beam\n",
      "#Now Equating these two equations we get\n",
      "#30*a*a*2**-1=90*(3-a)-w*L*2**-1*L*4**-1\n",
      "#After simplifying we get an equation as\n",
      "#a**2+6*a-9=0\n",
      "x=1\n",
      "y=6\n",
      "z=-9\n",
      "\n",
      "p=y**2-4*x*z\n",
      "\n",
      "a1=(-y+p**0.5)*2**-1\n",
      "a2=(-y-p**0.5)*2**-1\n",
      "\n",
      "#Now Length cannot be negative,so taking a1 into Consideration\n",
      "\n",
      "L_CD=L_AB=a1\n",
      "L_BC=L-2*a1\n",
      "\n",
      "#Shear Force Calculations\n",
      "\n",
      "#S.F At D\n",
      "V_D=0\n",
      "\n",
      "#S.F At C\n",
      "V_C1=V_D-w*L_CD #KN\n",
      "V_C2=V_C1+R_C #KN\n",
      "\n",
      "#S.F At B\n",
      "V_B1=-w*(L_BC+L_CD)+R_C\n",
      "V_B2=V_B1+R_B\n",
      "\n",
      "#S.F At A\n",
      "V_A=round(V_B2,2)-round(w*L_AB,2)\n",
      "\n",
      "#Bending Moment Calculations\n",
      "\n",
      "#B.M At D\n",
      "M_D=0\n",
      "\n",
      "#B.M At C\n",
      "M_C=w*L_CD*L_CD*2**-1 #KN.m\n",
      "\n",
      "#B.M At B\n",
      "M_B=w*(L_BC+L_CD)*(L_BC+L_CD)*2**-1-R_C*L_BC*L_BC*2**-1\n",
      "\n",
      "#B.M At A\n",
      "X=w*L*L*2**-1\n",
      "Y=-R_C*(L_AB+L_BC)-R_B*L_AB\n",
      "M_A=X+Y\n",
      "\n",
      "#Result\n",
      "print \"The Shear Force and Bending Moment Diagrams are the results\"\n",
      "\n",
      "#Plotting the Shear Force Diagram\n",
      "\n",
      "X1=[0,L_CD,L_CD,L_CD+L_BC,L_CD+L_BC,L_CD+L_BC+L_AB]\n",
      "Y1=[V_D,V_C1,V_C2,V_B1,V_B2,V_A]\n",
      "Z1=[0,0,0,0,0,0]\n",
      "plt.plot(X1,Y1,X1,Z1)\n",
      "plt.xlabel(\"Length x in m\")\n",
      "plt.ylabel(\"Shear Force in kN\")\n",
      "plt.show()\n",
      "\n",
      "#Plotting the Bendimg Moment Diagram\n",
      "\n",
      "X2=[0,L_CD,L_BC+L_CD,L_AB+L_BC+L_CD]\n",
      "Y2=[M_D,M_C,M_B,M_A]\n",
      "Z2=[0,0,0,0]\n",
      "plt.plot(X2,Y2,X2,Z2)\n",
      "plt.xlabel(\"Length in m\")\n",
      "plt.ylabel(\"Bending Moment in kN.m\")\n",
      "plt.show()"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The Shear Force and Bending Moment Diagrams are the results\n"
       ]
      },
      {
       "metadata": {},
       "output_type": "display_data",
       "png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEPCAYAAACtCNj2AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XtU1HX+x/HXIKOtoHkHD3AaDhdh0GS8pNbPFVQwNcgC\nKTQljOzESbucNKw9rbuugpm7uahb25raVpu1tIFmJIqoWagFe9yighI63HMl8r4IfH5/EN9EGAaY\ny/fznXk9zpnjzDDj9z3lmSef73cuOiGEABEREQA3tQcgIiJ5MApERKRgFIiISMEoEBGRglEgIiIF\no0BERApVo9DY2Ij4+HiEhobCaDTixIkTaGhoQFRUFIKDgxEdHY3GxkY1RyQicimqRuHxxx/HvHnz\n8NVXX+H06dMICQlBRkYGoqKiUFpailmzZiEjI0PNEYmIXIpOrTev/fTTTzCZTDhz5kyH60NCQnDk\nyBF4eXmhrq4OERER+Prrr9UYkYjI5ai2UigvL8fIkSORnJyMCRMm4OGHH8alS5dQX18PLy8vAICX\nlxfq6+vVGpGIyOWoFoXm5mYUFRUhNTUVRUVF8PDw6LSrSKfTQafTqTQhEZELEiqpra0VBoNBuXzs\n2DExb948ERISImpra4UQQtTU1IgxY8Z0um9AQIAAwBNPPPHEUy9OAQEBFp+bVVspeHt7w8/PD6Wl\npQCAgwcPIiwsDDExMdi9ezcAYPfu3ViwYEGn+3733XcQQjjt6be//a3qM/Dx8fG54uNz5scmhMB3\n331n8bnZ3bZP9b2TmZmJxYsXo6mpCQEBAdi5cydaWlqQkJCAHTt2wGAw4J133lFzRCIil6JqFMaP\nH49Tp051uv7gwYMqTENERHxHs4QiIiLUHsGu+Pi0zZkfnzM/tp5S7X0K1tDpdNDg2EREqurJcydX\nCkREpGAUiIhIwSgQEZGCUSAiIgWjQERECkaBiIgUjIKTKC0F+H1ERGQtRsFJrFoFzJwJNDSoPQkR\naRmj4CSEANzdgdmzGQYi6jtGwYk89xwwaxbDQER9xyg4EZ0OeOEFhoGI+o5RcDIMAxFZg1FwQgwD\nEfUVo+CkGAYi6gtGwYkxDETUW4yCk2MYiKg3GAUXwDAQUU8xCi6CYSCinmAUXAjDQESWMAouhmEg\nou4wCi6IYSAicxgFF8UwEFFXGAUXxjAQ0Y0YBRfHMBDR9RgFYhiISMEoEACGgYjaqB6FlpYWmEwm\nxMTEAAAaGhoQFRWF4OBgREdHo5FfPOwwDAMRqR6FLVu2wGg0QqfTAQAyMjIQFRWF0tJSzJo1CxkZ\nGSpP6FoYBiLXpmoUqqqqsH//fqSkpEAIAQDIyclBUlISACApKQnvv/++miO6JIaByHWpGoUnn3wS\nmzZtgpvbL2PU19fDy8sLAODl5YX6+nq1xnNpDAORa1ItCvv27cOoUaNgMpmUVcKNdDqdsluJHI9h\nIHI97mpt+JNPPkFOTg7279+Pq1ev4vz581iyZAm8vLxQV1cHb29v1NbWYtSoUV3ef+3atcr5iIgI\nREREOGZwF9MehtWr28Jw8CAwbJjaUxFRTxQUFKCgoKBX99EJc7+mO9CRI0fw4osvYu/evVi9ejWG\nDx+OZ555BhkZGWhsbOx0sFmn05ldXbiq2FggJaXtT3sQoi0Mhw4xDERa1ZPnTtVffdSufTdRWloa\n8vLyEBwcjPz8fKSlpak8GQHclUTkKqRYKfQWVwqd2Xul0I4rBiLt0tRKgbSBKwbSgry8thP1HqNA\nvcYwkOxycoD584G9e9WeRHsYBeoThoFkl5jYtkuVYegdRoH6jGEgmU2aBOzbxzD0FqNAVmEYSGaT\nJzMMvcUokNUYBpIZw9A7jALZBMNAMmMYeo5RIJthGEhmDEPPMApkUwwDyYxhsIxRIJtjGEhmDEP3\nGAWyC4aBZMYwmMcokN0wDCQzhqFrjALZFcNAMmMYOmMUyO4YBpIZw9ARo0AOwTCQzBiGXzAK5DAM\nA8mMYWjDKJBDMQwkM4aBUSAVMAwkM1cPA6NAqmAYSGauHAZGgVTDMJDMXDUMjAKpimEgmbliGBgF\nUh3DQDJztTAwCiQFhoFk5kphYBRIGgwDycxVwsAokFQYBpKZK4SBUSDpMAwkM2cPA6NAUmIYSGbO\nHAZGgaTFMJDMnDUM7uZ+EBkZ2eX1Op0OAJCfn2+fiYiu0x6G1avbwnDwIDBsmNpTEbVpD8NddwF/\n+xsQE6P2RNYzG4VNmzYp59tDUFhYiI0bN2LUqFFWb7iyshJLly7FDz/8AJ1Oh+XLl2PlypVoaGjA\nfffdh++//x4GgwHvvPMOhgwZYvX2SLsYBpKZs4XB7O6jSZMmKacLFy7gmWeewVtvvYVXXnkFn332\nmdUb1uv1+NOf/oQvv/wShYWF2LZtG7766itkZGQgKioKpaWlmDVrFjIyMqzeFmkfdyWRzJxpV1K3\nxxRyc3Mxffp0rFu3Ds899xyOHz+OuXPn2mTD3t7eCA8PBwB4enoiNDQU1dXVyMnJQVJSEgAgKSkJ\n77//vk22R9rHMJDMnCUMZncfTZ48GWfPnsXTTz+NadOmAQCKioqUn0+YMMFmQ1RUVKC4uBhTpkxB\nfX09vLy8AABeXl6or6+32XZI+7griWTmDLuSzEbBw8MDHh4eyMrKQlZWVqefHz582CYDXLx4EXFx\ncdiyZQsGDRrU4Wc6nU45nnGjtWvXKucjIiIQERFhk3lIfgwDyUymMBQUFKCgoKBX99EJIUR3N2ht\nbYWbW8e9TFevXsVNN93U6wFvdO3aNdx1112YO3cunnjiCQBASEgICgoK4O3tjdraWkRGRuLrr7/u\nOLROBwtju5zY2LZla2ys2pM4jhBtYTh0iGGgjlasAIKD2/5Uy6lTcoThej157rT4PoWUlJQOly9e\nvIh58+ZZNxkAIQQeeughGI1GJQgAEBsbi927dwMAdu/ejQULFli9LXJOPMZAMtPqMQaLUfDx8UFq\naioA4Mcff0R0dDSWLFli9YaPHz+ON954A4cPH4bJZILJZEJubi7S0tKQl5eH4OBg5OfnIy0tzept\nkfNiGEhmWgyDxd1HALBq1SqcP38en3/+OdLS0hAfH++I2czi7qPOXHH30fW4K4muJ8Puo+vJsivJ\nqt1H7QeY33vvPUydOhUnTpyAyWSCTqfDe++9Z/NhiazBFQPJTEsrBrOvPtq7d2+HV/6Eh4ejubkZ\n+/btAwDce++99p+OqBf4qiSSmUyvSuqO2Sjs2rXLgWMQ2QbDQDLTQhj4KankdLgriWQm+64kRoGc\nEsNAMpM5DIwCOS2GgWQmaxjMHlNod/XqVWRlZaGiogLNzc0A2l7W9Pzzz9t9OCJr8RgDyUzGYwwW\nVwp33303cnJyoNfr4enpCU9PT3h4eDhiNiKb4IqBZCbbisHiSqG6uhofffSRI2YhshuuGEhmMq0Y\nLK4Ubr/9dpw+fdoRsxDZFVcMJDNZVgwWo3Ds2DFMnDgRwcHBGDduHMaNG4dbb73VEbMR2RzDQDKT\nIQwWdx99+OGHjpiDyGG4K4lkpvauJLMrhfPnzwMABg8e3OWJSMu4YiCZqbliMLtSSExMxAcffIAJ\nEyZ0+vYznU6HM2fO2H04InviioFkptaKwWwUPvjgAwBt359M5KwYBpKZGmHgO5rJ5XFXEsnM0buS\nGAUiMAwkN0eGgVEg+hnDQDJzVBh6FIVjx45h586dAICzZ8+ivLzcfhMRqYhhIJk5IgwWo7B27Vq8\n8MILSE9PBwA0NTXhgQcesM80RBJgGEhm9g6DxSj861//QnZ2tvIheD4+Prhw4YLtJyGSCMNAMrNn\nGCxGYcCAAXBz++Vmly5dsu0ERJJiGEhm9gqDxSgsXLgQjzzyCBobG/HXv/4Vs2bNQkpKiu0mIJIY\nw0Ays0cYLEZh1apViIuLQ1xcHEpLS7Fu3TqsXLnSNlsn0gCGgWRm6zBY/EC88vJyTJ8+HdHR0QCA\nK1euoKKiAgaDwfqtE2kE3/lMMrPlO58trhTi4+PRr1+/X+7g5ob4+Pi+b5FIo7hiIJnZasVgMQot\nLS3o37+/cnnAgAG4du1a37dIpGEMA8nMFmGwGIURI0YgOztbuZydnY0RI0b0bWtEToBhIJlZGwaL\nUXj55ZexYcMG+Pn5wc/PDxkZGXjllVf6MmuP5ebmIiQkBEFBQdi4caNdt0XUFwwDycyaMHQbhZaW\nFrz88ss4ceIESkpKUFJSgk8//RSBgYHWzNutlpYWPPbYY8jNzUVJSQn+8Y9/4KuvvrLb9oj6imEg\nmfU1DN1GoV+/fvj4448hhMCgQYMwaNAga+e06OTJkwgMDITBYIBer8f999/fYfcVkUwYBpJZX8Jg\n8SWp4eHhuPvuu7Fw4UIMHDgQQNs3r917771WDWtOdXU1/Pz8lMu+vr44ceKEXbZFZAt8uSrJ7PqX\nq/aExShcvXoVw4YNQ35+fofr7RWFG7/60+ztIq67nQGAv13G0Y6JwN5iAMVqD+LCPAHcDQzPVHsQ\nwggADcDK36k9iMrKAVT8fD4UwA+W72IxCrt27bJiot7z8fFBZWWlcrmyshK+vr6dbjemTmDpUuDZ\nZx05nbxiY9uWiLGxak/i2oRoWzEcOsQVg5pWrACCg9v+pF/05Jdui68+qqysxD333IORI0di5MiR\niIuLQ1VVlU0G7MqkSZNQVlaGiooKNDU1Yc+ePYjt4pnu8GHg9deBDRvsNgpRr/EYA2mdxSgkJycj\nNjYWNTU1qKmpQUxMDJKTk+02kLu7O7Zu3Yo5c+bAaDTivvvuQ2hoaKfbjR7NMJCcGAbSMotROHv2\nLJKTk6HX66HX6/Hggw/ihx96sGPKCnPnzsU333yDb7/9FmvWrDF7O4aBZMUwkFZZjMLw4cPx97//\nHS0tLWhubsYbb7wh1TuaGQaSFcNAWmQxCq+99hreeecdeHt7Y/To0Xj33XeV72uWBcNAsmIYSGvM\nvvqosLAQU6dOhcFgwF57fUO0DbWHITKy7TJflUSy4PsYSEvMrhQeffRR5fy0adMcMoy1uGIgWXHF\nQFphcfcR0PYGNq1gGEhWDANpgdkotLS0oKGhAefOnVPOX3+SGcNAsmIYSHZmjymcP38eEydOBAAI\nIZTzQNu74s6cOWP/6azAYwwkKx5jIJmZjUJFRYUDx7APhoFkxTCQrHp0TEHLuCuJZMVdSSQjp48C\nwDCQvBgGko1LRAFgGEheDAPJpNsoNDc3Y8yYMY6axe4YBpIVw0Cy6DYK7u7uCAkJwffff++oeeyO\nYSBZMQwkA4tfstPQ0ICwsDDcdttt8PDwAND2ktScnBy7D2cvfFUSyYqvSiK1WYzCunXrHDGHwzEM\nJCuGgdRkMQoREREOGEMdDAPJimEgtVh89dGnn36KyZMnw9PTE3q9Hm5ubhg8eLAjZnMIHmMgWfEY\nA6nBYhQee+wxvPXWWwgKCsLVq1exY8cOpKamOmI2h2EYSFYMAzlaj96nEBQUhJaWFvTr1w/JycnI\nzc2191wOxzCQrBgGciSLxxQ8PDzwv//9D+PHj8fq1avh7e0NIYQjZnM4HmMgWfEYAzmKxZXC66+/\njtbWVmzduhUDBw5EVVUVsrKyHDGbKrhiIFlxxUCOYHGlYDAYcPnyZdTV1WHt2rUOGEl9XDGQrLhi\nIHuzuFLIycmByWTCnDlzAADFxcWIjY21+2Bq44qBZMUVA9mTxSisXbsWJ06cwNChQwEAJpNJ+i/Y\nsRWGgWTFMJC9WIyCXq/HkCFDOt7JzWU+XJVhIGkxDGQPFp/dw8LC8Oabb6K5uRllZWVYsWIFbr/9\ndkfMJg2GgWTFMJCtWYxCZmYmvvzySwwYMACJiYkYPHgwXnrpJUfMJhWGgWTFMJAt9eh9Chs2bMAG\nPhPyVUkkLb4qiWzF4krhm2++wcMPP4yoqChERkYiMjISM2fOtGqjq1atQmhoKMaPH497770XP/30\nk/Kz9PR0BAUFISQkBAcOHLBqO/bAFQPJiisGsgWLK4WFCxfi0UcfRUpKCvr16weg7fsUrBEdHY2N\nGzfCzc0NaWlpSE9PR0ZGBkpKSrBnzx6UlJSguroas2fPRmlpqXQHtrliIFlxxUDWshgFvV6PRx99\n1KYbjYqKUs5PmTJFeYd0dnY2EhMTodfrYTAYEBgYiJMnT2Lq1Kk23b4tMAwkK4aBrGH2V/CGhgac\nO3cOMTEx2LZtG2pra9HQ0KCcbOW1117DvHnzAAA1NTXw9fVVfubr64vq6mqbbcvWuCuJZMVdSdRX\nZlcKEyZM6LCb6MUXX1TO63Q6i29gi4qKQl1dXafrN2zYgJiYGADA+vXr0b9/fyxatMjs32NuV9X1\nH7kRERGh2pcBccVAsuKKgQoKClBQUNCr+5iNQkVFhVXD5OXldfvzXbt2Yf/+/Th06JBynY+PDyor\nK5XLVVVV8PHx6fL+Mn0OE8NAsmIYXNuNvzD/7ne/s3gfs7uPTp06hdraWuXy7t27ERsbi5UrV1q9\n+yg3NxebNm1CdnY2brrpJuX62NhYvP3222hqakJ5eTnKyspw2223WbUtR+GuJJIVdyVRb5iNwvLl\nyzFgwAAAwNGjR5GWloakpCQMHjwYy5cvt2qjK1aswMWLFxEVFQWTyaR8k5vRaERCQgKMRiPmzp2L\n7du3W/1KJ0diGEhWDAP1lNndR62trRj28zpzz549eOSRRxAXF4e4uDiMHz/eqo2WlZWZ/dmzzz6L\nZzW8/4W7kkhW3JVEPWF2pdDS0oJr164BAA4ePIjI9mc5AM3NzfafTMO4YiBZccVAlpiNQmJiImbM\nmIHY2FgMHDgQ06dPB9D2W/6Nn5pKnTEMJCuGgbpjdvfRc889h5kzZ6Kurg7R0dHKu4qFEMjMzHTY\ngFrGXUkkK+5KInO6fUfztGnTOl0XHBxst2GcEcNAsmIYqCtyfaiQk+KuJJIVdyXRjRgFB2EYSFYM\nA12PUXAghoFkxTBQO0bBwRgGkhXDQACjoAqGgWTFMBCjoBKGgWTFMLg2RkFFDAPJimFwXYyCyhgG\nkhXD4JoYBQkwDCQrhsH1MAqSYBhIVgyDa2EUJMIwkKwYBtfBKEiGYSBZMQyugVGQEMNAsmIYnB+j\nICmGgWTFMDg3RkFiDAPJimFwXoyC5BgGkhXD4JwYBQ1gGEhWDIPzYRQ0gmEgWTEMzoVR0BCGgWTF\nMDgPRkFjGAaSFcPgHBgFDWIYSFYMg/a5qz0A9U17GCIj1Z6EqKP2MKxe3RaGgweBYcPUnop6iisF\nDbt+xVBQoPY0RL/gikG7GAWNaw/DLbfwtzGSC8OgTapGYfPmzXBzc0PDdf9a0tPTERQUhJCQEBw4\ncEDF6bRj9GjgP/8B/u//1J6EqCOGQXtUi0JlZSXy8vJwyy23KNeVlJRgz549KCkpQW5uLlJTU9Ha\n2qrWiERkAwyDtqgWhaeeegovvPBCh+uys7ORmJgIvV4Pg8GAwMBAnDx5UqUJichWGAbtUCUK2dnZ\n8PX1xa233trh+pqaGvj6+iqXfX19UV1d7ejxiMgOGAZtsNtLUqOiolBXV9fp+vXr1yM9Pb3D8QIh\nhNm/R6fT2WU+InI8vlxVfnaLQl5eXpfXf/HFFygvL8f48eMBAFVVVZg4cSJOnDgBHx8fVFZWKret\nqqqCj49Pl3/P2rVrlfMRERGIiIiw2exEZD8Mg+MUFBSgoJevV9eJ7n5NdwB/f398/vnnGDZsGEpK\nSrBo0SKcPHkS1dXVmD17Nr799ttOqwWdTtft6oKI5CdEWxgOHbJ9GFasAIKD2/6kX/TkuVP19ylc\n/4RvNBqRkJAAo9GIuXPnYvv27dx9ROSkeIxBTqqvFPqCKwUi52GPFQNXCl3TxEqBiFwbVwxyYRSI\nSHUMgzwYBSKSAsMgB0aBiKTBMKiPUSAiqTAM6mIUiEg6DIN6GAUikhLDoA5GgYikxTA4HqNARFJj\nGByLUSAi6TEMjsMoEJEmMAyOwSgQkWYwDPbHKBCRpjAM9sUoEJHmMAz2wygQkSYxDPbBKBCRZjEM\ntscoEJGmMQy2xSgQkeYxDLbDKBCRU7g+DG+9pfY02uWu9gBERLbSHobhw4HwcLWn0SadsPQtzhLq\nyZdPExFRRz157uTuIyIiUjAKRESkYBSIiEjBKBARkYJRICIiBaNAREQKRoGIiBSqRSEzMxOhoaEY\nO3YsnnnmGeX69PR0BAUFISQkBAcOHFBrPCIil6RKFA4fPoycnBycPn0aX3zxBZ5++mkAQElJCfbs\n2YOSkhLk5uYiNTUVra2taoyoqoKCArVHsCs+Pm1z5sfnzI+tp1SJwl/+8hesWbMGer0eADBy5EgA\nQHZ2NhITE6HX62EwGBAYGIiTJ0+qMaKqnP0fJh+ftjnz43Pmx9ZTqkShrKwMR48exdSpUxEREYHP\nPvsMAFBTUwNfX1/ldr6+vqiurlZjRCIil2S3D8SLiopCXV1dp+vXr1+P5uZm/PjjjygsLMSpU6eQ\nkJCAM2fOdPn36HQ6e41IREQ3Eiq48847RUFBgXI5ICBAnD17VqSnp4v09HTl+jlz5ojCwsJO9w8I\nCBAAeOKJJ5546sUpICDA4vOzKh+dvWDBAuTn52PGjBkoLS1FU1MTRowYgdjYWCxatAhPPfUUqqur\nUVZWhttuu63T/b/99lsVpiYicn6qRGHZsmVYtmwZxo0bh/79++P1118HABiNRiQkJMBoNMLd3R3b\nt2/n7iMiIgfS5PcpEBGRfWjuHc25ubkICQlBUFAQNm7cqPY4NrVs2TJ4eXlh3Lhxao9iF5WVlYiM\njERYWBjGjh2LP//5z2qPZDNXr17FlClTEB4eDqPRiDVr1qg9kl20tLTAZDIhJiZG7VFszmAw4NZb\nb4XJZOpyt7XWNTY2Ij4+HqGhoTAajSgsLOz6hrY4cOwozc3NIiAgQJSXl4umpiYxfvx4UVJSovZY\nNnP06FFRVFQkxo4dq/YodlFbWyuKi4uFEEJcuHBBBAcHO9X/v0uXLgkhhLh27ZqYMmWKOHbsmMoT\n2d7mzZvFokWLRExMjNqj2JzBYBDnzp1Tewy7Wbp0qdixY4cQou3faGNjY5e309RK4eTJkwgMDITB\nYIBer8f999+P7OxstceymenTp2Po0KFqj2E33t7eCP/5i3M9PT0RGhqKmpoalaeynYEDBwIAmpqa\n0NLSgmHDhqk8kW1VVVVh//79SElJcdqvw3XWx/XTTz/h2LFjWLZsGQDA3d0dN998c5e31VQUqqur\n4efnp1zmm9u0q6KiAsXFxZgyZYrao9hMa2srwsPD4eXlhcjISBiNRrVHsqknn3wSmzZtgpubpp42\nekyn02H27NmYNGkSXn31VbXHsany8nKMHDkSycnJmDBhAh5++GFcvny5y9tq6v8uX4nkHC5evIj4\n+Hhs2bIFnp6eao9jM25ubvj3v/+NqqoqHD161Kk+MmHfvn0YNWoUTCaT0/42ffz4cRQXF+PDDz/E\ntm3bcOzYMbVHspnm5mYUFRUhNTUVRUVF8PDwQEZGRpe31VQUfHx8UFlZqVyurKzs8LEYJL9r164h\nLi4ODzzwABYsWKD2OHZx8803Y/78+crHtziDTz75BDk5OfD390diYiLy8/OxdOlStceyqdGjRwNo\n+yy2e+65x6k+d83X1xe+vr6YPHkyACA+Ph5FRUVd3lZTUZg0aRLKyspQUVGBpqYm7NmzB7GxsWqP\nRT0khMBDDz0Eo9GIJ554Qu1xbOq///0vGhsbAQBXrlxBXl4eTCaTylPZzoYNG1BZWYny8nK8/fbb\nmDlzpvL+Imdw+fJlXLhwAQBw6dIlHDhwwKleBejt7Q0/Pz+UlpYCAA4ePIiwsLAub6vKm9f6yt3d\nHVu3bsWcOXPQ0tKChx56CKGhoWqPZTOJiYk4cuQIzp07Bz8/P/z+979HcnKy2mPZzPHjx/HGG28o\nL/sD2r4/484771R5MuvV1tYiKSkJra2taG1txZIlSzBr1iy1x7IbZ9uVW19fj3vuuQdA266WxYsX\nIzo6WuWpbCszMxOLFy9GU1MTAgICsHPnzi5vxzevERGRQlO7j4iIyL4YBSIiUjAKRESkYBSIiEjB\nKBARkYJRICIiBaNATsXeH5vx0ksv4cqVKzbf3t69e53uo+BJm/g+BXIqgwYNUt6Zag/+/v747LPP\nMHz4cIdsj8jRuFIgp/fdd99h7ty5mDRpEn7961/jm2++AQA8+OCDePzxx3HHHXcgICAAWVlZANo+\n7TQ1NRWhoaGIjo7G/PnzkZWVhczMTNTU1CAyMrLDu5V/85vfIDw8HNOmTcMPP/zQaftPPPEE1q1b\nBwD46KOPMGPGjE632bVrF1asWNHtXNerqKhASEgIkpOTMWbMGCxevBgHDhzAHXfcgeDgYJw6dcr6\n/3Dkmhzx5Q5EjuLp6dnpupkzZ4qysjIhhBCFhYVi5syZQgghkpKSREJCghBCiJKSEhEYGCiEEOLd\nd98V8+bNE0IIUVdXJ4YOHSqysrKEEJ2/iEWn04l9+/YJIYRYvXq1+MMf/tBp+5cvXxZhYWEiPz9f\njBkzRpw5c6bTbXbt2iUee+yxbue6Xnl5uXB3dxdffPGFaG1tFRMnThTLli0TQgiRnZ0tFixYYPG/\nFVFXNPXZR0S9dfHiRXz66adYuHChcl1TUxOAts/vaf+k1tDQUNTX1wMAPv74YyQkJACA8t0I5vTv\n3x/z588HAEycOBF5eXmdbvOrX/0Kr776KqZPn44tW7bA39+/25nNzXUjf39/5UPNwsLCMHv2bADA\n2LFjUVFR0e02iMxhFMiptba2YsiQISguLu7y5/3791fOi58Pr+l0ug7fGSC6Oeym1+uV825ubmhu\nbu7ydqdPn8bIkSN7/KVQXc11owEDBnTYdvt9upuDyBIeUyCnNnjwYPj7++Of//wngLYn2NOnT3d7\nnzvuuANZWVkQQqC+vh5HjhxRfjZo0CCcP3++VzN8//33+OMf/6h8gUtXn9PfXXiIHIlRIKdy+fJl\n+Pn5KaeXXnoJb775Jnbs2IHw8HCMHTsWOTk5yu2v/wjo9vNxcXHw9fWF0WjEkiVLMGHCBOX7bJcv\nX44777y17Rj1AAAAk0lEQVRTOdB84/1v/EhpIQRSUlKwefNmeHt7Y8eOHUhJSVF2YZm7r7nzN97H\n3GVn+2hrchy+JJWoC5cuXYKHhwfOnTuHKVOm4JNPPsGoUaPUHovI7nhMgagLd911FxobG9HU1ITn\nn3+eQSCXwZUCEREpeEyBiIgUjAIRESkYBSIiUjAKRESkYBSIiEjBKBARkeL/AfWGkroc+qUvAAAA\nAElFTkSuQmCC\n",
       "text": [
        "<matplotlib.figure.Figure at 0x5cabbb0>"
       ]
      },
      {
       "metadata": {},
       "output_type": "display_data",
       "png": "iVBORw0KGgoAAAANSUhEUgAAAYwAAAEPCAYAAABRHfM8AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XlYVeXaBvB7y+AEipmiggYCCggJSGBZiQoO4IDzlFNp\npql06rLhnJNp5XTMk2JZ5oeanUpTQjQTsQGnUlSwQTJRwZhTCwUBEVjfH69sRUAWsPZee7h/18WV\nrL2GZ1vtZ7/D874aSZIkEBER1aGJ2gEQEZFxYMIgIiJZmDCIiEgWJgwiIpKFCYOIiGRhwiAiIlks\n1Q6gNk5OTmjVqhUsLCxgZWWFxMRE/PXXXxg/fjwuXboEJycnfPHFF7Czs1M7VCIis2CwLQyNRoOE\nhAQkJycjMTERALBixQqEhITg3LlzGDBgAFasWKFylERE5sNgEwYA3FtTuHv3bkybNg0AMG3aNOza\ntUuNsIiIzJLBJgyNRoPg4GD4+/tj48aNAIC8vDzY29sDAOzt7ZGXl6dmiEREZsVgxzCOHj2Kjh07\n4vLlywgJCYG7u3uV1zUaDTQajUrRERGZH4NNGB07dgQAtGvXDiNHjkRiYiLs7e2Rm5uLDh06ICcn\nB+3bt692naurKy5cuKDvcImIjJqLiwvOnz9/33MMskuqqKgIBQUFAIAbN24gPj4e3t7eGD58OD7+\n+GMAwMcff4zw8PBq1164cAGSJJnszxtvvKF6DHxvfH98f6b3I+eLtkG2MPLy8jBy5EgAQFlZGSZP\nnoyBAwfC398f48aNQ1RUlHZaLRER6YdBJgxnZ2ecPn262vEHHngA33zzjQoRERGRQXZJUe2CgoLU\nDkFnTPm9AXx/xs7U358cGkmSTGoDJY1GAxN7S0REOifns5MtDCIikoUJg4iIZGHCICIiWZgwiIhI\nFiYMIiKShQmDiIhkYcIgIiJZmDCIiEgWJgwiIpKFCYOIiGRhwiAiIlmYMIiISBYmDCIiksUg98Og\nxrl+HTh6FEhIAA4eBGxtgW3bgLZt1Y6MiIwZWxgm4No1YO9e4OWXgYAAoFMn4D//AZo3B1asAPz8\ngMcfB/74Q+1IiciYsYVhhPLzgSNH7rQgfvtNJIqgIGDVKiAwEGjW7M75QUGAvb1IGvv2AT16qBQ4\nERk1bqBkBPLzgcOHRYJISADOnRNJoW9fkQwCAoCmTeu+z//+B7z0EhATAzz2mI6DJiKjIuezkwnD\nAP31150EcfAgkJoK9O4tkkPfvsAjj8hLEDWJiwOmTAG2bAHCwhQMmoiMGhOGkbh6tWoL4uJF4NFH\n77Qg/P0Ba2vlnnf8ODBiBLByJTBtmnL3JSLjxYRhoK5cAQ4dutOCSEsTXUSVLQh/f8DKSrcxnD0L\nDB4MPP88sHChbp9FRIaPCcNAXL58J0EkJIjZSn363GlB+PnpPkHUJDNTJI3Bg8WsqiacM0dktpgw\nVPLnn6LlUNmCyMgQM5QqWxB+foClgcxP++svYNgwoGtXYNMmdRIXEamPCUNP8vLuJIiEBCA7G3ji\niTstCB8fw0kQNSkqAsaPB8rKgJ07gZYt1Y6IiPSNCUNHcnKqtiByc0WCqGxB+PgAFhY6DUFxZWXA\nrFmipmPvXlaFE5kbJgyFZGdXbUFcvgw8+eSdFsTDDxtfgqiJJAGvvQbExgL79wNduqgdERHpCxNG\nA2VmVm1BXL0qEkRlC8Lb2zQSRG3efVf8sCqcyHyYZMKIi4vDCy+8gPLycsycOROvvPJKldcbkjAy\nMqq2IPLzRWKobEF4eZnfDKJPPwVefJFV4UTmwuQSRnl5Obp3745vvvkGDg4OeOSRR/D555/Dw8ND\ne46cN/3HH3eSw8GDYnXXyuTQt6/4Vm1uCaImlVXhmzcDQ4eqHQ0R6ZKcz04DnrtTXWJiIlxdXeHk\n5AQAmDBhAmJjY6skjJqkp1dtQdy4cSc5vPQS4OHBBFGTwYOBr74SVeErVgDTp6sdERGpyagSRlZW\nFjp37qz93dHREcePH692XlrandZDQgJQXCwSRFCQqGr28AA0Gn1FbdwCA8Xf4eDBor5k4UL+3RGZ\nK6NKGBqZn1R3L7Px6qtA9+78kGsMd3exnPrgwaLmZNUqtsiITMnMmfLOM6qE4eDggIyMDO3vGRkZ\ncHR0rHZebncNtuWIXeZwDICz/mI0aWOBMwD++5bagRBRo6UBSK/fJUY16F1WVobu3bvj22+/RadO\nnRAQENCgQW9qOFaFE5mWKVOAnj2BhQvr/uw0qo4FS0tLvPfeexg0aBA8PT0xfvz4Oge8SVktWoip\nth07Av37i5V3icg45eSIiS3PPCPvfKNqYcjBFoZ+SBLwz38Cu3axKpzIWC1eLMYlP/jABOsw5GDC\n0K81a4D//pdV4UTG5uZN4KGHgO++Azw9TbAOgwzPCy8A7dqJ7qkvvxT7fBCR4duxQyxz5Okp/xqj\nGsMgwzR5MrB1KxAeLvpDiciwSRKwdi0QEVG/65gwSBGDBoll0WfOBLZsUTsaIrqfY8eAv/8GQkPr\ndx27pEgxAQF3qsLz8oCXX2bBJJEhiowE5s2rfwEuB71JcVlZImmEhADvvMOqcCJDkpUlxi7S0oDW\nre8cl/PZyf+VSXEODsChQ0BiIjB1KlBaqnZERFTpgw/EuOPdyUIutjBIZ4qKgAkTRMLYuROwsVE7\nIiLzVlIiptIeOiTW2LsbWxikqhYtxFRbBwdgwABWhROpbds2wM+verKQq86EsWfPHvj6+qJNmzaw\ntbWFra0tWrVq1bCnkdmxtAT+7/9EncbjjwOXLqkdEZF5kiQx2L1gQcPvUWeXlIuLC2JiYuDl5YUm\nRjB6yS4pw7VmDbB6tagK9/JSOxoi83L4sJj2/ttvNU9EUaTS29HRET169DCKZEGG7YUXgPbtRfcU\nq8KJ9CsyEpg/v3GzFutsYRw7dgyLFi1Cv379YG1tLS7SaPDiiy82/Kk6xBaG4du/H3jqKWDTJmDY\nMLWjITJ9f/wB+PiILmFb25rPUWTQ+/XXX4eNjQ1KSkpQWFiIwsJCFBQUNChoIuBOVfizzwKbN6sd\nDZHp++ADMcW9tmQhV50tDC8vL/z666+Ne4oesYVhPH7/XSSPOXNYFU6kK0VFYirtjz8Crq61n6dI\nCyM0NBT79++vd5BEdeneHTh6FPjf/4CXXgIqKtSOiMj0fPYZ0Lv3/ZOFXHW2MGxsbFBUVARra2tY\nWVmJizQaXL9+vfFP1wG2MIzP338Dw4eLTZg2bwZuD5URUSNJkth+dfVqsVTP/SjSwigsLERFRQVK\nSkpQUFCAgoICg00WZJzatAHi44HCQpE4CgvVjojINBw8CJSVAcHBytyPc2XJIDRvDkRHsyqcSElr\n14qptEqNDzYoYfj6+irzdKK7VFaFDxjAqnCixkpLE2tGTZ2q3D25+CAZpLVrxdLorAonapiFC8UY\nxjvvyDtfzmcnEwYZrM8/F9Xh0dGixUFE8ty4IabSnjgBODvLu6ZRS4M43+cpGo0GFy9elBcFUQNN\nnAi0bQuMGgVERbEqnEiuTz4RX7LkJgu5am1hXLlr1FGj0aCiogLbt2/HO++8g169eiE6OlrZSBTC\nFobpSUwERowAli0DZsxQOxoiwyZJQI8ewPvvA/36yb+uUS2MBx98EABQUVGBrVu3YtWqVfDx8cHX\nX38NT09P+VEQNdK9e4W/8gqrwolq8+23gIUFEBSk/L1rTRilpaXYtGkT3n33XTz++OOIjY2FqxKl\ngkQNUFkVPmiQSBqrV3OvcKKaVO55oYsvVbV2STk6OsLS0hIRERHo0qULNLefLkkSNBoNRo0apXw0\nCmCXlGljVThR7S5cEMuAXLokdrysj0bNkpo+fbr2JjXZbKDLjDJhmL7iYrFX+M2b3Cuc6G7/+AfQ\ntCmwYkX9r1VkWm1JSQmaNWtW5djVq1fRtm3b+kekB0wY5qGsDJg9G/jlF7FUert2akdEpK6CAsDJ\nCUhOFi3w+lJkLalRo0bh1q1b2t9zcnIQUtcqVo2wePFiODo6wtfXF76+vti3b5/2teXLl8PNzQ3u\n7u6Ij4/XWQxk+CqrwkNCWBVOBABbt4pZUQ1JFnLVuUXryJEjMW7cOOzcuRMZGRkYPnw43pFbOtgA\nlbv53bujX0pKCrZv346UlBRkZWUhODgY586d49axZkyjAZYuBeztRdJgVTiZq4oKMdi9caNun1Nn\nwpg1axZu3ryJESNG4NKlS/jwww/RR8ebMdfULIqNjcXEiRNhZWUFJycnuLq6IjExEb1799ZpLGT4\nFiwQXVIDBrAqnMxTfLwY5H7iCd0+p9aEsXr1agB3+rUyMjLQs2dPHDt2DMePH9fpnt7r1q3D1q1b\n4e/vj9WrV8POzg7Z2dlVkoOjoyOysrJ0FgMZl7urwv/v/8RMKiJzocuptHerNWEUFBRUmSE1cuRI\naDQaFCqwWUFISAhyc3OrHV+6dCnmzJmDRYsWARD7ib/00kuIioqq8T61zeBavHix9s9BQUEI0kUF\nCxmcgQPFAPjw4WJ59KefVjsiIt07dw44eRL48sv6XZeQkICEhIR6XWPQiw+mp6dj2LBh+OWXX7Di\n9jyxV199FQAwePBgLFmyBIGBgVWu4SwpOndOFPg9+yzw6qusCifTNn8+0KqVGM9rDEVmSelbTk6O\n9s8xMTHw9vYGAAwfPhzbtm1DaWkp0tLSkJqaioCAALXCJAPWrZuoCv/8czEvnXuFk6m6dg349FNg\n7lz9PK/OQW99e+WVV3D69GloNBo4Oztjw4YNAABPT0+MGzcOnp6esLS0xPr162vtkiLq1ElsHjN8\nOPDUU8CWLawKJ9OzZYvoinVw0M/zDLpLqiHYJUV3Ky4WA+LFxWIGFavCyVRUVIjW9NatwGOPNf5+\njVqtttKff/6JjRs3Ij09HWVlZdobb9q0qfEREulY8+Zi+ZDnngP692dVOJmOr78G7OyARx/V3zPr\nTBgjRozAk08+iZCQEG2RHLuCyJhYWoqCptdfFzUa+/eLJRSIjFlkJBARod9JHXV2Sfn4+OD06dP6\niqfR2CVF97NuHfCf/4hvZ7fnUxAZnZQU0WK+dEksNqgERWZJDR06FHv37lUmIiKVzZ8PrFoFBAcD\nhw+rHQ1Rw7z3nlh8U6lkIVedLQwbGxsUFRXB2toaVlZW4iKNBtevX9dLgPXFFgbJceAAMHkyq8LJ\n+Pz9N9C1q2hldOyo3H0VGfRWorKbyNCEhIhuqWHDgMuXgWeeUTsiInk2bQLCwpRNFnLV2sL47bff\n4OHhgaSkpBov9PPz02lgDcUWBtUHq8LJmJSXA66uwPbtYq97JTVqA6VZs2Zh48aNCAoKqnFW1Pff\nf69MlApjwqD6ys4GBg8Wewm8+y73CifDFRsLLF8OHDum/L0V2XHP2DBhUEPk54uxDEdHVoWT4erf\nH5g5E5g0Sfl7G+VaUkRqsLMT9RlFRcDQoWK7SyJD8ssvwNmzwJgx6sXAhEF0W2VV+EMPiW9yly+r\nHRHRHevWAXPmqNv6ZZcU0T0kCVi0CPjiC1aFk2G4elUMdp89K7Yk1gVFuqQGDBgg6xiRqdBogLfe\nAubNE0uJ/Pyz2hGRuausF9JVspCr1jqM4uJiFBUV4fLly/jrr7+0x69fv86tUckszJ8vFioMCRFd\nVbreL5moJmVlwPvvAzExakdyn4SxYcMGrF27FtnZ2ejVq5f2uK2tLebNm6eX4IjUNmEC8OCDwOjR\nYgHDESPUjojMTWws0KULcNfHsGrqHMOIjIzEggUL9BVPo3EMg3Th5ElRFf7WW2JaI5G+9O0LPP88\nMG6cbp+jWB3GDz/8UGU/DACYOnVq4yPUASYM0pVz50SB38yZwGuvsSqcdO/0afFF5eJF4PZSfjqj\nyFpSTz31FC5evAgfHx9YWFhojxtqwiDSlW7dgCNHgCFDgLw8VoWT7kVGiv26dZ0s5KqzheHh4YGU\nlBSj2TSJLQzStfx8MZbRqRPw8cesCifduHxZfElJTRXjaLqmyLRaLy8v5OTkKBYUkbGzswPi4oCS\nElaFk+5s3AiMGqWfZCFXnS2MoKAgnD59GgEBAWh6e7cOjUaD3bt36yXA+mILg/SlrEx0FyQni6XS\nuVc4KeXWLcDZWexB37Onfp6pyBjG4sWLq93MWLqniHTJ0hLYsEFUhffpA8THsyqclPHll6KyW1/J\nQi5Zs6TS09Nx/vx5BAcHo6ioCGVlZWjVqpU+4qs3tjBIDevWAStXipbGww+rHQ0Zuz59gJdeEl1S\n+qLIGMZHH32EsWPHYvbs2QCAzMxMjBw5UpkIiUzE/PnA6tWiKpx7hVNjnDwJZGYa5tbBdSaM999/\nH0eOHNG2KLp164Y///xT54ERGZvx44FPPxVV4bt2qR0NGavISFGoZ1nngIH+1ZkwmjZtqh3sBoCy\nsjKOYRDVIjhYdEvNmSMWjCOqj9xcYM8ew11NoM6E0bdvXyxduhRFRUU4cOAAxo4di2HDhukjNiKj\n5O8PHDoELFsmfjikRnJ99JFYAuSBB9SOpGZ1DnqXl5cjKioK8fHxAIBBgwZh5syZBtvK4KA3GYqc\nHLGUSN++wJo1rAqn+ystFbPs4uMBLy/9P1+RQW8LCws8++yz2LlzJ3bu3IlZs2Y1Olns2LEDPXr0\ngIWFBZKSkqq8tnz5cri5ucHd3V2bpADg1KlT8Pb2hpubGyIiIhr1fCJ96NgROHgQ+OknYPJk8YFA\nVJsdOwAPD3WShVx1Jow9e/bA19cXbdq0ga2tLWxtbRs9pdbb2xsxMTF48sknqxxPSUnB9u3bkZKS\ngri4OMydO1eb8ebMmYOoqCikpqYiNTUVcXFxjYqBSB8q9wq/eRMIC2NVONUuMhIw9O/CdSaMF154\nAR9//DGuXr2KgoICFBQU4Pr16416qLu7O7p161bteGxsLCZOnAgrKys4OTnB1dUVx48fR05ODgoK\nChAQEABALHy4i9NQyEg0aya+PTo7i73COcmQ7nX8uFg7KixM7Ujur86E4ejoiB49eqCJHjpgs7Oz\n4ejoWOXZWVlZ1Y47ODhw1z8yKhYWoip8yBCx7WtamtoRkSGJjBRbAt+1ILhBqnOm78qVKzFkyBD0\n69cP1reX5dRoNHjxxRfve11ISAhyc3OrHV+2bJnOZ1lVLmcCiLWwgoKCdPo8Ijk0GuDNN4H27cV2\nr6wKJwDIzgb27RPbsOpTQkICEhIS6nVNnQnj9ddfh62tLUpKSlBaj1G7AwcO1CsQQLQcMjIytL9n\nZmbC0dERDg4OyMzMrHLcwcGh1vvcnTCIDM28eSJpBAeLvcLvGcojM/Phh8DEiWK8S5/u/TK9ZMmS\nOq+pM2Hk5OQ06MNfrruncQ0fPhyTJk3Ciy++iKysLKSmpiIgIAAajQatWrXC8ePHERAQgE8++cSo\nto0lulflXPsxY8Tc+/BwtSMiNdy8Kf79f/+92pHIU+fARGhoKPbv36/oQ2NiYtC5c2ccO3YMYWFh\nGDJkCADA09MT48aNg6enJ4YMGYL169drp/CuX78eM2fOhJubG1xdXTF48GBFYyLSt+Bg0RUxdy6r\nws3V9u1iRVoPD7UjkafOwj0bGxsUFRXB2toaVrf3CdRoNI2eKaUrLNwjY5OaCgwaBDzzDPDPf3Kv\ncHMhSWJVgDffNIzZUYrsh1FYWKhYQERUnZsbcPSoqArPzQXWrmVVuDn44Qfg+nUxc85YyNoPIzY2\nFocOHYJGo0Hfvn0Nei0ptjDIWF27JvYK79BB7BV+15qfZILGjxf7XhjKcKycz846E8arr76KEydO\nYPLkyZAkCdu2bYO/vz+WL1+uaLBKYcIgY1ZSAkyaJCrCv/wSsLVVOyLShcxMMaU6PR0wlL3oFEkY\n3t7eOH36NCxuV5SUl5fDx8cHv/zyi3KRKogJg4xdebkYCD91StRqtG+vdkSktH/+EygsFAV7hkKR\nxQc1Gg3y8/O1v+fn5xvsSrVEpsDCQszNDw1lVbgpKi4Ws+LmzVM7kvqrc9D7tddeg5+fn7bA4+DB\ng1ixYoWu4yIya5VV4fb2oip8714x/ZKM3+efA488AtSwnJ7BkzXonZ2djRMnTkCj0SAgIAAdOnTQ\nR2wNwi4pMjVffCG+jbIq3PhJEuDrC6xcKaZSG5JGjWHcu09F5WmV3VF+fn5KxKg4JgwyRd9+K5aP\nYFW4cTt4EJg9G0hJMbyp041KGE2aNIGXlxfatm1b44XfG2gtOxMGmaqkJGDoUGDJEmDWLLWjoYYY\nPVoscf/882pHUl2jEsaaNWuwY8cO2NnZYfz48Rg5ciRsjWCOHxMGmbLz50VXxowZwL/+xapwY3Lp\nEuDnJ/5pY6N2NNUpMq32woUL2L59O3bt2oWHHnoI//rXv+Dj46NooEpiwiBTl5NzZ1+NyEjD69qg\nmr3yCnDrFvDf/6odSc0UmVbr4uKCESNGYODAgThx4gR+//13xQIkovqr3Cv811/FuMbNm2pHRHW5\ncQOIijLMrqj6qLWFceHCBWzbtg2xsbHo0qULxo8fj6FDh6J58+b6jrFe2MIgc1FSAkyeLJYUiYlh\nVbgh++gj4KuvgN271Y6kdo0e9Pb29kZ4eDha3a5dr7yhnB331MKEQeaksir85EmxVDqrwg2PJAHe\n3mJRyQED1I6mdo1arXbRokXaKbRcsZbIMFVWhS9eLBayi48HnJ3Vjoru9v33Imn07692JI0nq3DP\nmLCFQeZq/Xpg6VKx/hSrwg3HiBFimZfZs9WO5P4UmSVlbJgwyJzt2CEGVnfsAPr2VTsaungRCAgQ\nU2lbtlQ7mvtTZJYUERmPsWOBbdvEP2Ni1I6G3n8fePppw08WcrGFQWSCKqvCFy8Gnn1W7WjMU2Eh\n8NBDYpl6Jye1o6mbIlu0rl69usqNNBoNWrdujV69ehl0AR+ROfPzAw4dElXheXnAv//NqnB927pV\ndAsaQ7KQq84WxqRJk3Dy5EkMGzYMkiRh79698Pb2xqVLlzBmzBi88sor+opVFrYwiO7IzRV7hT/+\nuJjWeXsfNNKxigqgRw/ggw+A2ztDGDxFBr2feOIJ7Nu3Dza3Fz8pLCxEaGgo4uLi0KtXL/z222/K\nRawAJgyiqq5dEyvctm8vvvVyr3Ddi48HFi4ETp82npadIoPely9fhrW1tfZ3Kysr5OXloUWLFmjW\nrFnjoyQinWrdWhT1lZUBYWFiv3DSrchIYMEC40kWctU5hjF58mQEBgYiPDwckiRhz549mDRpEm7c\nuAFPT099xEhEjdSsmdiI6fnnRRcJq8J1JzUVOH5cTG02NbJmSZ04cQJHjx6FRqNBnz594O/vr4/Y\nGoRdUkS1kySxn8annwL79wNdu6odkemJiABatACWL1c7kvpRrHCvvLwcubm5KCsr0y4X0qVLF2Wi\nVBgTBlHdWBWuG9evi1lRP/0EdO6sdjT1o8i02nXr1mHJkiVo3749LO6aYvHLL780PkIiUsXcuaJL\nKiSEVeFK+vhjIDjY+JKFXHW2MFxcXJCYmFjrVq2Ghi0MIvm++w6YMEEsYDhqlNrRGLeKCsDdHdi0\nSUxjNjaKzJLq0qWLdnlzpezYsQM9evSAhYUFkpKStMfT09PRvHlz+Pr6wtfXF3PnztW+durUKXh7\ne8PNzQ0RERGKxkNkrvr3B+LigHnzxJ4N1HBxcWLr1T591I5Ed+rsknJ2dka/fv0QFhamnV7b2P0w\nvL29ERMTg9k1LN/o6uqK5OTkasfnzJmDqKgoBAQEaOtABg8e3OAYiEhgVbgyIiPFgLcp/93VmTC6\ndOmCLl26oLS0FKWlpdoNlBrD3d29Xufn5OSgoKAAAQEBAICpU6di165dTBhECnF1BY4eFXuF5+Wx\nKry+zp4FkpOBXbvUjkS36kwYixcv1kMYd6SlpcHX1xetW7fG22+/jccffxxZWVlwdHTUnuPg4ICs\nrCy9xkVk6jp0ABISRFX4xInAJ5+wKlyudevEIo+mXstca8KIiIjA2rVrMWzYsGqvaTQa7K5jc9qQ\nkBDk5uZWO75s2bIa7wkAnTp1QkZGBtq0aYOkpCSEh4fjzJkzdb2Hau5OckFBQQgylsVciFRWWRX+\n1FNi05+YGEDhIUyTk58PfPYZ0ICPKlUlJCQgISGhXtfUmjCmTJkCAHjppZcaFMyBAwfqfY21tbV2\nnMTPzw8uLi5ITU2Fg4MDMjMztedlZmbCwcGh1vvou1VEZEqaNQO2bxcD4f36iVoNe3u1ozJcmzeL\nrrxOndSOpH7u/TK9ZMmSOq+pNWFUVnPr+tv53dO4rly5gjZt2sDCwgIXL15EamoqunbtCjs7O7Rq\n1QrHjx9HQEAAPvnkEyxYsECncRGZMwsLUdy3ZImYIsqq8JqVlwPvvScq581BrQnD29u71os0Gg1+\n/vnnBj80JiYGCxYswJUrVxAWFgZfX1/s27cPBw8exBtvvAErKys0adIEGzZsgJ2dHQBg/fr1mD59\nOoqLixEaGsoBbyId02jEBkz29sATTwB79wLcAqeqvXuBtm2BwEC1I9GPWgv30tPTAYgPakB0UUmS\nhE9vp9KVK1fqJ8J6YuEekfJ27hTV4V98YTz7O+hDcDAwfboY8zF2iqwl5ePjg9OnT1c55uvrW2Ot\nhCFgwiDSDVaFV3XmjEgYly4Bd+0AYbQUqfSWJAlHjhzR/n706FF+IBOZof79xVjG/PnAhg1qR6O+\ndeuA554zjWQhV50tjFOnTmHGjBm4du0aAMDOzg6bN2+Gn5+fXgKsL7YwiHTrwgVg4EBg2jTg9ddN\nu7K5Nn/9Bbi4AL/9JupXTIFiy5sD0CaM1q1bNz4yHWLCINK93FwxlfSxx8SSGOZWFb5qFfDzz6K4\n0VQokjBKSkoQHR2N9PR0lJWVaW+8aNEi5SJVEBMGkX5cvy6qwh980LyqwsvKxFIqO3YAjzyidjTK\nUWQMY8SIEdi9ezesrKxgY2MDGxsbtGzZUrEgicg4tWolivokSVSFX7+udkT6sWePKNIzpWQhV50t\nDC8vL/z666/6iqfR2MIg0q/ycjEQfuyYWFbE1KvCg4LEYPeECWpHoixFWhiPPfZYo4r0iMi0WVgA\n778PjBgVQG6LAAAQ40lEQVQh9oK4eFHtiHTnp5+A1FRg9Gi1I1FHnS0MDw8PnD9/Hs7Ozmh6u5Oy\nsZXeusQWBpF6PvwQeOst060KnzkTcHYG/vUvtSNRniKD3pUV3/dycnJqaFw6xYRBpK7oaGDOHNOr\nCr9yBXBzA86dA9q1Uzsa5SnSJeXk5ISMjAx8//33cHJyQsuWLfmBTES1Gj1arHY7bpxIHqZi40Yx\nK8wUk4VcdbYwFi9ejFOnTuH333/HuXPnkJWVhXHjxuHo0aP6irFe2MIgMgzJycDQoaK477nn1I6m\ncW7dEqv17t4N+PqqHY1uyPnsrHPHvZiYGCQnJ6NXr14AxG53BQUFykRIRCbL17fqXuGLFhlvVfiu\nXWLswlSThVx1dkk1bdoUTZrcOe3GjRs6DYiITIeLi9grPDZWbMhUXq52RA0TGQlwCx4ZCWPs2LGY\nPXs28vPz8dFHH2HAgAGYOXOmPmIjIhNgby/2Cj97VtQu3LypdkT1k5QkVqQND1c7EvXJWksqPj4e\n8fHxAIBBgwYhJCRE54E1FMcwiAzTzZti34irV0UXj7HsFT59OuDuDrz6qtqR6Jaiiw8CwOXLl/Hg\ngw9CY8AdkUwYRIbL2KrC//wT6N4dOH9e7Kxnyho1rfbHH39EUFAQRo0aheTkZHh5ecHb2xv29vbY\nt2+f4sESkemrrAoPDxdV4RcuqB3R/X30ETBmjOknC7lqbWH06tULy5cvx7Vr1zBr1izExcWhd+/e\nOHv2LCZMmFBtFz5DwRYGkXGorAr/6ivDnH1UWipmRu3bBzz8sNrR6F6jWhjl5eUYOHAgxo4di44d\nO6J3794AAHd3d4PukiIi4/Dcc2L20aBBwPffqx1NddHRQLdu5pEs5Ko1YdydFJo1a6aXYIjIvIwe\nLZYQGT8e2LlT7Wiq4lTa6mrtkrKwsECLFi0AAMXFxWjevLn2teLiYu1mSoaGXVJExuf0aSAszHCq\nwhMTxdImFy6Yz26Cjar0LjfWChsiMjo+PoZVFR4ZKQoNzSVZyFWvabXGgC0MIuOVlyf2Cu/dG1i3\nTp0P7JwcwNNT7OvRpo3+n68WRVarJSLSl8qq8N9/F+MaJSX6j2HDBvFsc0oWcrGFQUQGp7Iq/MoV\nsQ6VvqrCb94EHnoI+O470cowJ2xhEJFRatoU2LZNfGj37Qvk5urnuV98AXh7m1+ykIsJg4gMkoUF\n8N57wMiR+qkKlyRg7VpOpb0fVRLGwoUL4eHhgZ49e2LUqFG4du2a9rXly5fDzc0N7u7u2gUPAeDU\nqVPw9vaGm5sbIiIi1AibiPRMoxEzpl5+GXjiCbEpk64cOwb8/TcQGqq7Zxg7VRLGwIEDcebMGfz0\n00/o1q0bli9fDgBISUnB9u3bkZKSgri4OMydO1fbpzZnzhxERUUhNTUVqampiIuLUyN0IlLB7Nmi\ntaHLqvDISLEwIqfS1k6VhBESEqLdlCkwMBCZmZkAgNjYWEycOBFWVlZwcnKCq6srjh8/jpycHBQU\nFCAgIAAAMHXqVOzatUuN0IlIJaNG6a4qPCsL2L8fmDFD2fuaGtXHMDZt2oTQ223A7OxsODo6al9z\ndHREVlZWteMODg7IysrSe6xEpK6gICA+HoiIAD74QLn7fvABMGkS0Lq1cvc0RXXu6d1QISEhyK1h\nasOyZcswbNgwAMDSpUthbW2NSZMm6SoMIjIxPj7A4cN3qsLfeKNxVeElJcDGjaLSnO5PZwnjwIED\n9319y5Yt+Prrr/Htt99qjzk4OCAjI0P7e2ZmJhwdHeHg4KDttqo87uDgUOu9Fy9erP1zUFAQgoKC\n6v8GiMhgde0KHDkiqsLz8sT4RkPHHrZtA/z8xEZJ5iQhIQEJCQn1u0hSwb59+yRPT0/p8uXLVY6f\nOXNG6tmzp3Tz5k3p4sWLUteuXaWKigpJkiQpICBAOnbsmFRRUSENGTJE2rdvX433VuktEZEKrl2T\npP79JWn0aEkqLq7/9RUVkuTjI0lff618bMZGzmenKpXebm5uKC0txQMPPAAAePTRR7F+/XoAostq\n06ZNsLS0xNq1azFo0CAAYlrt9OnTUVxcjNDQUERGRtZ4b1Z6E5mXmzeBKVOAy5fFXuH1GYc4fBh4\n5hng7FmgieojuupSfE9vY8CEQWR+ysvFQPjRo2KHvA4d5F03dizw5JNiOq25Y8IgIrMhScDbbwNb\ntoiZVC4u9z//jz/EAPqlS4CtrV5CNGiN2g+DiMiYaDRiAyZ7e1EVvnfv/fcKX78emDqVyaI+2MIg\nIpPz5Zdi575t24D+/au/XlQkVqX98UfA1VX/8RkirlZLRGZp1Chgxw5gwoSaq8I/+wwIDGSyqC92\nSRGRSerbFzhwQOwVfvkyMGeOOC5JYt2o1avVjc8YMWEQkcnq2fPOXuG5ucDixWJHv7IyIDhY7eiM\nDxMGEZm0rl3FdNvKqvDsbDGNtjHLiZgrDnoTkVm4fl2MbZw8CWRmAjY2akdkWFiHQUR0l5s3gbQ0\nwN1d7UgMDxMGERHJwmm1RESkGCYMIiKShQmDiIhkYcIgIiJZmDCIiEgWJgwiIpKFCYOIiGRhwiAi\nIlmYMIiISBYmDCIikoUJg4iIZGHCICIiWZgwiIhIFiYMIiKShQmDiIhkYcIgIiJZmDCIiEgWJgwi\nIpJFlYSxcOFCeHh4oGfPnhg1ahSuXbsGAEhPT0fz5s3h6+sLX19fzJ07V3vNqVOn4O3tDTc3N0RE\nRKgRNhGRWVMlYQwcOBBnzpzBTz/9hG7dumH58uXa11xdXZGcnIzk5GSsX79ee3zOnDmIiopCamoq\nUlNTERcXp0boqktISFA7BJ0x5fcG8P0ZO1N/f3KokjBCQkLQpIl4dGBgIDIzM+97fk5ODgoKChAQ\nEAAAmDp1Knbt2qXzOA2RKf9Ha8rvDeD7M3am/v7kUH0MY9OmTQgNDdX+npaWBl9fXwQFBeHIkSMA\ngKysLDg6OmrPcXBwQFZWlt5jJSIyZ5a6unFISAhyc3OrHV+2bBmGDRsGAFi6dCmsra0xadIkAECn\nTp2QkZGBNm3aICkpCeHh4Thz5oyuQiQiovqQVLJ582bpsccek4qLi2s9JygoSDp16pSUnZ0tubu7\na49/9tln0uzZs2u8xsXFRQLAH/7whz/8qcePi4tLnZ/bOmth3E9cXBxWrVqFgwcPolmzZtrjV65c\nQZs2bWBhYYGLFy8iNTUVXbt2hZ2dHVq1aoXjx48jICAAn3zyCRYsWFDjvc+fP6+vt0FEZFY0kiRJ\n+n6om5sbSktL8cADDwAAHn30Uaxfvx7R0dF44403YGVlhSZNmuDNN99EWFgYADGtdvr06SguLkZo\naCgiIyP1HTYRkVlTJWEQEZHxUX2WlFLi4uLg7u4ONzc3rFy5Uu1wFPX000/D3t4e3t7eaoeiExkZ\nGejXrx969OgBLy8vk2s9lpSUIDAwED4+PvD09MRrr72mdkiKKy8vh6+vr3ZCiylxcnLCww8/DF9f\nX+3UflOSn5+PMWPGwMPDA56enjh27FjtJ9dvqNowlZWVSS4uLlJaWppUWloq9ezZU0pJSVE7LMUc\nOnRISkpKkry8vNQORSdycnKk5ORkSZIkqaCgQOrWrZtJ/fuTJEm6ceOGJEmSdOvWLSkwMFA6fPiw\nyhEpa/Xq1dKkSZOkYcOGqR2K4pycnKSrV6+qHYbOTJ06VYqKipIkSfz3mZ+fX+u5JtHCSExMhKur\nK5ycnGBlZYUJEyYgNjZW7bAU88QTT6BNmzZqh6EzHTp0gI+PDwDAxsYGHh4eyM7OVjkqZbVo0QIA\nUFpaivLycu34nSnIzMzE119/jZkzZ0Iy0R5uU31f165dw+HDh/H0008DACwtLdG6detazzeJhJGV\nlYXOnTtrf3d0dGRhn5FKT09HcnIyAgMD1Q5FURUVFfDx8YG9vT369esHT09PtUNSzD/+8Q+sWrVK\nu3qDqdFoNAgODoa/vz82btyodjiKSktLQ7t27TBjxgz4+flh1qxZKCoqqvV8k/g3rNFo1A6BFFBY\nWIgxY8Zg7dq1sLGxUTscRTVp0gSnT59GZmYmDh06ZDLLTHz11Vdo3749fH19TfZb+NGjR5GcnIx9\n+/bh/fffx+HDh9UOSTFlZWVISkrC3LlzkZSUhJYtW2LFihW1nm8SCcPBwQEZGRna3zMyMqosJUKG\n79atWxg9ejSeeuophIeHqx2OzrRu3RphYWE4efKk2qEo4ocffsDu3bvh7OyMiRMn4rvvvsPUqVPV\nDktRHTt2BAC0a9cOI0eORGJiosoRKcfR0RGOjo545JFHAABjxoxBUlJSreebRMLw9/dHamoq0tPT\nUVpaiu3bt2P48OFqh0UySZKEZ555Bp6ennjhhRfUDkdxV65cQX5+PgCguLgYBw4cgK+vr8pRKWPZ\nsmXIyMhAWloatm3bhv79+2Pr1q1qh6WYoqIiFBQUAABu3LiB+Ph4k5qt2KFDB3Tu3Bnnzp0DAHzz\nzTfo0aNHreerUumtNEtLS7z33nsYNGgQysvL8cwzz8DDw0PtsBQzceJEHDx4EFevXkXnzp3x5ptv\nYsaMGWqHpZijR4/if//7n3bqIgAsX74cgwcPVjkyZeTk5GDatGmoqKhARUUFpkyZggEDBqgdlk6Y\nWvdwXl4eRo4cCUB030yePBkDBw5UOSplrVu3DpMnT0ZpaSlcXFywefPmWs9l4R4REcliEl1SRESk\ne0wYREQkCxMGERHJwoRBRESyMGEQEZEsTBhERCQLEwaZLV0vP7JmzRoUFxfX63l79uwxueX5yXSw\nDoPMlq2trbaKVxecnZ1x8uRJtG3bVi/PI9I1tjCI7nLhwgUMGTIE/v7+ePLJJ/H7778DAKZPn46I\niAj06dMHLi4uiI6OBiBWoZ07dy48PDwwcOBAhIWFITo6GuvWrUN2djb69etXpar73//+N3x8fPDo\no4/izz//rPb8LVu2YP78+fd95t3S09Ph7u6OGTNmoHv37pg8eTLi4+PRp08fdOvWDSdOnNDFXxOZ\nK11vzkFkqGxsbKod69+/v5SamipJkiQdO3ZM6t+/vyRJkjRt2jRp3LhxkiRJUkpKiuTq6ipJkiTt\n2LFDCg0NlSRJknJzc6U2bdpI0dHRkiRV33hHo9FIX331lSRJkvTyyy9Lb7/9drXnb9myRZo3b959\nn3m3tLQ0ydLSUvr111+liooKqVevXtLTTz8tSZIkxcbGSuHh4fX9ayGqlUmsJUWkhMLCQvz4448Y\nO3as9lhpaSkAsUZS5Sq6Hh4eyMvLAwAcOXIE48aNAwDtXhe1sba2RlhYGACgV69eOHDgwH3jqe2Z\n93J2dtYuGNejRw8EBwcDALy8vJCenn7fZxDVBxMG0W0VFRWws7NDcnJyja9bW1tr/yzdHvrTaDRV\n9oGQ7jMkaGVlpf1zkyZNUFZWVmdMNT3zXk2bNq1y38pr5D6DSC6OYRDd1qpVKzg7O2Pnzp0AxAf0\nzz//fN9r+vTpg+joaEiShLy8PBw8eFD7mq2tLa5fv16vGO6XcIjUxoRBZquoqAidO3fW/qxZswaf\nfvopoqKi4OPjAy8vL+zevVt7/t1Ld1f+efTo0XB0dISnpyemTJkCPz8/7Z7Izz77LAYPHqwd9L73\n+pqWAr/3eG1/vvea2n43teXGSV2cVkvUSDdu3EDLli1x9epVBAYG4ocffkD79u3VDotIcRzDIGqk\noUOHIj8/H6WlpVi0aBGTBZkstjCIiEgWjmEQEZEsTBhERCQLEwYREcnChEFERLIwYRARkSxMGERE\nJMv/A+qBKcq11Z1HAAAAAElFTkSuQmCC\n",
       "text": [
        "<matplotlib.figure.Figure at 0x5fd1a70>"
       ]
      }
     ],
     "prompt_number": 25
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 3.3.9,Page No.112"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "import numpy as np\n",
      "%matplotlib inline\n",
      "\n",
      "#Initilization of Variables\n",
      "\n",
      "F_F=6 #KN #Force at  F\n",
      "w1=w2=w=3 #KN.m #u.d.l\n",
      "M_D=24 #KN.m \n",
      "L_AB=L_CD=L_DE=L_EF=4 #m #Length of AB,CD,DE,EF\n",
      "L_BC=2 #m #Length of BC\n",
      "L=18 #m #Span of Beam\n",
      "\n",
      "#Calculations\n",
      "\n",
      "#LEt R_B and R_E be the Reactions at B & E respectively\n",
      "#R_B+R_E=42\n",
      "\n",
      "#Taking Moment At Pt B,M_B\n",
      "R_E=(F_F*(L_BC+L_CD+L_DE+L_EF)+w*(L_CD+L_DE)*((L_CD+L_DE)*2**-1+L_BC)-w*L_AB*L_AB*2**-1-M_D)*(L_BC+L_CD+L_DE)**-1\n",
      "R_B=42-R_E #KN\n",
      "\n",
      "#Shear Force Calculations\n",
      "\n",
      "#S.F aT F\n",
      "V_F1=0 #KN \n",
      "V_F2=-F_F #KN\n",
      "\n",
      "#S.F at E\n",
      "V_E1=V_F2 #KN\n",
      "V_E2=V_E1+R_E #KN\n",
      "\n",
      "#S.F aT C\n",
      "V_C=V_E2-w*(L_CD+L_DE) #KN\n",
      "\n",
      "#S.F at B\n",
      "V_B1=V_C #KN \n",
      "V_B2=V_C+R_B #KN\n",
      "\n",
      "#S.F At A\n",
      "V_A=V_B2-w*L_AB #KN\n",
      "\n",
      "#Bending Moment Calculations\n",
      "\n",
      "#B.M At F\n",
      "M_F=0\n",
      "\n",
      "#B.M At E\n",
      "M_E=F_F*L_EF #KN.m\n",
      "\n",
      "#B.M At D\n",
      "M_D1=F_F*(L_DE+L_EF)-R_E*L_DE+w*L_DE*L_DE*2**-1 #KN.m\n",
      "M_D2=M_D1-M_D\n",
      "\n",
      "#B.M At C\n",
      "M_C=F_F*(L_CD+L_DE+L_EF)-R_E*(L_CD+L_DE)+w*(L_CD+L_DE)*(L_CD+L_DE)*2**-1-M_D\n",
      "\n",
      "#B.M At B\n",
      "M_B=F_F*(L_BC+L_CD+L_DE+L_EF)-R_E*(L_BC+L_CD+L_DE)-M_D+w*(L_CD+L_DE)*((L_CD+L_DE)*2**-1+L_BC)\n",
      "\n",
      "#B.M At A\n",
      "M_A=w*L_AB*L_AB*2**-1-R_B*L_AB+w*(L_CD+L_DE)*((L_CD+L_DE)*2**-1+L_BC+L_AB)-R_E*(L_AB+L_BC+L_CD+L_DE)+F_F*L-M_D\n",
      "\n",
      "#Result\n",
      "print \"The Shear Force and Bending Moment Diagrams are the results\"\n",
      "\n",
      "#Plotting the Shear Force Diagram\n",
      "\n",
      "X1=[0,0,L_EF,L_EF,L_EF+L_DE+L_CD,L_EF+L_DE+L_CD+L_BC,L_EF+L_DE+L_CD+L_BC,L_EF+L_DE+L_CD+L_BC+L_AB]\n",
      "Y1=[V_F1,V_F2,V_E1,V_E2,V_C,V_B1,V_B2,V_A]\n",
      "Z1=[0,0,0,0,0,0,0,0]\n",
      "plt.plot(X1,Y1,X1,Z1)\n",
      "plt.xlabel(\"Length x in m\")\n",
      "plt.ylabel(\"Shear Force in kN\")\n",
      "plt.show()\n",
      "\n",
      "#Plotting the Bendimg Moment Diagram\n",
      "\n",
      "X2=[0,L_EF,L_DE+L_EF,L_DE+L_EF,L_CD+L_DE+L_EF,L_CD+L_DE+L_EF+L_BC,L_CD+L_DE+L_EF+L_BC+L_AB]\n",
      "Y2=[M_F,M_E,M_D1,M_D2,M_C,M_B,M_A]\n",
      "Z2=[0,0,0,0,0,0,0]\n",
      "plt.plot(X2,Y2,X2,Z2)\n",
      "plt.xlabel(\"Lenght in m\")\n",
      "plt.ylabel(\"Bending Moment in kN.m\")\n",
      "plt.show()"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The Shear Force and Bending Moment Diagrams are the results\n"
       ]
      },
      {
       "metadata": {},
       "output_type": "display_data",
       "png": "iVBORw0KGgoAAAANSUhEUgAAAYgAAAEPCAYAAABY9lNGAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3X9UVGX+B/D3gGiFsmIpGkMHEomfwfg7W2pQ8EcG4e9w\nS0WpVrPdVo9ppzZxK9S0zbJts46K7bZpLiFUSuaXRmsL0cBvbfZVVCj8AZVEamQIPN8/pplAZpgB\n584zc+/7dc4ch8sM93PoaT48977vc3VCCAEiIqLL+MgugIiIPBMbBBER2cQGQURENrFBEBGRTWwQ\nRERkExsEERHZJLVBzJ07F0FBQYiLi7Nuy87Ohl6vh8FggMFgQFFRkcQKiYi0S2qDyMzMbNcAdDod\nFi1ahPLycpSXl2P8+PGSqiMi0japDSIxMRGBgYHttvPaPSIi+TzyHMT69esRHx+PefPmob6+XnY5\nRESa5HENYv78+aisrMShQ4cwYMAALF68WHZJRESa1E12AZfr16+f9XlWVhZSU1PbvSY8PBzHjx93\nZ1lERF5v4MCBOHbsmNOv97gZxJkzZ6zP8/Pz2yScLI4fPw4hhMc9li9fLr0G1sSatFgXa3Lu0dk/\nrKXOIDIyMrB371589913CAkJwYoVK2AymXDo0CHodDqEhYVhw4YNMkskItIsqQ3ijTfeaLdt7ty5\nEiohIqLLedwhJm9mNBpll9AOa3IOa3KeJ9bFmpShE0J43UUHOp0OXlg2EZFUnf3s5AyCiIhsYoMg\nIiKb2CCIiMgmNggiIrKJDYKIiGxigyAiIpvYIIiIyCY2CCIisokNgoiIbGKDICIim9ggiIjIJjYI\nIiKyiQ2CiIhsYoMgIiKb2CCIiMgmNggV+5//AT7/XHYVRMriOFcOG4SKbdkCjB8PnDoluxIi5WzZ\nAowbx3GuBDYIlRswALjrLqChQXYlRMq5/nqOcyWwQajcQw8B0dFAZibAu7SSWlnG+Zw5QEuL7GrU\ngw1C5XQ64JVXgK+/Bv7yF9nVECnDMs6rqznOXYkNQgOuugrYsQPYvBl4803Z1RApwzLOc3M5zl2l\nm+wCyD2CgoCCAiAlBbjxRmDoUNkVEble63EeFgYMGya7Iu/GGYSGxMebp+GTJjHxQerFce46nEFo\nTHo68H//Z0587NsHXHON7IqIXI/j3DU4g9CgpUuZbCL1s4xzJpu6jg1Cg5hsIi1gsunKSW0Qc+fO\nRVBQEOLi4qzb6urqkJKSgoiICIwdOxb19fUSK1QvJptIC5hsujJSG0RmZiaKiorabFu1ahVSUlJw\n9OhRjBkzBqtWrZJUnfpZEh8LFwIHD8quhkgZrcf5gQOyq/EuUhtEYmIiAgMD22wrLCzE7NmzAQCz\nZ8/Gjh07ZJSmGUx8kBZwnHeNx6WYamtrERQUBAAICgpCbW2t5IrUj4kP0gKO887z6JPUOp0OOp1O\ndhmawGQTaQGTTZ3jcTOIoKAg1NTUoH///jhz5gz69etn83XZ2dnW50ajEUaj0T0FqpQl8ZGUZE58\nLF8uuyIi17t8nLf6GFElk8kEk8nU5fd7XINIS0vDli1bsHTpUmzZsgXp6ek2X5et9v+yElgSHyNG\nAFFRwPTpsisicr3W4zw6Wt3j/PI/nlesWNGp90s9xJSRkYFRo0bhyJEjCAkJwebNm7Fs2TK8//77\niIiIQHFxMZYtWyazRM1hsom0gMkm50idQbzxxhs2t+/Zs8fNlVBrrRMfJSVAcLDsiohcr/U437+f\n49wWjzvERJ6BiQ/SgvR04MsvOc7t8egUE8nFZBNpwbJl5nNuTDa1xwZBdnHNJtICnQ549VWu2WQL\nDzFRh5hsIi2wjPPhw9WfbOoMNghyiHejIy0ICgIKC3k3utZ4iImcwrVsSAs4ztviDIKcxmQTaQGT\nTb/iDII6hckm0gImm8zYIKhTmGwiLWCyyYyHmKjTmGwiLWCyiQ2CuojJJtICrSebeIiJuoyJD9IC\nLY9zziDoijDZRFqg1WQTZxB0xZhsIi3QYrKJDYKuGJNNpAVaTDbxEBO5BJNNpAVaSzaxQZDLMNlE\nWqClZBMPMZFLaTnxQdqhlXHOGQS5HJNNpAVaSDZxBkGKYLKJtEDtySY2CFIEk02kBWpPNvEQEymG\nySbSAjUnm9ggSFFMNpEWqDXZxENMpDitJD5I29Q4zjmDILdgsom0QG3JJs4gyG2YbCItUFOyiQ2C\n3IbJJtICNSWbeIiJ3Kp14oPJJlIrtSSb7DaIpKQkm9t1Oh0AoLi4WJmKSPVaJz6YbCK1UkOyyW6D\nWLNmjfW5pSmUlJRg9erV6Nevn+KFhYaGIiAgAL6+vvDz80Npaani+yT3aZ34KCkBgoNlV0Tkeq3H\n+f793jfO7TaIoa3+rDOZTHjqqafw008/YcOGDZgwYYLihel0OphMJvTp00fxfZEcakt8ENnizeO8\nw3MQRUVFePrpp9G9e3c8/vjjdg87KUUw6qJ6y5YBhw+bk01bt5pP8BGpjWWcz5ljHuc+XhIPslvm\nsGHD8Pvf/x4zZszAM888g4CAAJSVlVkfStPpdEhOTsbQoUPx6quvKr4/ksOS+GCyidTMW5NNdmcQ\n/v7+8Pf3R15eHvLy8tp9/4MPPlC0sP/85z8YMGAAvv32W6SkpCAyMhKJiYnW72dnZ1ufG41GGI1G\nResh5TDZRFogI9lkMplgMpm6/H6dcHAcp6WlBT6XzYcuXryIq666qss77awVK1agZ8+eWLx4MQDz\n7IKHnxybNQtITjb/6w3+93/NiY+dO5lsIud56zh/9133J5s6+9np8EhYVlZWm68vXLiAO+64o/OV\ndUJDQwPOnz8PAPjxxx+xe/duxMXFKbpPkk+Na9kQXc6bxrnDBhEcHIwFCxYAAL7//nuMHTsW9957\nr6JF1dbWIjExEQkJCRgxYgTuvPNOjB07VtF9kmdITwcWLDAnPhoaZFdDpIz0dODBBz1/nDs8xAQA\nS5Yswblz5/Dpp59i2bJlmDp1qjtqs4uHmJzjbVNvCyHMNTc2MtlEjnn7OP/5Z/clm1x2iMlycvqt\nt97CyJEjsX//fhgMBuh0Orz11lsuKZbIFiabSAu8IdlkN8X09ttvW6+gBoCEhAQ0NTXhnXfeAQBM\nnjxZ+epIs5hsIi3w9DWb7DaI3NxcN5ZB1B7XbCItaH3XRU9bs8lLrucjrfKmxAdRVyUkmA83edo4\n53Lf5PG8eS0bImd54jjnDIK8guUuXbwbHamZp92NzuEM4uLFi8jLy0NVVRWampoAmKNSTzzxhOLF\nEVlYEh9JSebEx/Llsisicr3Lx3mrFYWkcNgg7rrrLvTu3RtDhgxx6/IaRJdjsom0wJOSTQ4bxKlT\np/Dee++5oxYih5hsIi3wlGSTw3MQo0aNwmeffeaOWoicwmQTaYEnJJscziA+/PBDbN68GWFhYejR\nowcA8zkINg2SyRMTH0SuJnucO2wQu3btckcdRJ3Gu9GRFsi8G53dXZ07dw4AEBAQYPNBJBvXbCIt\nkLlmk90ZREZGBt59910MHjy4zZpMgPkQ04kTJxQvjsgRJptIC2Qlm+w2iHfffRcAUFVV5Z5KiLqI\nySbSAhnJJl5JTarAZBNpgbuTTVyLiVRDduKDyB3cOc45gyBV4ZpNpAXuWrPJqQZhuRYCAL799ltU\nVlYqVxHRFWCyibTAXckmhw0iOzsbzzzzDFauXAkAaGxsxD333KNcRURXyJL42LQJePNN2dUQKcMy\nzjdvVm6cO2wQ+fn5KCgogL+/PwAgODgY58+fV6YaIhexJJsWLgQOHpRdDZEyLMmmBx8EDhxw/c93\n2CB69OgBn1aX7v3444+ur4JIAUw2kRYomWxy2CCmTZuGBx54APX19XjllVcwZswYZGVlubYKIoWk\npwMLFpgTHw0NsqshUkZ6unkW4epxrhPCcdZj9+7d2L17NwBg3LhxSElJcV0FXaDT6eBE2Zo3axaQ\nnGz+V8uEMP8OGhu5ZpMacZybWcb5zz/bX7Ops5+dDmcQlZWVSExMxNq1a7F27Vr89re/5dXV5FWY\nbCItUCLZ5LBBTJ06Fb6+vr++wccHU6dOdc3eidyEySbSAlcnmxxeSd3c3Izu3btbv+7RowcuXbp0\n5XsmcjOu2URa4Mo1mxzOIK677joUFBRYvy4oKMB1113X9T0SScRkE2mBq5JNDhvEyy+/jJycHISE\nhCAkJASrVq3Chg0bur5HJxQVFSEyMhKDBg3C6tWrFd0XaQ+TTaQFrkg2dXiIqbm5GS+//DL2799v\nvTiuV69eXduTk5qbm7Fw4ULs2bMHwcHBGDZsGNLS0hAVFaXofklbeDc60oLL70bXWR3OIHx9ffHR\nRx9BCIFevXop3hwAoLS0FOHh4QgNDYWfnx/uvvvuNoe4iFyBySbSgitNNjk8SZ2QkIC77roL06ZN\nwzW/rCur0+kwefLkzu/NCadOnUJISIj1a71ej/379yuyL9I23o2OtKD1OO8shw3i4sWL6NOnD4qL\ni9tsV6pBXH57U7uvM7Z6XSiAMEXK8W4DgX9UArNXyC7Ew80FZnwJzODvyTtxnNtXCaDql+dhAL7u\n3NsdNojc3NxOVnRlgoODUV1dbf26uroaer2+3euEiVdSO8IrTJ23Ywfw0ENASQkQHCy7GuoMjnPn\nOfsHuIXDFFN1dTUmTZqEvn37om/fvpgyZQpOnjzZ5QIdGTp0KCoqKlBVVYXGxkZs27YNaWlpiu2P\nCGCyicgWhw0iMzMTaWlpOH36NE6fPo3U1FRkZmYqVlC3bt3w4osvYty4cYiOjsaMGTOYYCK34N3o\niNpy2CC+/fZbZGZmws/PD35+fpgzZw6++eYbRYuaMGECjhw5gmPHjuHRRx9VdF9EFkw2EbXlsEFc\ne+21+Mc//oHm5mY0NTXhn//8J6+kJtXimk1Ev3LYIDZt2oQ333wT/fv3x4ABA7B9+3br/amJ1Ih3\noyMys5tiKikpwciRIxEaGoq3337bnTURSdd6zSYmm0ir7M4g5s+fb31+yy23uKUYIk/CZBNpncND\nTID5YjkiLWKyibTMboNobm5GXV0dzp49a33e+kGkBUw2kZbZPQdx7tw5DBkyBAAghLA+B8xX4504\ncUL56og8ANdsIq2y2yB432miX/FudKRFTp2DICLejY60x+FifUT0q/R04MsvzcmmffuAX1bAJ1Il\nziCIOonJJtKKDhtEU1MTbrrpJnfVQuQVmGwireiwQXTr1g2RkZH46quv3FUPkVfgmk2kBQ7PQdTV\n1SEmJgbDhw+Hv78/AHPMtbCwUPHiiDwZk02kdg4bxJNPPumOOoi8EtdsIjVz2CCMRqMbyiDyXkw2\nkVo5TDF98sknGDZsGHr27Ak/Pz/4+PggICDAHbUReQ0mm0iNHDaIhQsX4l//+hcGDRqEixcvYuPG\njViwYIE7aiPyGkw2kRo5dR3EoEGD0NzcDF9fX2RmZqKoqEjpuoi8DpNNpDYOz0H4+/vj559/Rnx8\nPB555BH0798fgnNoIpuYbCI1cTiDeO2119DS0oIXX3wR11xzDU6ePIm8vDx31EbklbhmE6mFwxlE\naGgoGhoaUFNTg+zsbDeUROT9mGwiNXA4gygsLITBYMC4ceMAAOXl5UhLS1O8MCJvx2QTeTuHDSI7\nOxv79+9HYGAgAMBgMPBmQUROYLKJvJ3DQ0x+fn7o3bt3m20+PlwElsgZvBsdeTOHDSImJgavv/46\nmpqaUFFRgRdeeAGjRo1yR21EqsBkE3krh1OB9evX44svvkCPHj2QkZGBgIAArFu3zh21EakGk03k\njZy6DiInJwc5OTnuqIdItZhsIm/jcAZx5MgR3HfffUhJSUFSUhKSkpIwevRoxQrKzs6GXq+HwWCA\nwWDgVdukKkw2kTdxOIOYNm0a5s+fj6ysLPj6+gIw3w9CKTqdDosWLcKiRYsU2weRLJZkU1KSOdm0\nfLnsiojscyrFNH/+fHfUYsWlPEjNmGwib2H3EFNdXR3Onj2L1NRU/O1vf8OZM2dQV1dnfShp/fr1\niI+Px7x581BfX6/ovohksCSbFi4EDh6UXQ2RbXZnEIMHD25zKGnt2rXW5zqd7ooulktJSUFNTU27\n7U8//TTmz5+PJ554AgDw5z//GYsXL8bGjRvbvbb1sh9Go5E3NiKvw7vRkdJMJhNMJlOX368THnw8\np6qqCqmpqfj888/bbNfpdDwM5YRZs4DkZPO/5LlWrgTy8phs6iqOc+d19rPT7iGmAwcO4MyZM9av\nt2zZgrS0NPzhD39Q9BBT633m5+cjLi5OsX0ReQImm8hT2W0Q999/P3r06AEA2LdvH5YtW4bZs2cj\nICAA999/v2IFLV26FDfffDPi4+Oxd+9ePPfcc4rti8gTcM0m8lR2z0G0tLSgT58+AIBt27bhgQce\nwJQpUzBlyhTEx8crVtBrr72m2M8m8lRMNpEnsjuDaG5uxqVLlwAAe/bsQVJSkvV7TU1NyldGpDFM\nNpGnsTuDyMjIwO23347rrrsO11xzDRITEwEAFRUV7VZ3JSLXYLKJPIndBvHYY49h9OjRqKmpwdix\nY61LfAshsH79ercVaM+MGbIr8HwlJeYVRMm7cM0m8hQeHXO1R6fTYetWrytbinHjAE74vI8Q5thm\nYyOwdav5RDbZxpir8zobc3W41Ian4gyC1IxrNpEn8NoGQaR2TDaRbGwQRB4sKAgoKODd6EgO3lya\nyMMlJJgPN/FudORunEEQeQEmm0gGziCIvATXbCJ3Y4Mg8hJcs4ncjYeYiLwIk03kTmwQRF6GySZy\nFx5iIvJCTDaRO3AGQeSlmGwipXEGQeTFmGwiJbFBEHkxJptISTzEROTlmGwipbBBEKkAk02kBB5i\nIlIJJpvI1TiDIFIRJpvIlTiDIFIZJpvIVdggiFSGySZyFR5iIlIhJpvIFdggiFSKySa6UjzERKRi\nTDbRleAMgkjlmGyiruIMgkgDmGyirpDSILZv346YmBj4+vqirKyszfdWrlyJQYMGITIyErt375ZR\nHpHqMNlEXSHlEFNcXBzy8/PxwAMPtNl++PBhbNu2DYcPH8apU6eQnJyMo0ePwseHEx2iK8VkE3WW\nlE/eyMhIREREtNteUFCAjIwM+Pn5ITQ0FOHh4SgtLZVQIZE6WZJNDz4IHDwouxrydB71p/np06eh\n1+utX+v1epxi9ILIpZhsImcpdogpJSUFNTU17bbn5OQgNTXV6Z+j0+lcWRYRgckmco5iDeL999/v\n9HuCg4NRXV1t/frkyZMIDg62+drs7Gzrc6PRCKPR2On9EWnZsmXA4cPmZNPWreYT2aQuJpMJJpOp\ny+/XCSEv9JaUlIS1a9diyJAhAMwnqWfOnInS0lLrSepjx461m0XodDpILJtINS5eBJKSgPHjgeXL\nZVfTNbNmAcnJ5n+pY5397JRyDiI/Px8hISEoKSnBxIkTMWHCBABAdHQ0pk+fjujoaEyYMAEvvfQS\nDzERKciSbNq0CXjzTdnVkKeROoPoKs4giFzr0CHzmk27dnnfmk2cQTjPK2YQRORZmGwiW7gWExEB\nYLKJ2uMMgoisuGYTtcYGQURWXLOJWuMhJiJqg2s2kQUbBBG1w7vREcBDTERkB5NNxBkEEdnFZJO2\ncQZBRB1iskm7OIMgog5Zkk1JScCKFcBjj8muqK2WFtkVqBeX2iAip9TWAomJQGWl7Era27EDmDhR\ndhWer7OfnWwQREQawbWYiIjIJdggiIjIJjYIIiKyiQ2CiIhsYoMgIiKb2CCIiMgmNggiIrKJDYKI\niGxigyAiIpvYIIiIyCY2CCIisokNgoiIbGKDICIim9ggiIjIJjYIIiKyiQ2CiIhsktIgtm/fjpiY\nGPj6+qKsrMy6vaqqCldffTUMBgMMBgMWLFggozwiIoKkBhEXF4f8/Hzcdttt7b4XHh6O8vJylJeX\n46WXXpJQXdeZTCbZJbTDmpzDmpzniXWxJmVIaRCRkZGIiIiQsWtFeeKAYE3OYU3O88S6WJMyPO4c\nRGVlJQwGA4xGIz766CPZ5RARaVY3pX5wSkoKampq2m3PyclBamqqzfdcf/31qK6uRmBgIMrKypCe\nno4vvvgCvXr1UqpMIiKyR0hkNBrFp59+2unvDxw4UADggw8++OCjE4+BAwd26jNasRmEs4QQ1uff\nffcdAgMD4evrixMnTqCiogI33nhju/ccO3bMnSUSEWmSlHMQ+fn5CAkJQUlJCSZOnIgJEyYAAPbu\n3Yv4+HgYDAZMmzYNGzZsQO/evWWUSESkeTrR+k94IiKiX3hcismRoqIiREZGYtCgQVi9erXsclBd\nXY2kpCTExMQgNjYWL7zwguySrJqbm2EwGOyGAmSor6/H1KlTERUVhejoaJSUlMguCStXrkRMTAzi\n4uIwc+ZM/Pzzz26vYe7cuQgKCkJcXJx1W11dHVJSUhAREYGxY8eivr5eek1LlixBVFQU4uPjMXny\nZPzwww/Sa7J49tln4ePjg7q6OrfW1FFd69evR1RUFGJjY7F06VLpNZWWlmL48OEwGAwYNmwYDhw4\n0PEP6dxpZbmamprEwIEDRWVlpWhsbBTx8fHi8OHDUms6c+aMKC8vF0IIcf78eRERESG9Jotnn31W\nzJw5U6SmpsouxWrWrFli48aNQgghLl26JOrr66XWU1lZKcLCwsTFixeFEEJMnz5d5Obmur2Offv2\nibKyMhEbG2vdtmTJErF69WohhBCrVq0SS5culV7T7t27RXNzsxBCiKVLl3pETUII8fXXX4tx48aJ\n0NBQcfbsWbfWZK+u4uJikZycLBobG4UQQnzzzTfSa7r99ttFUVGREEKInTt3CqPR2OHP8KoZRGlp\nKcLDwxEaGgo/Pz/cfffdKCgokFpT//79kZCQAADo2bMnoqKicPr0aak1AcDJkyexc+dOZGVltQkC\nyPTDDz/gww8/xNy5cwEA3bp1w29+8xupNQUEBMDPzw8NDQ1oampCQ0MDgoOD3V5HYmIiAgMD22wr\nLCzE7NmzAQCzZ8/Gjh07pNeUkpICHx/zx8aIESNw8uRJ6TUBwKJFi/DMM8+4tZbWbNX197//HY8+\n+ij8/PwAAH379pVe04ABA6yzvvr6eodj3asaxKlTpxASEmL9Wq/X49SpUxIraquqqgrl5eUYMWKE\n7FLwpz/9CWvWrLH+z+wJKisr0bdvX2RmZmLw4MG477770NDQILWmPn36YPHixbjhhhtw/fXXo3fv\n3khOTpZak0VtbS2CgoIAAEFBQaitrZVcUVubNm3CHXfcIbsMFBQUQK/X4+abb5ZdShsVFRXYt28f\nRo4cCaPRiIMHD8ouCatWrbKO9yVLlmDlypUdvt5zPj2coNPpZJdg14ULFzB16lQ8//zz6Nmzp9Ra\n3nnnHfTr1w8Gg8FjZg8A0NTUhLKyMixYsABlZWXw9/fHqlWrpNZ0/PhxrFu3DlVVVTh9+jQuXLiA\n119/XWpNtuh0Oo8a/08//TS6d++OmTNnSq2joaEBOTk5WLFihXWbp4z5pqYmfP/99ygpKcGaNWsw\nffp02SVh3rx5eOGFF/D111/jueees87m7fGqBhEcHIzq6mrr19XV1dDr9RIrMrt06RKmTJmCe+65\nB+np6bLLwccff4zCwkKEhYUhIyMDxcXFmDVrluyyoNfrodfrMWzYMADA1KlT26zmK8PBgwcxatQo\nXHvttejWrRsmT56Mjz/+WGpNFkFBQdbVCM6cOYN+/fpJrsgsNzcXO3fu9IhGevz4cVRVVSE+Ph5h\nYWE4efIkhgwZgm+++UZ2adDr9Zg8eTIAYNiwYfDx8cHZs2el1lRaWopJkyYBMP//V1pa2uHrvapB\nDB06FBUVFaiqqkJjYyO2bduGtLQ0qTUJITBv3jxER0fj4YcfllqLRU5ODqqrq1FZWYmtW7di9OjR\neO2112SXhf79+yMkJARHjx4FAOzZswcxMTFSa4qMjERJSQl++uknCCGwZ88eREdHS63JIi0tDVu2\nbAEAbNmyxSP++CgqKsKaNWtQUFCAq666SnY5iIuLQ21tLSorK1FZWQm9Xo+ysjKPaKbp6ekoLi4G\nABw9ehSNjY249tprpdYUHh6OvXv3AgCKi4sdL5qq1Bl0pezcuVNERESIgQMHipycHNnliA8//FDo\ndDoRHx8vEhISREJCgti1a5fssqxMJpNHpZgOHTokhg4dKm6++WYxadIk6SkmIYRYvXq1iI6OFrGx\nsWLWrFnW1Ik73X333WLAgAHCz89P6PV6sWnTJnH27FkxZswYMWjQIJGSkiK+//57qTVt3LhRhIeH\nixtuuME61ufPny+lpu7du1t/T62FhYVJSTHZqquxsVHcc889IjY2VgwePFh88MEHUmpqPaYOHDgg\nhg8fLuLj48XIkSNFWVlZhz+DF8oREZFNXnWIiYiI3IcNgoiIbGKDICIim9ggiIjIJjYIIiKyiQ2C\niIhsYoMgVVF6mZN169bhp59+cvn+3n77bY9Yvp6oNV4HQarSq1cvnD9/XrGfHxYWhoMHD1qviFV6\nf0QycQZBqnf8+HFMmDABQ4cOxW233YYjR44AAObMmYM//vGPuPXWWzFw4EDk5eUBAFpaWrBgwQJE\nRUVh7NixmDhxIvLy8rB+/XqcPn0aSUlJGDNmjPXnP/7440hISMAtt9xicw2ghx9+GE8++SQA4L33\n3sPtt9/e7jW5ubl46KGHOqyrtaqqKkRGRiIzMxM33XQTfve732H37t249dZbERER4fhGMETOcMMV\n30Ru07Nnz3bbRo8eLSoqKoQQQpSUlIjRo0cLIYSYPXu2mD59uhBCiMOHD4vw8HAhhBDbt28Xd9xx\nhxBCiJqaGhEYGCjy8vKEEKLdDWl0Op145513hBBCPPLII+Kpp55qt/+GhgYRExMjiouLxU033SRO\nnDjR7jW5ubli4cKFHdbVWmVlpejWrZv473//K1paWsSQIUPE3LlzhRBCFBQUiPT0dIe/KyJHuslu\nUERKunDhAj755BNMmzbNuq2xsRGAeQltywJ4UVFR1vstfPTRR9almYOCgpCUlGT353fv3h0TJ04E\nAAwZMgSL2vrVAAABqklEQVTvv/9+u9dcffXVePXVV5GYmIjnn38eYWFhHdZsr67LhYWFWRc7jImJ\nsd7HIjY2FlVVVR3ug8gZbBCkai0tLejduzfKy8ttfr979+7W5+KX03E6na7NPQVEB6fpLHcLAwAf\nHx80NTXZfN1nn32Gvn37On2DK1t1Xa5Hjx5t9m15T0d1EHUGz0GQqgUEBCAsLAz//ve/AZg/bD/7\n7LMO33PrrbciLy8PQgjU1tZal0cGzCelz50716kavvrqK/z1r39FeXk5du3aZXMN/o6aEJEsbBCk\nKg0NDQgJCbE+1q1bh9dffx0bN25EQkICYmNjUVhYaH1967u0WZ5PmTIFer0e0dHRuPfeezF48GDr\nvbPvv/9+jB8/3nqS+vL3X37XNyEEsrKy8Oyzz6J///7YuHEjsrKyrIe57L3X3vPL32Pva0+6+xx5\nL8ZciWz48ccf4e/vj7Nnz2LEiBH4+OOPPeImNETuxHMQRDbceeedqK+vR2NjI5544gk2B9IkziCI\niMgmnoMgIiKb2CCIiMgmNggiIrKJDYKIiGxigyAiIpvYIIiIyKb/Bwuoc+bkvyVIAAAAAElFTkSu\nQmCC\n",
       "text": [
        "<matplotlib.figure.Figure at 0x5d72d10>"
       ]
      },
      {
       "metadata": {},
       "output_type": "display_data",
       "png": "iVBORw0KGgoAAAANSUhEUgAAAYgAAAEPCAYAAABY9lNGAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XtUlNX6B/DvoKCZeElzLNAfLBBhALmpWHYSjoIrDcUb\nKnnJsjr562J21Fyt7PJbCqSeUpMsl7dartIyRUtJPQh5TRNNi1I0J7l7RSW0Edi/P96YQGecgXln\n3ndmvp+1WMFcH207D3vv5322RgghQEREdBsPpQMgIiJ1YoIgIiKTmCCIiMgkJggiIjKJCYKIiExi\ngiAiIpMUSxA3b95EbGwsIiMjodPpMGfOHADA5cuXkZCQgKCgICQmJqKyslKpEImI3JpGyesgqqur\n0aZNG9TU1OCRRx7BwoULsWXLFnTu3BmzZs1CRkYGrly5gvT0dKVCJCJyW4ouMbVp0wYAYDAYUFtb\ni44dO2LLli2YPHkyAGDy5MnYvHmzkiESEbktRRNEXV0dIiMjodVqER8fj9DQUFRUVECr1QIAtFot\nKioqlAyRiMhttVTyzT08PHDs2DFcvXoVgwcPxu7duxvdr9FooNFoFIqOiMi9KZog6rVv3x5Dhw7F\nkSNHoNVqUV5ejq5du6KsrAxdunS54/GBgYE4c+aMApESETmvgIAAnD592urHK7bEdPHiRWOF0o0b\nN7Bz505ERUVh2LBhWLt2LQBg7dq1SE5OvuO5Z86cgRBCdV9vvvmm4jEwJsbkjnExJuu+mvqLtWIz\niLKyMkyePBl1dXWoq6vDxIkTMXDgQERFRSElJQUrV66En58fNmzYoFSIRERuTbEEER4ejvz8/Dtu\nv++++7Br1y4FIiIiooZ4JbWM4uLilA7hDozJOozJemqMizHZh6IXyjWXRqOBE4ZNRKSopn52cgZB\nREQmMUEQEZFJTBBERGQSEwQREZnEBEFERCYxQRARkUlMEEREZBITBBERmcQEQUREJjFBEBGRSUwQ\nRERkEhMEERGZxARBREQmMUEQEZFJTBBERGQSE4QL++IL4McflY6CyL6++QY4flzpKFwTDwxyUdu3\nAxMnAq1bA99/D/j4KB0RkfwMBuB//gdo0YLj3Bo8MIhQUABMngxs2QK88AIwfDhQXa10VETy27QJ\n6NkT+N//5Ti3B84gXMzFi0BsLPDmm8CkSYAQUrK4eRP4/HPAg78SkAt59FHgxReB0aOl8f7nnxzn\nd8MZhBszGIBRo4AxY6R/LACg0QAffwwUFwPvvKNsfERyOnECOH0aSE6WxvmKFUBREce5nJggXIQQ\n0jS7Qwdg/vzG97VuLU3F16wBNmxQJDwi2WVmAs8+C3h6Sj+3bg1s3gysXs1xLpeWSgdA8li8WNqk\n27fP9PRaqwWysoCEBMDfH+jTx/ExEsnl6lVpKennnxvfrtVKe28c5/LgDMIFbN8OvPsusHUr4O1t\n/nEREdJy04gRQEmJ4+IjktunnwKDBgEPPnjnfRzn8uEMwsnVVyxt3iyV+1mSnAz8+qtU8fHdd0Cb\nNvaPkUhOQkjLS5mZ5h+TnAz88gvHua1YxeTEbq9YshYrm8iZ5eRIlUs//SRtTpsjBCubbscqJjdh\nqmLJWqxsImeWmQlMm3b35ACwskkOiiWIoqIixMfHIzQ0FGFhYViyZAkA4PLly0hISEBQUBASExNR\nWVmpVIiqdbeKJWuxsomcUXGxNIOYONG6x7OyyTaKLTGVl5ejvLwckZGRqKqqQkxMDDZv3ozVq1ej\nc+fOmDVrFjIyMnDlyhWkp6c3DtrNl5jefx9YtUqqWLrbprQ1fvxRqvj45htWfJD6zZ0LXLoELFvW\ntOdxnEua/NkpVGL48OFi586domfPnqK8vFwIIURZWZno2bPnHY9VUdgOt22bEA88IIReL99rbtok\nhI+PEMXF8r0mkdz+/FOIrl2F+Omn5j2f47zpn52qqGLS6/U4evQoYmNjUVFRAa1WCwDQarWoqKhQ\nODr1aGrFkrVY2UTOoL7vUmho857PyqamU3yTuqqqCqNGjcLixYvhfdt6iUajgcbSTpSbuHgRSEoC\nFi4EHn5Y/tefPRvQ6YAnnwTq6uR/fSJbLVsm7b3Z4rXXgJAQjnNrKTqDuHXrFkaNGoWJEyciOTkZ\ngDRrKC8vR9euXVFWVoYuXbqYfO5bb71l/D4uLg5xcXEOiFgZtlQsWau+sik+Xqr4aPDXS6S4hn2X\nbFFf2eQu4zw3Nxe5ubnNfr5im9RCCEyePBmdOnXCe++9Z7x91qxZ6NSpE2bPno309HRUVla69Sa1\nEFK/mfPnpSm2vWu5KyqkayvefRdISbHvexFZ6/nnpTYacn2gV1QAffsCCxa41zhv6menYgli7969\nePTRR9GrVy/jMlJaWhr69u2LlJQUnDt3Dn5+ftiwYQM6dOjQOGg3ShByVixZixUfpCbXrkl7bj//\nbLq1RnO54zh3mgRhC3dJENu3A08/DRw4IO+mtDU2b5YOG+IpXaS0Dz4A8vKkI3Tl5m7jvKmfnaqo\nYqI72atiyVqsbCI1sKbvki1Y2XR3nEGoUHN7LMmNPZtIabt3S7/hW+q7ZAt36tnEXkxOzhEVS9aq\nr2xiLxtSyrJl1vVdsgV7NpnHGYSKOLpiyVqsbCIlFBcDvXoBej3Qrp39388dKpu4B+HELJ0KpxSe\nRkdKWLECGD/eMckB4Gl0pnAGoRJKVixZy90qPkg5BgPg5wfs3Nn81hrN5crjnDMIJ6R0xZK1WNlE\njrJpExAU5PjkALCyqSHOIBSmloola7GyiRxhwADpt/gxY5R5f1etbGIVkxNRU8WStVjZRPZ24gRQ\nWGh73yVbsLJJYjFBbN26FVFRUejYsSO8vb3h7e2Ndo7aNXJhcpwKp5T6U7p4Gh3ZQ2amVM3n6als\nHDyNzoolpoCAAGzatAlhYWHwUMk8yxWWmJTosSQ3d+xlQ/Zlr75LtnClcS77EpOvry9CQ0NVkxxc\nwfbt0jUFW7c6b3IAgIgIablpxAigpETpaMgVfPIJMGiQepID4N7j3OIM4uDBg5g7dy7i4+Ph5eUl\nPUmjwYwZMxwSoCnOPIMoKADi4qSpqz0O/lFCejrw5Zes+CDbCCFVLWVmSv9G1CYtDdi40bnHuewz\niDfeeANt27bFzZs3UVVVhaqqKly/ft2mIN2VvU+FUwpPoyM55OZKm8MDBigdiWnueBqdxRlEWFgY\nfvrpJ0fFYxVnnEEYDNI65kMPSb9xu5qbN6VTugYPdv1Tusg+Ro+WxpCtx4rak7OPc9lnEEOGDMG3\n335rU1DuzpkrlqzFyiayRXExkJMDTJyodCR3526VTRZnEG3btkV1dTW8vLzg+VfdmUajwbVr1xwS\noCnONoNwhYola7lSxQc5zptvSkuwy5YpHYl1nHWc80Q5lXGGHktyc+VeNiQ/Jfsu2cIZxzl7MamI\ns/RYkht7NlFTKNl3yRbu0LOpWRc3REVFyR2Hy3HViiVrsbKJrJWZqe6N6btx9comLjHZgatXLFnL\n2Ss+yP5OnJDGx++/K99ao7mcaZxziUlh7lCxZK36io++faXZhKue0kXNp5a+S7Zw5XFuNkH4+/ub\nfZJGo8Fvv/1ml4CcnVpPhVMKT+kic65dk1pp//yz0pHYzlXHudkEcfjwYeP3Go0GdXV1WL9+PRYu\nXIjo6GiHBOds6nssHTjg+uWsTdGwl40zVXyQfamx75ItXHGcm00QnTt3BgDU1dXhk08+wYIFCxAZ\nGYlt27ZBp9M5LEBn4a4VS9Zyh4oPsp4Q0vJSZqbSkcjL1ca52UUQg8GA5cuXIyQkBHv27EFWVhbW\nrVvH5GCCu1csWcvVKz7Iemrvu2QLVxrnZquYfH190bJlS7z88svo3r07NBoNAEAIAY1Gg5EjRzo0\n0IbUVMXEiqWmcaaKD7IfZ+i7ZAu1jnPZrqR+8sknjS9oyurVq5senUzUkiCEkCowzp+XLvbhprR1\nKiqkio8FC1yr4oOsU1wM9OoF6PWAKx9OqcZxLnurjZs3b6J169aNbrt06RI6derUvAhloJYE4U49\nluTmrL1syHbO1nfJFseOSeN82zZ1jHPZu7mOHDkSt27dMv5cVlaGhISE5kV3m6eeegparRbh4eHG\n2y5fvoyEhAQEBQUhMTERlZWVsryX3FzlVDiluPMpXe7MYABWrACmTVM6EseIjJT+vM46zi0miBEj\nRiAlJQW1tbXQ6/UYPHgw0mVabJ8yZQqys7Mb3Zaeno6EhAScOnUKAwcOlO295FRfsfTll6xYskVy\nsrQGPXw4UF2tdDTkCM7ad8kWzjzOrWq18cEHHyA7Oxu///47li9fjv79+8sWgF6vR1JSEk6cOAEA\nCA4ORl5eHrRaLcrLyxEXF4dff/21cdAKLjFdvAjExkrT5EmTFAnBpQgh/T3++ad00RT3cVzbgAFS\nB9QxY5SOxLHUMs5l24NYtGhRoxf85JNPEB4ejqioKFnPpL49QXTs2BFXrlwBIFVM3XfffcafjUEr\nlCBYsWQfaq34IHm5Qt8lW6hhnMvWi+n69euNKphGjBgBjUaDqqoq2yJsAo1GY7aK6q0Gf8NxcXGI\ns/Mp5+yxZD+u3MuG/uYKfZdsocQ4z83NRW5ubrOfr3g3V1NLTLm5uejatSvKysoQHx+viiUmVizZ\nHyubXNe1a9J+3c8/u05rjeZSsrJJ9iomRxs2bBjWrl0LAFi7di2Sk5MVjogVS47CyibX5Wp9l2zh\nTJVNis4gxo8fj7y8PFy8eBFarRbvvPMOhg8fjpSUFJw7dw5+fn7YsGEDOnTo0Oh5jpxBFBQAcXHS\n1JBtNBwjLQ3YuNE1etmQtDwbGiotMdl5JdipKDHOeSa1jFixpAy1VHyQPHbvliqXfvpJ6r9EEiXG\nuewJ4vz581ixYgX0ej1qamqMb7Jq1SrbIrWBIxIEK5aUpYaKD5KHq/ddsoWjx7nsCeKhhx7Co48+\nipiYGHj8leI0Gg1GjRplW6Q2sHeCYI8ldVBjLxtqmpISIDzc9fsu2cKR41z2I0dv3LiBjIwMm4Jy\nNjwVTh1c9ZQud/Lxx8D48UwOd6PVAllZ6hznFj/+Hn/8cXzzzTeOiEUVWLGkLqxscl7u1nfJFmqt\nbLK4xNS2bVtUV1fDy8sLnn9d4aLRaHDt2jWHBGiKvZaYWLGkXqxscj4bNkiVSzZcp+V27D3OWcXU\nTKxYUjdWNjkfd+27ZAt7j3PZEsQvv/yCkJAQ5Ofnm3xidHR08yKUgdwJghVLzoGVTc7D3fsu2cKe\n41y2BPHMM89gxYoViIuLM9kPaffu3c2P0kZyJghWLDkXVjY5h2nTgC5dmMiby17jnEtMTcQeS85H\nbad0UWPsuyQPe4xzp+/F5EisWHJOaq34IAn7LslDDePc4nUQrqr+VLjNm3kqnDNKTgZ++UU6pYuV\nTeohhFS5lJmpdCSuQelx7pZLTKxYcg2sbFIf9l2Sn5zjXPYlpoEDB1p1m7MwGIBRo6TSOyYH56bR\nSFPwoiLgnXeUjoYAYNkyaYOayUE+So5zs0tMN27cQHV1NS5cuIDLly8bb7927RpKnHThl6fCuR6e\nRqceJSVATo5U9EHyUmqcm00QH330ERYvXozS0lLExMQYb/f29sYLL7zgkODkxh5LrknNvWzcCfsu\n2ZcS49ziHsSSJUvw0ksv2T+SJmjOHsT27cDTTwMHDnBT2lVt3iytf3//PeDjo3Q07sVgAPz8gJ07\npcOByH5sGed2uQ5i//79jc6DAIBJCi7gN/UPyR5L7oM9m5TBvkuO1dxxLnuCmDBhAn777TdERkai\nRYsWxtuXLl1qfVQya8ofkhVL7oWVTcpg3yXHau44lz1BhISEoKCgwGS7DaVY+4dkjyX3xJ5NjsW+\nS8pozjiXvcw1LCwMZWVlVr+gWrBiyX3VV3ysXi0tfZB9ffih1M+MycGxHDHOLV5JfeHCBeh0OvTt\n2xetWrUCIGWhLVu22CcimbBiyb2xsskxrl0DPvtM6rtEjmfvcW5xiSn3r12nhlMTjUaDAQMGyBtJ\nE1iaJrFiieqxssm+PvgAyMsDvvhC6Ujcm7Xj3C5VTHq9HqdPn8agQYNQXV2NmpoatFOw2Pluf0hW\nLNHtWNlkH0JIJa2ZmdK/OVKWNeNc9j2Ijz/+GGPGjMFzzz0HACguLsaIESOsfgNHungRSEoCFi5k\ncqC/vfYaEBICPPkkUFendDSuIzdXagOh4GICNWCPcW4xQSxbtgx79+41zhiCgoJw/vx5ed5dRuyx\nROawZ5N9sO+SuthjnFtMEK1atTJuTgNATU2NqkpeAVYskWWsbJJXfd+liROVjoQaknucW6xiGjBg\nAObNm4fq6mrs3LkTmZmZSEpKsv2dZcSKJbIGK5vkw75L6iXnOLe4SV1bW4uVK1dix44dAIDBgwdj\n6tSpis4iGm60sGKJmoqVTbZh3yXnYGqcu8SZ1NnZ2Zg+fTpqa2sxdepUzJ49u9H99X9IVixRc7Gy\nqfnYd8l53D7OZU8QW7duxdy5cxs169NoNLh27ZptkZtRW1uLnj17YteuXfDx8UGfPn3w2WefISQk\n5O+gNRpcuCDYY4majT2bmo99l5zH7eO8RQuZy1ynT5+OtWvX4tKlS7h+/TquX79ut+QAAIcOHUJg\nYCD8/Pzg6emJcePGISsr647HsWKJbMHKpuY5cQIoLJTOSib1s3WcW9yk9vX1RWhoKDwc9CtWSUkJ\nunXr1uj9v//++zsex4olshVPo2u6zEz2XXI2Dcd5U1lMEBkZGXjssccQHx8PLy8vANISz4wZM5r+\nblawdvN7y1UNWvzzrx/8APjbJRxyB08BY38Bxr6tdCBOoKv0n7f5d+UczgLQ//W9P4BzTXu6xQTx\nxhtvwNvbGzdv3oTBYGhqeE3m4+ODoqIi489FRUXw9fW943EiV3V76+Sk9u6VrkLdu1fpSNSrsBB4\n5BFpHTs+XuloqLmaWn1qMUGUlZVh586dzQ6oqXr37o3CwkLo9Xo8+OCDWL9+PT777DOHvT8RNVZZ\nKbWweecdJgd3Y3FjYciQIfj2228dEQsAoGXLlvjggw8wePBg6HQ6jB07tlEFExE5Tk0NMHasdCjN\nX+3YyI1YLHNt27Ytqqur4eXlBc+/dqbsWeZqjabW8hLdDZeYzHvpJeDUKeDrr4GWFtcbSO2a+tlp\n8X95VVWVTQERkXNavly6WvrAASYHd2XV//asrCx89913xoOC1NaLiYjklZMjnXO8d69UUk7uyeIe\nxGuvvYYlS5YgNDQUISEhWLJkCebMmeOI2IhIAYWFUiO+zz4DAgOVjoaUZHEPIjw8HMeOHUOLFi0A\nSK0wIiMjceLECYcEaAr3IEhO3IP4W2Ul0K8f8Mor3JR2RbKfKKfRaFBZWWn8ubKyUnXnQRCR7Vix\nRLezuAcxZ84cREdHI+6vQ2fz8vKQnp5u77iIyMFmzJB69yxapHQkpBYWE8T48eMxYMAAHD58GBqN\nBhkZGejatasjYiMiB2HFEplidijk5+c3+rm+3UVpaSlKS0sRHR1t38iIyCFYsUTmmE0QvXv3RlhY\nGDp16mTy/t27d9stKCJyjPqKpc8/Z8US3clsgvjPf/6DL774Am3atMHYsWMxYsQIeHt7OzI2IrIj\n9lgiS8xWMU2fPh379u3DkiVLUFxcjIEDB2LMmDE4duyYI+MjIjtgxRJZw2KZa0BAAIYPH47ExEQc\nPnwYJ0+edERcRGRHrFgia5hdYjpz5gw+//xzZGVloXv37hg7dixef/113HPPPY6Mj4hkxoolspbZ\nK6k9PDwQHh6O5ORktGvXTnrwX1fh2fNEOWvwSmqSkztdSZ2TA6SmSn9Wbkq7H9m6uc6dO9d4xTQ7\nuhI5P1YsUVOZTRBvvfWWA8MgIntixRI1h8VNaiJybqxYouZigiBycaxYouZiDQORC2PFEtnC4pBZ\ntGhRo51vjUaD9u3bIyYmBpGRkXYPkIiahz2WyFYWl5iOHDmC5cuXo7S0FCUlJfjoo4+wfft2PPPM\nM8jIyHBEjETURDwVjuRgcQZRVFSE/Px8tG3bFgDwzjvvYMiQIcjLy0NMTAxmz55t9yCJyHqsWCK5\nWJxBXLhwAV5eXsafPT09UVFRgTZt2qB169Z2DY6ImoYVSyQnizOIJ554ArGxsUhOToYQAlu3bkVq\nair++OMP6HQ6R8RIRFZixRLJyWyrjYYOHz6Mffv2QaPRoH///ujdu7cjYjOLrTZITq7SamP5cmDx\nYqliiZvSZIpsrTYaio6OxoMPPoiamhpoNBqcO3cO3bt3b3aQRCQvViyRPVhMEEuXLsXbb7+NLl26\noEWLFsbbT5w4YdfAiMg67LFE9mIxQbz//vs4efKk2aNHiUg5rFgie7JYxdS9e3dju2+5fPHFFwgN\nDUWLFi2Qn5/f6L60tDT06NEDwcHB2LFjh6zvS+RKWLFE9mZxBuHv74/4+HgMHTrUWO5q63kQ4eHh\n2LRpE567bVQXFBRg/fr1KCgoQElJCQYNGoRTp07Bw4Mto4hux4olsjeLCaJ79+7o3r07DAYDDAaD\n8cAgWwQHB5u8PSsrC+PHj4enpyf8/PwQGBiIQ4cOoV+/fja9H5GrYY8lcgSLQ8uR50KUlpY2Sga+\nvr4oKSlx2PsTOQNWLJGjmE0QL7/8MhYvXoykpKQ77tNoNNiyZctdXzghIQHl5eV33D5//nyTr2mO\nudlKw8QVFxeHuLg4q1+TyFmxYomaIjc3F7m5uc1+vtkEMXHiRADAq6++2qwX3rlzZ5Of4+Pjg6Ki\nIuPPxcXF8PHxMflYnnhH7oYVS9RUt//y/Pbbbzfp+WYTRP3V0vb+zbzhVX3Dhg1DamoqZsyYgZKS\nEhQWFqJv3752fX8iZ8CKJVKC2QQRHh5u9kkajQbHjx9v9ptu2rQJL730Ei5evIihQ4ciKioK27dv\nh06nQ0pKCnQ6HVq2bInMzEybN8SJXAErlkgJZnsx6fV6AEBmZiYAaclJCIF169YBgKJnQbAXE8lJ\n7b2Y2GOJ5NLUz06LzfoiIyNx7NixRrdFRUXh6NGjzYtQBkwQJCc1J4icHCA1VYqNm9Jkq6Z+dlq8\nAk0Igb0N/uXs27ePH85EDsBT4UhpFq+DWLVqFaZMmYKrV68CADp06IDVq1fbPTAid8aKJVIDiwki\nJiYGx48fNyaI9u3b2z0oInfGiiVSC4sJ4ubNm9i4cSP0ej1qamoASOtYc+fOtXtwRO6IFUukFhYT\nxPDhw9GhQwfExMTwDGoiO6vvsXTwIHsskfIsDsGSkhJ8++23joiFyK017LHElVxSA4tVTA8//LBN\nF8URkWWsWCI1sjiD2LNnD1avXg1/f3+0atUKgO1XUhPR3+orlv7v/1ixROpiMUFs377dEXEQuaWG\nFUvPPqt0NESNWVxi8vPzQ1FREXbv3g0/Pz/ce++9vFCOSCasWCI1s+rAoCNHjuDkyZOYMmUKDAYD\nJkyYgH379jkiPiKXxYolUjuLw3LTpk04evQoYmJiAEhnNly/ft3ugRG5MlYskTOwmCBatWoFD4+/\nV6L++OMPuwZE5Op4Khw5C4t7EGPGjMFzzz2HyspKfPzxxxg4cCCmTp3qiNiIXA4rlsiZWGz3DQA7\nduzAjh07AACDBw9GQkKC3QO7G7b7Jjk5qt13TQ0wdCgQHCyd70DkaE397LRqaywxMRGJiYm4cOEC\nOnfu3OzgiNwZK5bI2ZhdYjpw4ADi4uIwcuRIHD16FGFhYQgPD4dWq+W1EURNVF+xtH49K5bIeZgd\nqi+88ALS0tJw9epVxMfHIzs7G/369cOvv/6KcePG4bHHHnNknEROixVL5KzMziBqa2uRmJiIMWPG\n4IEHHkC/fv0AAMHBwdBoNA4LkMiZsccSOTOzCaJhEmCbb6KmY8USOTuzS0zHjx+Ht7c3AODGjRvG\n7+t/JiLzamqAlBT2WCLnZjZB1NbWOjIOIpfyyiuAhwcrlsi5sZ6CSGbLlwO7drHHEjk/Dl8iGbFi\niVwJEwSRTNhjiVyNxV5MRGQZK5bIFTFBENmIFUvkqhRJEDNnzkRISAgiIiIwcuRIXL161XhfWloa\nevTogeDgYGODQCI1Y8USuSpFEkRiYiJ+/vln/PjjjwgKCkJaWhoAoKCgAOvXr0dBQQGys7Mxbdo0\n1NXVKREikVXqK5bYY4lckSIJIiEhwXgIUWxsLIqLiwEAWVlZGD9+PDw9PeHn54fAwEAcOnRIiRCJ\nLKqvWNq6lRVL5JoU34NYtWoVhgwZAgAoLS2Fr6+v8T5fX1+UlJQoFRqRWeyxRO7AbpPihIQElJeX\n33H7/PnzkZSUBACYN28evLy8kJqaavZ12BiQ1IYVS+Qu7JYgdu7cedf716xZg23btuG///2v8TYf\nHx8UFRUZfy4uLoaPj4/J57/11lvG7+Pi4hAXF2dTvETWYMUSOZPc3Fzk5uY2+/lWHTkqt+zsbLz6\n6qvIy8trdEJdQUEBUlNTcejQIZSUlGDQoEE4ffr0HbMIHjlKcmrKkaMvvigtL339NTelyfnY5chR\nub344oswGAzGs60feughZGZmQqfTISUlBTqdDi1btkRmZiaXmEg12GOJ3I0iMwhbcQZBcrJmBpGT\nA6SmSo/hpjQ5K6eYQRA5E/ZYIneleJkrkZqxYoncGRMEkRmsWCJ3xwRBZAZ7LJG74x4EkQmsWCJi\ngiC6A0+FI5IwQRA1wIolor9xD4LoL6xYImqMCYIIrFgiMoUJggjA99+zYonodkwQ5Pbuvx/o14+n\nwhHdjr2YiIjcRFM/OzmDICIik5ggiIjIJCYIIiIyiQmCiIhMYoIgIiKTmCCIiMgkJggiIjKJCYKI\niExigiAiIpOYIIiIyCQmCCIiMokJgoiITGKCICIik5ggiIjIJCYIIiIyiQmCiIhMUiRBvPHGG4iI\niEBkZCQGDhyIoqIi431paWno0aMHgoODsWPHDiXCIyIiKJQgZs2ahR9//BHHjh1DcnIy3n77bQBA\nQUEB1q9fj4KCAmRnZ2PatGmoq6tTIsRmyc3NVTqEOzAm6zAm66kxLsZkH4okCG9vb+P3VVVV6Ny5\nMwAgKyvgK/nsAAAKZklEQVQL48ePh6enJ/z8/BAYGIhDhw4pEWKzqHFAMCbrMCbrqTEuxmQfih3R\n/vrrr+PTTz/FPffcY0wCpaWl6Nevn/Exvr6+KCkpUSpEIiK3ZrcZREJCAsLDw+/42rp1KwBg3rx5\nOHfuHKZMmYLp06ebfR2NRmOvEImI6G6Ewn7//XcRGhoqhBAiLS1NpKWlGe8bPHiwOHjw4B3PCQgI\nEAD4xS9+8YtfTfgKCAho0uezIktMhYWF6NGjBwBp3yEqKgoAMGzYMKSmpmLGjBkoKSlBYWEh+vbt\ne8fzT58+7dB4iYjckSIJYs6cOTh58iRatGiBgIAAfPjhhwAAnU6HlJQU6HQ6tGzZEpmZmVxiIiJS\niEYIIZQOgoiI1MfprqTOzs5GcHAwevTogYyMDKXDQVFREeLj4xEaGoqwsDAsWbJE6ZCMamtrERUV\nhaSkJKVDMaqsrMTo0aMREhICnU6HgwcPKh0S0tLSEBoaivDwcKSmpuLPP/90eAxPPfUUtFotwsPD\njbddvnwZCQkJCAoKQmJiIiorKxWPaebMmQgJCUFERARGjhyJq1evKh5TvUWLFsHDwwOXL192aEx3\ni2vp0qUICQlBWFgYZs+erXhMhw4dQt++fREVFYU+ffrg8OHDd38RWzaYHa2mpkYEBASIs2fPCoPB\nICIiIkRBQYGiMZWVlYmjR48KIYS4fv26CAoKUjymeosWLRKpqakiKSlJ6VCMJk2aJFauXCmEEOLW\nrVuisrJS0XjOnj0r/P39xc2bN4UQQqSkpIg1a9Y4PI7vvvtO5Ofni7CwMONtM2fOFBkZGUIIIdLT\n08Xs2bMVj2nHjh2itrZWCCHE7NmzVRGTEEKcO3dODB48WPj5+YlLly45NCZzceXk5IhBgwYJg8Eg\nhBDi/Pnzisc0YMAAkZ2dLYQQYtu2bSIuLu6ur+FUM4hDhw4hMDAQfn5+8PT0xLhx45CVlaVoTF27\ndkVkZCQAoG3btggJCUFpaamiMQFAcXExtm3bhqlTp0KoZBXx6tWr2LNnD5566ikAQMuWLdG+fXtF\nY2rXrh08PT1RXV2NmpoaVFdXw8fHx+Fx/OMf/0DHjh0b3bZlyxZMnjwZADB58mRs3rxZ8ZgSEhLg\n4SF9bMTGxqK4uFjxmABgxowZePfddx0aS0Om4vrwww8xZ84ceHp6AgDuv/9+xWN64IEHjLO+yspK\ni2PdqRJESUkJunXrZvxZbRfS6fV6HD16FLGxsUqHgldeeQULFiww/mNWg7Nnz+L+++/HlClTEB0d\njWeeeQbV1dWKxnTffffh1VdfRffu3fHggw+iQ4cOGDRokKIx1auoqIBWqwUAaLVaVFRUKBxRY6tW\nrcKQIUOUDgNZWVnw9fVFr169lA6lkcLCQnz33Xfo168f4uLi8MMPPygdEtLT043jfebMmUhLS7vr\n49Xz6WEFNVc0VVVVYfTo0Vi8eDHatm2raCxff/01unTpgqioKNXMHgCgpqYG+fn5mDZtGvLz83Hv\nvfciPT1d0ZjOnDmD999/H3q9HqWlpaiqqsK6desUjckUjUajqvE/b948eHl5ITU1VdE4qqurMX/+\nfGM/NwCqGfM1NTW4cuUKDh48iAULFiAlJUXpkPD0009jyZIlOHfuHN577z3jbN4cp0oQPj4+jTq/\nFhUVwdfXV8GIJLdu3cKoUaMwYcIEJCcnKx0O9u/fjy1btsDf3x/jx49HTk4OJk2apHRY8PX1ha+v\nL/r06QMAGD16NPLz8xWN6YcffsDDDz+MTp06oWXLlhg5ciT279+vaEz1tFotysvLAQBlZWXo0qWL\nwhFJ1qxZg23btqkikZ45cwZ6vR4RERHw9/dHcXExYmJicP78eaVDg6+vL0aOHAkA6NOnDzw8PHDp\n0iVFYzp06BBGjBgBQPr3Z6nXnVMliN69e6OwsBB6vR4GgwHr16/HsGHDFI1JCIGnn34aOp3uri1D\nHGn+/PkoKirC2bNn8fnnn+Of//wnPvnkE6XDQteuXdGtWzecOnUKALBr1y6EhoYqGlNwcDAOHjyI\nGzduQAiBXbt2QafTKRpTvWHDhmHt2rUAgLVr16ril4/s7GwsWLAAWVlZaN26tdLhIDw8HBUVFTh7\n9izOnj0LX19f5OfnqyKZJicnIycnBwBw6tQpGAwGdOrUSdGYAgMDkZeXBwDIyclBUFDQ3Z9grx10\ne9m2bZsICgoSAQEBYv78+UqHI/bs2SM0Go2IiIgQkZGRIjIyUmzfvl3psIxyc3NVVcV07Ngx0bt3\nb9GrVy8xYsQIxauYhBAiIyND6HQ6ERYWJiZNmmSsOnGkcePGiQceeEB4enoKX19fsWrVKnHp0iUx\ncOBA0aNHD5GQkCCuXLmiaEwrV64UgYGBonv37sax/vzzzysSk5eXl/HvqSF/f39FqphMxWUwGMSE\nCRNEWFiYiI6OFrt371YkpoZj6vDhw6Jv374iIiJC9OvXT+Tn59/1NXihHBERmeRUS0xEROQ4TBBE\nRGQSEwQREZnEBEFERCYxQRARkUlMEEREZBITBLk0e7c98fPzM9leOi8vDwcOHDD5nK1bt6qiVT2R\nJYqcKEfkKPbuX6TRaEz2/tm9eze8vb3x0EMP3XFfUlKSqs7oIDKHMwhyO2fOnMFjjz2G3r1749FH\nH8XJkycBAE8++SRefvll9O/fHwEBAdi4cSMAoK6uDtOmTUNISAgSExMxdOhQ432AdChMTEwMevXq\nhZMnT0Kv1+Ojjz7Ce++9h6ioKOzdu7fR+69ZswYvvvjiXd+zIb1ej+DgYEyZMgU9e/bEE088gR07\ndqB///4ICgqyfOgLUTMxQZDbefbZZ7F06VL88MMPWLBgAaZNm2a8r7y8HPv27cPXX3+N1157DQDw\n1Vdf4ffff8cvv/yCTz/9FAcOHGg0M7n//vtx5MgRPP/881i4cCH8/Pzwr3/9CzNmzMDRo0fxyCOP\nNHr/22c1pt7zdmfOnMG///1v/Prrrzh58iTWr1+Pffv2YeHChZg/f75cfzVEjXCJidxKVVUVDhw4\ngDFjxhhvMxgMAKQP7vqGeCEhIcbzF/bu3Wts1azVahEfH9/oNes7dkZHR+Orr74y3m5NFxtz73k7\nf39/Y2PD0NBQ45kVYWFh0Ov1Ft+HqDmYIMit1NXVoUOHDjh69KjJ+728vIzf13/A377PcPsHf6tW\nrQAALVq0QE1NTZNjMvWet6t/DwDw8PAwPsfDw6NZ70lkDS4xkVtp164d/P398eWXXwKQPpCPHz9+\n1+f0798fGzduhBACFRUVxnbJd+Pt7Y3r16+bvI/9MclZMEGQS6uurka3bt2MX++//z7WrVuHlStX\nIjIyEmFhYdiyZYvx8Q33B+q/HzVqFHx9faHT6TBx4kRER0ebPEu74alvSUlJ2LRpE6KiorBv3z6z\njzP3nqZe29zPajppjlwL230TWeGPP/7Avffei0uXLiE2Nhb79+9XxaE0RPbEPQgiKzz++OOorKyE\nwWDA3LlzmRzILXAGQUREJnEPgoiITGKCICIik5ggiIjIJCYIIiIyiQmCiIhMYoIgIiKT/h/FhIMx\nfyRzHAAAAABJRU5ErkJggg==\n",
       "text": [
        "<matplotlib.figure.Figure at 0x5cbc210>"
       ]
      }
     ],
     "prompt_number": 26
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 3.3.10,Page No.114"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "import numpy as np\n",
      "%matplotlib inline\n",
      "\n",
      "#Initilization of Variables\n",
      "\n",
      "L_DC=L_BA=2 #m #Length of BA & DC\n",
      "L_CB=1 #m #Length of CB\n",
      "F_A=10 #KN #Force at pt A\n",
      "F_B=20 #KN #Force at pt B\n",
      "w=4 #KN.m #u.d.l\n",
      "L=5 #m #Length of beam\n",
      "\n",
      "#Calculations\n",
      "\n",
      "#Let R_D be the reactions at Pt D\n",
      "R_D=F_B+F_A+w*L_DC #KN\n",
      "\n",
      "#Shear Force Calculations\n",
      "\n",
      "#S.F at Pt A\n",
      "V_A1=0 #KN\n",
      "V_A2=F_A #KN\n",
      "\n",
      "#S.F At Pt B\n",
      "V_B1=V_A2\n",
      "V_B2=F_B+F_A\n",
      "\n",
      "#S.F at Pt C\n",
      "V_C=F_B+F_A #KN \n",
      "\n",
      "#S.F At Pt D\n",
      "V_D1=V_B2+w*L_DC\n",
      "V_D2=F_B+F_A+w*L_DC-R_D\n",
      "\n",
      "#B.M At Pt A\n",
      "M_A=0\n",
      "\n",
      "#B.M At Pt B\n",
      "M_B=F_A*L_BA\n",
      "\n",
      "#B.M at Pt C\n",
      "M_C=F_B*L_CB+F_A*(L_BA+L_CB) #KN\n",
      "\n",
      "#B.M At Pt D\n",
      "M_D1=F_A*L+F_B*(L_CB+L_DC)+w*L_DC*L_DC*2**-1\n",
      "M_D2=(F_A*L+F_B*(L_CB+L_DC)+w*L_DC*L_DC*2**-1)-M_D1\n",
      "\n",
      "#Result\n",
      "print \"The Shear Force and Bending Moment Diagrams are the results\"\n",
      "\n",
      "#Plotting the Shear Force Diagram\n",
      "\n",
      "X1=[0,0,L_BA,L_BA,L_BA+L_CB,L_BA+L_CB+L_DC,L_BA+L_CB+L_DC]\n",
      "Y1=[V_A1,V_A2,V_B1,V_B2,V_C,V_D1,V_D2]\n",
      "Z1=[0,0,0,0,0,0,0]\n",
      "plt.plot(X1,Y1,X1,Z1)\n",
      "plt.xlabel(\"Length x in m\")\n",
      "plt.ylabel(\"Shear Force in kN\")\n",
      "plt.show()\n",
      "\n",
      "#Plotting the Bendimg Moment Diagram\n",
      "\n",
      "Y2=[M_A,M_B,M_C,M_D1,M_D2]\n",
      "X2=[0,L_BA,L_CB+L_BA,L_CB+L_BA+L_DC,L_CB+L_BA+L_DC]\n",
      "Z2=[0,0,0,0,0]\n",
      "plt.plot(X2,Y2,X2,Z2)\n",
      "plt.xlabel(\"Length in m\")\n",
      "plt.ylabel(\"Bending Moment in kN.m\")\n",
      "plt.show()"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The Shear Force and Bending Moment Diagrams are the results\n"
       ]
      },
      {
       "metadata": {},
       "output_type": "display_data",
       "png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAEPCAYAAABFpK+YAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAHOxJREFUeJzt3X1UVHXix/HP4FMBEpo6uOo5cDQV0GDUMk1WkIBMQVsf\nWk8ZqZw6dmrXbLfsbA/s2hptbmnmObWtla3VZkspPZEWTQ8+9LS4tVnpprSowGaEikjIcH9/+HME\ndZhBuXMH7/t1zpwuw70zH+bYx+uXe79fh2EYhgAAthFmdQAAQHBR/ABgMxQ/ANgMxQ8ANkPxA4DN\nUPwAYDOmF7/H45HL5VJ2drYkqbq6WhkZGRo8eLAyMzNVU1NjdgQAQDOmF//y5cuVkJAgh8MhSSoo\nKFBGRoZ27Nih9PR0FRQUmB0BANCMqcW/Z88evfHGG8rLy9Px+8SKioqUm5srScrNzdW6devMjAAA\nOImpxX/bbbfpoYceUljYibepqqqS0+mUJDmdTlVVVZkZAQBwEtOK/7XXXlOfPn3kcrnka1YIh8Ph\nHQICAARHZ7NeePPmzSoqKtIbb7yh+vp6HTx4ULNnz5bT6VRlZaViYmJUUVGhPn36nPb4QYMG6dtv\nvzUrHgCckwYOHKj//Oc/re9kBIHb7TYmT55sGIZh/Pa3vzUKCgoMwzCMBx54wLjzzjtPe0yQonUI\n9913n9URQgafxQl8FifwWZwQSHcG7Tr+40M6ixYt0saNGzV48GCVlJRo0aJFwYoAAJCJQz3NjR8/\nXuPHj5ck9ezZU2+//XYw3hYAcBrcudsBpKamWh0hZPBZnMBncQKfRds4/n9MKOQ4HA6fVwMBAE4v\nkO7kjB8AbIbiBwCbofgBwGYofgCwmaBczgkAME9lpVRYKG3eHNj+nPEDQAdUWSmtXCmlpkrx8dKW\nLcfKPxBczgkAHcTxM/uXXpL+9S9p0iRpxgwpK0s67zwpOlo6cMB/dzLUAwAh7HRlf9ttJ8r+TFD8\nABBizCj75ih+AAgBZpd9cxQ/AFgkmGXfHMUPAEFkVdk3R/EDgMlCoeybo/gBwAShVvbNUfwA0E5C\nueybo/gB4Cx0lLJvjuIHgDbqiGXfnKlz9dTX12v06NFKTk5WQkKC7rrrLklSfn6++vfvL5fLJZfL\npeLiYjNjAMBZO93cOLfdJlVUSGvWSFOmdIzSl4IwV09dXZ3Cw8PV2NiocePGaenSpXrnnXfUvXt3\nLVy40Hcw5uoBYDF/c+OEmpCZqyc8PFyS1NDQII/Hox49ekgSpQ4gJHX0YZxAmD4tc1NTk5KTk+V0\nOpWWlqbExERJ0ooVK5SUlKR58+appqbG7BgA4NO5NIwTiKBNy3zgwAFlZWWpoKBACQkJ6t27tyTp\nnnvuUUVFhVatWtUyGEM9AEzU0YZxAhEyQz3HXXDBBZo0aZI+/fRTpaamep/Py8tTdnb2aY/Jz8/3\nbqemprY4DgDa6lwcxnG73XK73ZKk+vrAjjH1jH///v3q3LmzoqOjdeTIEWVlZem+++5TYmKiYmJi\nJEmPPPKIPvnkEz3//PMtg3HGD6AdnItn9r6ExBl/RUWFcnNz1dTUpKamJs2ePVvp6em6/vrrtW3b\nNjkcDsXFxemJJ54wMwYAmzkXz+zbE0svAjgn2OnM3peQOOMHADNxZn9mKH4AHQplf/YofgAhj7Jv\nXxQ/gJBE2ZuH4gcQMij74KD4AViKsg8+ih9A0FH21qL4AQQFZR86KH4ApqHsQxPFD6BdUfahj+IH\ncNYo+46F4gdwRij7joviBxAwyv7cQPEDaBVlf+6h+AGcgrI/t1H8ACRR9nZC8QM2RtnbE8UP2Axl\nD4ofsAHKHs2ZVvz19fUaP368fvrpJzU0NGjKlCl64IEHVF1drWuuuUbfffedYmNjtXbtWkVHR5sV\nA7Atyh6+mLrYel1dncLDw9XY2Khx48Zp6dKlKioqUq9evXTHHXfowQcf1I8//qiCgoJTg7HYOtBm\nLDhub4Euth5mZojw8HBJUkNDgzwej3r06KGioiLl5uZKknJzc7Vu3TozIwDnvMpKaeVKKTVVio+X\ntmw5dmZfUSGtWSNNmULpoyVTx/ibmpo0YsQIffvtt5o/f74SExNVVVUlp9MpSXI6naqqqjIzAs4h\ntbXSwYNWpwgNR45IxcUM4+DMmFr8YWFh2rZtmw4cOKCsrCy9++67Lb7vcDjkcDh8Hp+fn+/dTk1N\nVWpqqklJ0RGkp0u7dkldulidxHqdOknjx1P2kNxut9xutySpvj6wY0wd429u8eLFOv/88/XXv/5V\nbrdbMTExqqioUFpamr7++utTgzHGj5MkJUnPPnvsvwBOZfkY//79+1VTUyNJOnLkiDZu3CiXy6Wc\nnBytXr1akrR69WpNnTrVrAgAgNMwbainoqJCubm5ampqUlNTk2bPnq309HS5XC7NnDlTq1at8l7O\nCQAInqAN9bQVQz04GUM9QOssH+oBAIQmih8AbIbiBwCbofgBwGYofgCwGYofAGyG4gcAm6H4AcBm\nKH4AsBmfUzakpaWd9vnjs2mWlJSYkwgAYCqfxf/QQw95t4+X/datW/Xggw+qT58+5icDAJjCZ/GP\nGjXKu+12u3X//ffryJEjeuKJJzRx4sSghAMAtL9WZ+csLi7WH//4R3Xt2lV33323z+EfAEDH4bP4\nL7nkEn3//ff6zW9+ozFjxkiS/vnPf3q/P2LECPPTAQDanc/ij4iIUEREhAoLC1VYWHjK909eRhEA\n0DH4LP7jazg2NTUpLKzlVZ/1gS7sCAAIOX6v48/Ly2vxdW1tra666irTAgEAzOW3+Pv166ebb75Z\nkvTjjz8qMzNTs2fPNj0YAMAcfot/8eLFioiI0E033aSMjAwtXLhQc+bMCUY2AIAJfBb/8V/qvvzy\ny7rsssv00UcfyeVyyeFw6OWXXw7oxcvLy5WWlqbExEQNGzZMjz76qCQpPz9f/fv3l8vlksvlUnFx\ncfv8NAAAv3wutn7DDTd479iVJMMwWnz99NNP+33xyspKVVZWKjk5WbW1tRo5cqTWrVuntWvXqnv3\n7lq4cKHvYCy2jpOw2DrQukAXW/d5Vc8zzzxz1iFiYmIUExMjSYqMjFR8fLz27t0rSZQ6AFgkaLNz\nlpWVqbS0VJdddpkkacWKFUpKStK8efNUU1MTrBgAYHutTtnQXmprazV9+nQtX75ckZGRmj9/vu69\n915J0j333KPbb79dq1atOuW4/Px873ZqaqpSU1ODERcAOgy32+297yrQW6x8jvG3l6NHj2ry5Mma\nOHGiFixYcMr3y8rKlJ2drS+++KJlMMb4cRLG+IHWnfUY/3H19fUqLCxUWVmZGhsbJR0r5eNn7K0x\nDEPz5s1TQkJCi9KvqKhQ3759JUmvvPKKhg8f7ve1AADtw2/xT5kyRdHR0Ro5cqTOO++8Nr34pk2b\ntGbNGl188cVyuVySpCVLluiFF17Qtm3b5HA4FBcXpyeeeOLM0gMA2sxv8e/du1dvvfXWGb34uHHj\n1NTUdMrzzOcPANbxe1XP2LFj9fnnnwcjCwAgCPye8X/wwQd6+umnFRcXp27dukk6NsbPXwYA0DH5\nLf4333wzGDkAAEHis/gPHjyoqKgoRUVFBTMPAMBkPot/1qxZev311zVixIgWc/RIx4Z6du3aZXo4\nAED781n8r7/+uqRjN1gBAM4dQZurBwAQGih+ALAZih8AbCag4j9+Lb8kff/999q9e7epoQAA5vFb\n/Pn5+frTn/6kBx54QJLU0NCg6667zvRgAABz+C3+V155RevXr1dERIQkqV+/fjp06JDpwQAA5vBb\n/N26dVNY2IndDh8+bGogAIC5/Bb/jBkzdNNNN6mmpkZ/+ctflJ6erry8vGBkAwCYIKAVuDZs2KAN\nGzZIkrKyspSRkWF+MFbgwklYgQtoXbutwLV7926lpKQoMzNTknTkyBGVlZUpNja2XYICAILL71DP\n9OnT1alTpxMHhIVp+vTppoYCAJjHb/F7PB517drV+3W3bt109OhRU0MBAMzjt/h79eql9evXe79e\nv369evXqZWooAIB5/Bb/448/riVLlmjAgAEaMGCACgoKAl4cvby8XGlpaUpMTNSwYcP06KOPSpKq\nq6uVkZGhwYMHKzMzUzU1NWf3UwAAAtZq8Xs8Hj3++OP66KOPtH37dm3fvl1btmzRoEGDAnrxLl26\n6JFHHtGXX36prVu3auXKlfrqq69UUFCgjIwM7dixQ+np6SooKGiXHwYA4F+rxd+pUyd9+OGHMgxD\n3bt3V/fu3dv04jExMUpOTpYkRUZGKj4+Xnv37lVRUZFyc3MlSbm5uVq3bt0ZxgcAtJXfyzmTk5M1\nZcoUzZgxQ+Hh4ZKOXWP/i1/8ok1vVFZWptLSUo0ePVpVVVVyOp2SJKfTqaqqqjOIDgA4E36Lv76+\nXj179lRJSUmL59tS/LW1tZo2bZqWL19+yr8aHA7HKUs7Hpefn+/dTk1NVWpqasDvCQB24Ha75Xa7\nJUn19YEdE9Cdu2fj6NGjmjx5siZOnKgFCxZIkoYOHSq3262YmBhVVFQoLS1NX3/9dctg3LmLk3Dn\nLtC6QO/c9XtVT3l5ua6++mr17t1bvXv31rRp07Rnz56AQhiGoXnz5ikhIcFb+pKUk5Oj1atXS5JW\nr16tqVOnBvR6AICz57f458yZo5ycHO3bt0/79u1Tdna25syZE9CLb9q0SWvWrNG7774rl8sll8ul\n4uJiLVq0SBs3btTgwYNVUlKiRYsWnfUPAgAIjN+hnqSkJP3rX//y+1y7B2OoBydhqAdoXbsN9Vx4\n4YX629/+Jo/Ho8bGRq1Zs4Y7dwGgA/Nb/E899ZTWrl2rmJgY9e3bVy+99JJ3/V0AQMfj83LOrVu3\n6rLLLlNsbKxeffXVYGYCAJjI5xn//PnzvdtjxowJShgAgPn8DvVIx27iAgCcG3wO9Xg8HlVXV8sw\nDO92cz179jQ9HACg/fks/oMHD2rkyJGSjt2IdXxbOnap5a5du8xPBwBodz6Lv6ysLIgxAADBEtAY\nPwDg3EHxA4DNUPwAYDOtFn9jY6OGDBkSrCwAgCBotfg7d+6soUOH6rvvvgtWHgCAyfyuwFVdXa3E\nxERdeumlioiIkHTscs6ioiLTwwEA2p/f4l+8eHEwcgAAgsRv8bPOLQCcW/xe1bNlyxZdcsklioyM\nVJcuXRQWFqaoqKhgZAMAmMBv8d9yyy16/vnnddFFF6m+vl6rVq3SzTffHIxsAAATBHQd/0UXXSSP\nx6NOnTppzpw5Ki4uNjsXAMAkfos/IiJCP/30k5KSknTHHXfo4YcfDngt3Llz58rpdGr48OHe5/Lz\n89W/f/8Wi68DAILHb/E/++yzampq0mOPPabw8HDt2bNHhYWFAb346f514HA4tHDhQpWWlqq0tFRX\nXnnlmSUHAJwRv1f1xMbGqq6uTpWVlcrPz2/Ti6ekpJx2ls9A/8UAAGh/fs/4i4qK5HK5lJWVJUkq\nLS1VTk7OWb3pihUrlJSUpHnz5qmmpuasXgsA0DZ+z/jz8/P10UcfKS0tTZLkcrnOahGW+fPn6957\n75Uk3XPPPbr99tu1atUqn+99XGpqKvcUAMBJ3G633G63JCnQVXL9Fn+XLl0UHR3d4rmwsDOf1LNP\nnz7e7by8PGVnZ/vct61DSwBgN81Pipctk3766fd+j/Hb4ImJiXruuefU2NionTt36tZbb9XYsWPP\nOGRFRYV3+5VXXmlxxQ8AwHx+i3/FihX68ssv1a1bN82aNUtRUVFatmxZQC8+a9YsjR07Vt98840G\nDBigp556SnfeeacuvvhiJSUl6b333tMjjzxy1j8EACBwDiNEL7FxOBxc/YMWkpKkZ5899l8Ap4qO\nlg4c8N+dfsf4v/nmGy1dulRlZWVqbGyUdKyUS0pK2icpACCo/Bb/jBkzNH/+fOXl5alTp06SjhU/\nAKBjCuiqnvnz5wcjCwAgCHz+cre6ulo//PCDsrOztXLlSlVUVKi6utr7AAB0TD7P+EeMGNFiSGfp\n0qXebYfDcVY3cQEArOOz+E83xw4AoOPzOdTzySeftLjZavXq1crJydGvfvUrhnoAoAPzWfw33nij\nunXrJkl6//33tWjRIuXm5ioqKko33nhj0AICANqXz6GepqYm9ezZU5L04osv6qabbtK0adM0bdo0\nJXEHDQB0WD7P+D0ej44ePSpJevvtt72zc0ry3sgFAOh4fJ7xz5o1S+PHj1evXr0UHh6ulJQUSdLO\nnTtPma0TANBx+Cz+3/3ud5owYYIqKyuVmZnpnYrZMAytWLEiaAEBAO2r1Tt3x4wZc8pzgwcPNi0M\nAMB8Z76iCgCgQ6L4AcBmKH4AsBmKHwBshuIHAJuh+AHAZkwt/rlz58rpdGr48OHe56qrq5WRkaHB\ngwcrMzNTNTU1ZkYAAJzE1OKfM2eOiouLWzxXUFCgjIwM7dixQ+np6SooKDAzAgDgJKYWf0pKinr0\n6NHiuaKiIuXm5kqScnNztW7dOjMjAABO4nfN3fZWVVUlp9MpSXI6naqqqvK5b35+kEKhQ6istDoB\ncG4IevE353A4WizveDK3O9+7HRubqtjYVPNDIWT96lfSoEFWpwBCi9vtltvtliTV1wd2jMMwDMO8\nSMeWcMzOztYXX3whSRo6dKjcbrdiYmJUUVGhtLQ0ff3116cGczhkcjQAOKdER0sHDvjvzqBfzpmT\nk6PVq1dLOrac49SpU4MdAQBszdQz/lmzZum9997T/v375XQ69Yc//EFTpkzRzJkz9d///lexsbFa\nu3btaef354wfANom0DN+04d6zhTFDwBtE7JDPQAAa1H8AGAzFD8A2AzFDwA2Q/EDgM1Q/ABgMxQ/\nANgMxQ8ANkPxA4DNUPwAYDMUPwDYDMUPADZD8QOAzVD8AGAzFD8A2AzFDwA2Q/EDgM1Q/ABgMxQ/\nANhMZ6veODY2VlFRUerUqZO6dOmijz/+2KooAGArlhW/w+GQ2+1Wz549rYoAALZk6VCPv5XgAQDt\nz7LidzgcuuKKKzRq1Cg9+eSTVsUAANuxbKhn06ZN6tu3r77//ntlZGRo6NChSklJabFPfn6+dzs1\nNVWpqanBDQkAIc7tdsvtdkuS6usDO8ZhhMB4y+9//3tFRkbq9ttv9z7ncDgYCgKANoiOlg4c8N+d\nlgz11NXV6dChQ5Kkw4cPa8OGDRo+fLgVUQDAdiwZ6qmqqtLVV18tSWpsbNS1116rzMxMK6IAgO2E\nxFDP6TDUAwBtE9JDPQAA61D8AGAzFD8A2AzFDwA2Q/EDgM1Q/ABgMxQ/ANgMxQ8ANkPxA4DNUPwA\nYDMUPwDYDMUPADZD8QOAzVD8AGAzFD8A2AzFDwA2Q/EDgM1Q/ABgM5YVf3FxsYYOHaqLLrpIDz74\noFUxAMB2LCl+j8ejW265RcXFxdq+fbteeOEFffXVV1ZE6RDcbrfVEUIGn8UJfBYn8Fm0jSXF//HH\nH2vQoEGKjY1Vly5d9Mtf/lLr16+3IkqHwB/qE/gsTuCzOIHPom0sKf69e/dqwIAB3q/79++vvXv3\nWhEFAGzHkuJ3OBxWvC0AQJIMC2zZssXIysryfr1kyRKjoKCgxT4DBw40JPHgwYMHjzY8Bg4c6LeD\nHYZhGAqyxsZGDRkyRO+8845+9rOf6dJLL9ULL7yg+Pj4YEcBANvpbMmbdu6sxx57TFlZWfJ4PJo3\nbx6lDwBBYskZPwDAOiF35y43dp0wd+5cOZ1ODR8+3OooliovL1daWpoSExM1bNgwPfroo1ZHskx9\nfb1Gjx6t5ORkJSQk6K677rI6kuU8Ho9cLpeys7OtjmKp2NhYXXzxxXK5XLr00ktb3Tekzvg9Ho+G\nDBmit99+W/369dMll1xi67H/Dz74QJGRkbr++uv1xRdfWB3HMpWVlaqsrFRycrJqa2s1cuRIrVu3\nzrZ/Lurq6hQeHq7GxkaNGzdOS5cu1bhx46yOZZmHH35Yn332mQ4dOqSioiKr41gmLi5On332mXr2\n7Ol335A64+fGrpZSUlLUo0cPq2NYLiYmRsnJyZKkyMhIxcfHa9++fRansk54eLgkqaGhQR6PJ6D/\n0c9Ve/bs0RtvvKG8vDyF0DmsZQL9DEKq+LmxC/6UlZWptLRUo0ePtjqKZZqampScnCyn06m0tDQl\nJCRYHckyt912mx566CGFhYVUlVnC4XDoiiuu0KhRo/Tkk0+2um9IfVrc2IXW1NbWavr06Vq+fLki\nIyOtjmOZsLAwbdu2TXv27NH7779v2+kKXnvtNfXp00cul4uzfUmbNm1SaWmp3nzzTa1cuVIffPCB\nz31Dqvj79eun8vJy79fl5eXq37+/hYkQKo4ePapp06bpuuuu09SpU62OExIuuOACTZo0SZ9++qnV\nUSyxefNmFRUVKS4uTrNmzVJJSYmuv/56q2NZpm/fvpKk3r176+qrr9bHH3/sc9+QKv5Ro0Zp586d\nKisrU0NDg1588UXl5ORYHQsWMwxD8+bNU0JCghYsWGB1HEvt379fNTU1kqQjR45o48aNcrlcFqey\nxpIlS1ReXq7du3fr73//uyZMmKBnn33W6liWqKur06FDhyRJhw8f1oYNG1q9GjCkir/5jV0JCQm6\n5pprbHvlhiTNmjVLY8eO1Y4dOzRgwAA9/fTTVkeyxKZNm7RmzRq9++67crlccrlcKi4utjqWJSoq\nKjRhwgQlJydr9OjRys7OVnp6utWxQoKdh4qrqqqUkpLi/XMxefJkZWZm+tw/pC7nBACYL6TO+AEA\n5qP4AcBmKH4AsBmKHwBshuIHAJuh+AHAZih+dChmT9WwbNkyHTlypN3f79VXX7X9NOMIHVzHjw6l\ne/fu3jsUzRAXF6dPP/1UF154YVDeD7ACZ/zo8L799ltNnDhRo0aN0s9//nN98803kqQbbrhBv/71\nr3X55Zdr4MCBKiwslHRsdsubb75Z8fHxyszM1KRJk1RYWKgVK1Zo3759SktLa3E37N13363k5GSN\nGTNG//vf/055/wULFmjx4sWSpLfeekvjx48/ZZ9nnnlGt956a6u5misrK9PQoUM1Z84cDRkyRNde\ne602bNigyy+/XIMHD9Ynn3xy9h8c7MvvcuxACImMjDzluQkTJhg7d+40DMMwtm7dakyYMMEwDMPI\nzc01Zs6caRiGYWzfvt0YNGiQYRiG8dJLLxlXXXWVYRiGUVlZafTo0cMoLCw0DMMwYmNjjR9++MH7\n2g6Hw3jttdcMwzCMO+64w7j//vtPef+6ujojMTHRKCkpMYYMGWLs2rXrlH2eeeYZ45Zbbmk1V3O7\nd+82OnfubPz73/82mpqajJEjRxpz5841DMMw1q9fb0ydOtXvZwX4Ysli60B7qa2t1ZYtWzRjxgzv\ncw0NDZKOzd1yfCbP+Ph4VVVVSZI+/PBDzZw5U5K8c9r70rVrV02aNEmSNHLkSG3cuPGUfc4//3w9\n+eSTSklJ0fLlyxUXF9dqZl+5ThYXF6fExERJUmJioq644gpJ0rBhw1RWVtbqewCtofjRoTU1NSk6\nOlqlpaWn/X7Xrl2928b//zrL4XC0mL/daOXXXF26dPFuh4WFqbGx8bT7ff755+rdu3fACwedLtfJ\nunXr1uK9jx/TWg4gEIzxo0OLiopSXFyc/vGPf0g6VqKff/55q8dcfvnlKiwslGEYqqqq0nvvvef9\nXvfu3XXw4ME2Zfjuu+/08MMPexfBON086K395QIEG8WPDqWurk4DBgzwPpYtW6bnnntOq1atUnJy\nsoYNG9Ziwe3mU/Ue3542bZr69++vhIQEzZ49WyNGjNAFF1wgSbrxxht15ZVXen+5e/LxJ0/9axiG\n8vLy9Oc//1kxMTFatWqV8vLyvMNNvo71tX3yMb6+tvMUxDh7XM4JWzp8+LAiIiL0ww8/aPTo0dq8\nebP69OljdSwgKBjjhy1NnjxZNTU1amho0L333kvpw1Y44wcAm2GMHwBshuIHAJuh+AHAZih+ALAZ\nih8AbIbiBwCb+T+gqVKkQGpm/QAAAABJRU5ErkJggg==\n",
       "text": [
        "<matplotlib.figure.Figure at 0x5d63a10>"
       ]
      },
      {
       "metadata": {},
       "output_type": "display_data",
       "png": "iVBORw0KGgoAAAANSUhEUgAAAYMAAAEPCAYAAACgFqixAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xt0VPW5xvHvRBJamnAplaQSWEkDCLmUhCCoCCbCJAIi\nFyWICClIbQ/HCtojqPWCnrYJByuC9S7g9Qh4qAQohEslCCgCioUKSgUiISQBzYoEAgbCPn8MDAkw\nmZDsmT2X57NW1komM9nvmqXzsPe7f7/XZhiGgYiIBLUQqwsQERHrKQxERERhICIiCgMREUFhICIi\nKAxERAQPhsGECROIjIwkKSnJ+diDDz5It27d6N69OyNGjOD77793/i4nJ4fOnTvTtWtXVq9e7amy\nRETkEjwWBuPHjyc/P7/OYxkZGXzxxRf885//pEuXLuTk5ACwa9cuFi5cyK5du8jPz2fSpEmcOXPG\nU6WJiMgFPBYGffv2pU2bNnUes9vthIQ4Dtm7d28OHjwIQF5eHqNHjyY0NJSYmBg6derEli1bPFWa\niIhcwLKewbx58xg0aBAAhw4dIjo62vm76OhoiouLrSpNRCToWBIGf/rTnwgLC+POO+90+RybzebF\nikREglszbx/w9ddfZ8WKFfzjH/9wPta+fXuKioqcPx88eJD27dtf9NpOnTqxd+9er9QpIhIo4uLi\n+Prrr+t/kuFB+/fvNxITE50/r1y50oiPjzeOHDlS53lffPGF0b17d+OHH34w9u3bZ/ziF78wzpw5\nc9Hf83C5fuWJJ56wugSfoffiPL0X5+m9OK8hn50eOzMYPXo069ev59tvv6VDhw48+eST5OTkUF1d\njd1uB+C6667jhRdeID4+nqysLOLj42nWrBkvvPCCLhOJiJigoTdmeiwM3n333YsemzBhgsvnP/LI\nIzzyyCOeKkdEJOicOgVjxzbsuV7vGYg50tLSrC7BZ+i9OE/vxXnB/l6cOAFZWbB7d8Oebzt7Pckv\n2Gw2/KhcERFLVFbC0KEQGQkTJkBGhvvPTu1NJCISQMrLwW6HuDh4+20IDW3Y6xQGIiIBoqwM0tPh\nhhvglVfgiisa/lqFgYhIADhwAPr2hdtvh5kz4XJvyFQYiIj4uT17HEEwaRI89tjlBwHobiIREb+2\nYwfcfDP893/D3Xc3/u8oDERE/NQnn8Ctt8KcOTBqVNP+lsJARMQPrVvnCID582Hw4Kb/PfUMRET8\nzPLljiBYtMicIACFgYiIX1m40NEbWL4czFxkrTAQEfETr70GDzwAa9dCr17m/m31DERE/MCsWTB7\nNhQUQOfO5v99hYGIiA8zDHjqKXjnHfjwQ+jY0TPHURiIiPgow4D/+i/HZaENGxwbz3mKwkBExAfV\n1MBvfws7dzouDbVp49njKQxERHzMuaE0hw/DmjUQEeH5YyoMRER8yLmhNAArVsCPfuSd4+rWUhER\nH1FZ6VhEFh4Of/ub94IAFAYiIj6hsUNpzKIwEBGxWGmpYzVxY4bSmEVhICJioQMHoF8/GDmycUNp\nzKIwEBGxiBlDacyiu4lERCxg1lAasygMRES8zMyhNGZRGIiIeJHZQ2nMop6BiIiXeGIojVkUBiIi\nXuCpoTRm8VgYTJgwgcjISJKSkpyPlZeXY7fb6dKlCxkZGVRUVDh/l5OTQ+fOnenatSurV6/2VFki\nIl7nyaE0ZvFYGIwfP578/Pw6j+Xm5mK329mzZw/9+/cnNzcXgF27drFw4UJ27dpFfn4+kyZN4syZ\nM54qTUTEa2bNgj/+0bHzaK1/G/scj4VB3759aXPBnqtLly4lOzsbgOzsbJYsWQJAXl4eo0ePJjQ0\nlJiYGDp16sSWLVs8VZqIiMcZBjz5JLz4omMojSemk5nJqz2DsrIyIs9OZ4iMjKSsrAyAQ4cOER0d\n7XxedHQ0xcXF3ixNRMQ054bS/O1vjqE0nppOZibLbi212WzY6lluV9/vRER8lbeH0pjFq2EQGRlJ\naWkpUVFRlJSU0K5dOwDat29PUVGR83kHDx6kffv2l/wb06dPd36flpZGmi+25UUkKFkxlOZSCgoK\nKCgoAKCwsGGvsRmGYXiqoMLCQoYMGcLOnTsBmDp1Km3btmXatGnk5uZSUVFBbm4uu3bt4s4772TL\nli0UFxczYMAAvv7664vODmw2Gx4sV0Sk0WoPpXnvPe/OIqhPQQGkp7v/7PTYmcHo0aNZv3493377\nLR06dOCpp57ioYceIisri7lz5xITE8OiRYsAiI+PJysri/j4eJo1a8YLL7ygy0Qi4jcqK2HoUMfA\n+jff9P4sAjN49MzAbDozEBFfU14OgwY5bht96SVrZhHUp6FnBlqBLCLSSL4wlMYsCgMRkUbwlaE0\nZlEYiIhcJl8aSmMWbWEtInIZfG0ojVkUBiIiDeSLQ2nMojAQEWkAXx1KYxb1DERE3PDloTRmURiI\niNTD14fSmEVhICLigj8MpTGL2zBYtmwZKSkptGnThoiICCIiImjZsqU3ahMRsYy/DKUxi9sG8pQp\nU3j//fdJTEwkJEQnEiIS2AwDnnoK3nnHMZTGH2YRmMFtGERHR5OQkKAgEJGAd24ozdq1jqE0Z2dx\nBQW3YTBjxgwGDhxIeno6YWFhgGPDuAceeMDjxYmIeIu/DqUxi9sweOyxx4iIiODkyZNUV1d7oyYR\nEa/ylaE0VnIbBiUlJaxZs8YbtYiIeF3toTQrVvjOUBpvc9sIGDRoEKtWrfJGLSIiXlVZ6VhEFh7u\nGF4frEEADRhuEx4eTlVVFWFhYYSeHd9js9k4evSoVwqsTcNtRMQs5eUwcCB07w4vvujfswjqY9rY\ny2PHjplVk4iITygthYwMx1cgzCIwg+4XFZGgEmhDaczSqDBISUkxuw4REY8LxKE0ZmnUFtbbt283\nuw4REY8K1KE0ZtE8AxEJeIE8lMYsLsMgNjbW5YtsNhv79u3zSEEiImYK9KE0ZnEZBlu3bnV+b7PZ\nOHPmDAsXLuTpp5+mR48eXilORKQpli+HCRMcQ2kCeRaBGVyGwc9+9jMAzpw5w5tvvsnMmTNJTk5m\nxYoVxMfHe61AEZHGWLgQ7rvPEQiBPovADC7DoLq6mnnz5jFr1ixuuOEG8vLy6NSpkzdrExFplNde\ngyeecOw+GgyzCMzgcgVydHQ0zZo1Y/LkyXTs2BHb2XuwDMPAZrMxYsQIrxYKWoEsIu7NmgWzZzs2\nnOvc2epqrNfkFcgDBgwAYMeOHezYseOi31sRBiIirgTrUBqzuAyD119/HYCTJ0/yowt2b/ruu+88\nWpSIyOUI5qE0ZnG7AnnEiBGcOnXK+XNJSQl2u71JB83JySEhIYGkpCTuvPNOfvjhB8rLy7Hb7XTp\n0oWMjAwqKiqadAwRCQ41NXDPPbBpk+OSiIKgcdyGwfDhw8nKyqKmpobCwkIyMzPJzc1t9AELCwt5\n9dVX+eyzz9i5cyc1NTUsWLCA3Nxc7HY7e/bsoX///k06hogEh1OnYMwY2LvX0SMItulkZnK7AvnX\nv/41P/zwA0OHDuWbb77hpZdeok+fPo0+YMuWLQkNDaWqqoorrriCqqoqrrrqKnJycli/fj0A2dnZ\npKWlKRBExKUTJxybzdlswT2Uxiwuw+Avf/kLcP4OnqKiIrp3787mzZv55JNPGj0D+ac//Sm///3v\n6dixIz/+8Y/JzMzEbrdTVlZG5Nnzu8jISMrKyhr190Uk8FVWOraXiIqCN9+Es6NWpAlchkFlZaXz\ndlJwXC6y2WxNnm+wd+9enn32WQoLC2nVqhUjR47k7bffrvMcm81W59i1TZ8+3fl9WloaaVpWKBJU\ngmUoTVMUFBRQUFAAQGFhw17jdtKZ2RYuXMiaNWt47bXXAHjrrbfYvHkzH3zwAevWrSMqKoqSkhLS\n09P58ssv6xardQYiQU1DaS5fQ9cZeH24TdeuXdm8eTMnTpzAMAzWrl1LfHw8Q4YM4Y033gDgjTfe\nYNiwYd4uTUR8mIbSeJbXt7Du3r0748aNo2fPnoSEhNCjRw/uueceKisrycrKYu7cucTExLBo0SJv\nlyYiPmrPHrDb4f77YcoUq6sJTF6/TNQUukwkEnw0lKZpmrwdxTmHDx/m1VdfpbCwkNOnTwOOD+V5\n8+aZUqiIiCsaSuM9bsNg6NCh9OvXD7vdTkiIo8Xg6k4fERGzaCiNd7kNgxMnTjBjxgxv1CIiAmgo\njRXc3k10yy238Pe//90btYiIsHChozewfLmCwJvcNpDDw8OpqqoiLCyM0LPL/Gw2G0ePHvVKgbWp\ngSwS2M4NpcnP11Aas5jWQG7qimMRkYY4N5SmoEBDaazgMgx2795Nt27d+Oyzzy75+x49enisKBEJ\nHhpK4xtchsEzzzzDq6++ygMPPHDJu4fWrVvn0cJEJPBpKI3v0KIzEbFETQ389rewcyesXKlZBJ5i\nWs9ARMRs1dUwbhwcPuwYShMRYXVFojAQEa/SUBrf5PVdS0UkeFVWwqBBjjOBv/1NQeBL3IZB//79\nG/SYiEh9ysthwADHbaNvv63pZL7G5WWiEydOUFVVxZEjRygvL3c+fvToUYqLi71SnIgEBg2l8X0u\nw+Dll19m9uzZHDp0iNTUVOfjERER3HvvvV4pTkT834EDjjOCsWPh0UcVBL7K7a2lc+bM4b777vNW\nPfXSraUi/kVDaazX0FtLG7TO4KOPPqozzwBg3LhxTS7ycikMRPyHhtL4BtPWGdx1113s27eP5ORk\nrrjiCufjVoSBiPgHDaXxP27D4NNPP2XXrl0aaCMiDaKhNP7J7a2liYmJlJSUeKMWEfFzy5c7gmDR\nIgWBv3F7ZnDkyBHi4+Pp1asXzZs3BxzX7pcuXerx4kTEfyxcCPfd5wiEXr2srkYul9swmD59OlC3\neatLRiJS27mhNGvXaiiNv3IbBmlpaRQWFvL1118zYMAAqqqq6txVJCLBTUNpAoPbnsErr7zCyJEj\n+c1vfgPAwYMHGT58uMcLExHfZhjw5JPw4ouOoTQKAv/mNgyef/55Nm7cSMuWLQHo0qULhw8f9nhh\nIuK7DAN+/3vHZnMbNmg6WSBwe5moefPmzsYxwOnTp9UzEAlitYfSFBRoKE2gcHtmcOONN/KnP/2J\nqqoq1qxZw8iRIxkyZIg3ahMRH1NdDWPGwN69jqE0CoLA4XY7ipqaGubOncvq1asByMzMZOLEiZac\nHWg7ChHr1B5K8957mkXgL0zdm8hsFRUVTJw4kS+++AKbzcb8+fPp3Lkzo0aN4ptvviEmJoZFixbR\nunXrusUqDEQsUVnp2F4iKgrefFOzCPxJQ8PA7WWiZcuWkZKSQps2bYiIiCAiIsLZTG6syZMnM2jQ\nIHbv3s2OHTvo2rUrubm52O129uzZQ//+/cnNzW3SMUTEHBpKExzcnhnExcXx/vvvk5iYSEhI06dk\nfv/996SkpLBv3746j3ft2pX169cTGRlJaWkpaWlpfPnll3WL1ZmBiFdpKI3/M+3MIDo6moSEBFOC\nAGD//v1ceeWVjB8/nh49evDrX/+a48ePU1ZWRmRkJACRkZGUlZWZcjwRaZwDB6BfP0efQEEQ+Nze\nWjpjxgwGDhxIeno6YWFhgONf6A888ECjDnj69Gk+++wz/vrXv3LNNdcwZcqUiy4J2Ww2lw3qc9tj\ngGN1dFpaWqPqEBHXNJTGvxUUFFBQUABAYWHDXuP2MpHdbiciIoKkpKQ6ZwdPPPFEo4osLS3luuuu\nY//+/QBs3LiRnJwc9u3bx7p164iKiqKkpIT09HRdJhKxgIbSBBbThtuUlJSwZs0as+oiKiqKDh06\nsGfPHrp06cLatWtJSEggISGBN954g2nTpvHGG28wbNgw044pIg2joTTBy20YDBo0iFWrVpGZmWna\nQZ977jnGjBlDdXU1cXFxzJ8/n5qaGrKyspg7d67z1lIR8R4NpQlubi8ThYeHU1VVRVhYGKFn7ymz\n2WwcPXrUKwXWpstEIp6xfDlMmOAYSqM2XGAx7TLRsWPHzKpJRHyQhtIINCAMAPLy8vjwww+x2Wzc\neOON2ptIJEBoKI2c4zYMHnroIbZu3cqYMWMwDIM5c+bw0UcfkZOT4436RMRDNJRGanPbM0hKSuLz\nzz/niiuuABwb1yUnJ7Nz506vFFibegYiTXduKM3//q/jjECzCAKbaSuQbTYbFRUVzp8rKio0z0DE\nT50bSvP++xpKI3W5vUz08MMP06NHD+dK3/Xr12sTORE/pKE0Up8GbWF96NAhtm7dis1mo1evXkRF\nRXmjtovoMpFI41RXw7hxcPgw5OVBRITVFYm3NPnW0s8++6zOz9HR0YAjGA4dOkSPHj2aXqWIeFzt\noTQrVmgojVyayzDo2bMniYmJtG3b9pK/X7dunceKEhFzaCiNNJTLMHjmmWd47733aNGiBaNGjWL4\n8OFE6NxSxG+Ul8PAgdC9O7z4Ipy9IVDkklzeTTRlyhQ2bdrEnDlzOHjwIP3792fkyJF8/vnn3qxP\nRBqhtNSxrUTfvvDyywoCcc/traVxcXEMHTqUjIwMtm7dyldffeWNukSkkTSURhrD5WWivXv3smDB\nAvLy8ujYsSOjRo3iD3/4Az/+8Y+9WZ+IXAYNpZHGcnlraUhICElJSQwbNoyWLVs6nnz21s6mTDpr\nCt1aKuLatm0wdCg89ZSG0sh5Tb619PHHH3euNNbOpSK+bdEi+M//hFdegeHDra5G/FGDFp35Cp0Z\niNR1bp+h+fMdi8mSk62uSHyNafMMRMQ3VVXB+PHwzTeOcZUWbQwgAcLt3UQi4nuKi+HGGx2LyAoK\nFATSdAoDET+zbRv07u3oDbz1lraXEHO4vUz0l7/8pc61epvNRqtWrUhNTSVZFyhFvEqNYvEUt2Hw\n6aefsm3bNoYMGYJhGPz9738nKSmJl156idtvv51p06Z5o06RoFa7UbxmjRrFYj63dxP17duXlStX\nEh4eDjhuMx00aBD5+fmkpqaye/durxQKuptIglPtRvGSJeoPyOUxbdLZkSNHCAsLc/4cGhpKWVkZ\nLVq04Ee6WCniUWoUi7e4vUw0ZswYevfuzbBhwzAMg2XLlnHnnXdy/Phx4uPjvVGjSFDatg2GDYNJ\nk+Dhh7XHkHhWgxadbd26lU2bNmGz2ejTpw89e/b0Rm0X0WUiCRZqFItZTF101qNHD6666ipOnz6N\nzWbjwIEDdNQkbRHTqVEsVnEbBs899xxPPvkk7dq144pam6Lv3LnTo4WJBButKBYruQ2DZ599lq++\n+srl+EsRabriYkd/4OqrHaf1ujdDvM3t3UQdO3Z0bmFtppqaGlJSUhgyZAgA5eXl2O12unTpQkZG\nBhUVFaYfU8QXbdsG116rFcViLbdnBrGxsaSnpzN48GDnLaZmzDOYPXs28fHxVFZWApCbm4vdbmfq\n1KnMmDGD3NxccnNzm3QMEV+nRrH4igadGQwYMIDq6mqOHTtGZWWl8wO8sQ4ePMiKFSuYOHGis8O9\ndOlSsrOzAcjOzmbJkiVNOoaILzMMmD4dHnzQ0ShWEIjV3J4ZTJ8+3fSD3n///cycOZOjR486Hysr\nKyMyMhKAyMhIysrKTD+uiC9Qo1h8kcswmDx5MrNnz3Ze06/NZrOxdOnSRh1w+fLltGvXjpSUFAoK\nCi75HJvN5pyydqHa4ZSWlkZaWlqj6hCxghrF4g0FBQXOz9fCwoa9xuWis23bttGzZ0+XH9iN/RB+\n5JFHeOutt2jWrBknT57k6NGjjBgxgq1bt1JQUEBUVBQlJSWkp6fz5Zdf1i1Wi87Ej23b5rgc9B//\noRXF4j0NXXRm6djL9evX8/TTT7Ns2TKmTp1K27ZtmTZtGrm5uVRUVFzUQFYYiL9So1is0uQVyElJ\nSS5fZLPZ2LFjR6OLu/BvATz00ENkZWUxd+5cYmJiWLRokSl/X8RKWlEs/sLlmUHh2QtNL7zwAgBj\nx47FMAzeeecdAGbMmOGdCmvRmYH4E209Lb7AtMtEycnJfP7553UeS0lJYfv27U0u8nIpDMRf1G4U\nv/aaGsViHdPmGRiGwcaNG50/b9q0SR/IIvXQimLxR27XGcybN4/x48fz/fffA9C6dWvmz5/v8cJE\n/JEaxeKv3IZBamoqO3bscIZBq1atPF6UiL9Ro1j8ndswOHnyJIsXL6awsJDTp08Djmv3jz/+uMeL\nE/EHWlEsgcBtGAwdOpTWrVuTmpqqmcciF9CKYgkUbsOguLiYVatWeaMWEb+iFcUSSNzeTXT99deb\ntsBMJFAsWgQDB8KcOfDIIwoC8X9uzww2bNjA/PnziY2NpXnz5oC5K5BF/IkaxRKo3IbBypUrvVGH\niM9To1gCmdvLRDExMRQVFbFu3TpiYmL4yU9+okVnEnSKi+HGGyE01NEoVhBIoHEbBtOnT+d//ud/\nyMnJAaC6upq77rrL44WJ+AqtKJZg4PYy0fvvv8/27dtJTU0FoH379k0eeyniL7SiWIKF2zBo3rw5\nISHnTyCOHz/u0YJEfIFhwFNPwbx5ahRLcHAbBiNHjuQ3v/kNFRUVvPLKK8ybN4+JEyd6ozYRS6hR\nLMGoQZPOVq9ezerVqwHIzMzEbrd7vLBL0RbW4mnaeloCjUfGXh45coSf/exnLofVe5rCQDxJK4ol\nEDV5nsHHH39MWloaI0aMYPv27SQmJpKUlERkZKTWHkjA0YpiCXYuewb33nsvOTk5fP/996Snp5Of\nn8+1117Ll19+yR133MHAgQO9WaeIR6hRLOLgMgxqamrIyMgA4PHHH+faa68FoGvXrpZdJhIxkxrF\nIue5vExU+wNfW1dLoNGKYpG6XJ4Z7Nixg4iICABOnDjh/P7czyL+So1ikYvVe5lIJNBoRbHIpbld\ndCYSCNQoFqmfwkACnhrFIu653bVUxJ+pUSzSMAoDCVjaelqk4XSZSAKSGsUil8frZwZFRUWkp6eT\nkJBAYmIic+bMAaC8vBy73U6XLl3IyMigoqLC26VJADg3o/jBBx2NYgWBSMN4PQxCQ0OZNWsWX3zx\nBZs3b+b5559n9+7d5ObmYrfb2bNnD/379yc3N9fbpYmfq6qCO+6AlSsdjWLdMSTScF4Pg6ioKJLP\n/l8aHh5Ot27dKC4uZunSpWRnZwOQnZ3NkiVLvF2a+DE1ikWaxtIGcmFhIdu3b6d3796UlZURGRkJ\nQGRkJGVlZVaWJn5EjWKRprOsgXzs2DFuu+02Zs+eXWerC3Dsi6TN8KQ+hYWwapXj68MPHY3iESOs\nrkrEf1kSBqdOneK2225j7NixDBs2DHCcDZSWlhIVFUVJSQnt2rW75GunT5/u/D4tLY20tDQvVCxW\nO37ccfnnXABUVEBGhiMAXnoJXPznIhKUCgoKKCgoABz/cGqIy5p0ZgbDMMjOzqZt27bMmjXL+fjU\nqVNp27Yt06ZNIzc3l4qKiouayJp0FjwMA3buPP/h/8knkJoKmZlw883QvTuEaJWMiFseGXtpho0b\nN9KvXz9++ctfOi8F5eTk0KtXL7Kysjhw4AAxMTEsWrSI1q1b1y1WYRDQvv3WcTvoqlWwejW0aOH4\n8M/MhPR0uOBqoog0gM+GQVMoDALLqVOOf/GvWgX5+bBnj+OOoJtvdgRAXJzVFYr4v4aGgVYgi1fV\nbvyuWwexsY4P/pkz4frrISzM6gpFgpPCQDyqvsbviy/C2buJRcRiCgMxVX2N3wUL1PgV8VUKA2ky\nV43f++5T41fEXygM5LLV1/h97DE1fkX8kcJAGkSNX5HApjCQS1LjVyS4KAwEUONXJNgpDIKYGr8i\nco7CIIica/zm5zsCQI1fETlHYRDg1PgVkYZQGAQYNX5FpDEUBn5OjV8RMYPCwA+p8SsiZlMY+IFL\nNX7T0hwBoMaviJhBYeCj1PgVEW9SGPgINX5FxEoKA4vUbvzm58OWLWr8ioh1FAZe5KrxO3myGr8i\nYi2FgQedOgWbN5+/9KPGr4j4KoWByWo3fj/4AH7xCzV+RcT3KQyaSI1fEQkECoPLpMaviAQihUED\nqPErIoFOYXAJavyKSLBRGJylxq+IBLOgDQM1fkVEzguaMDjX+D232ZsavyIi5/lUGOTn5zNlyhRq\namqYOHEi06ZNa9LfU+NXRKRhfObfwjU1Ndx7773k5+eza9cu3n33XXbv3n1Zf+PUKdiwAR59FK65\nxtHoXbAAevVyPP711/D883Drrf4fBAUFBVaX4DP0Xpyn9+I8vReXx2fCYMuWLXTq1ImYmBhCQ0O5\n4447yMvLc/u6wkJ4+WXHtf4rr3T8q7+mxtH4PXIE8vJg0qTAuwNI/6Gfp/fiPL0X5+m9uDw+c5mo\nuLiYDh06OH+Ojo7mk08+ueh5avyKiJjPZ8LAZrM16HlRUWr8ioiYzvARH3/8sZGZmen8+c9//rOR\nm5tb5zlxcXEGoC996Utf+rqMr7i4OLefwTbDMAx8wOnTp7n66qv5xz/+wVVXXUWvXr1499136dat\nm9WliYgEPJ+5TNSsWTP++te/kpmZSU1NDXfffbeCQETES3zmzEBERKzjN63X/Px8unbtSufOnZkx\nY4bV5VhmwoQJREZGkpSUZHUplisqKiI9PZ2EhAQSExOZM2eO1SVZ5uTJk/Tu3Zvk5GTi4+N5+OGH\nrS7JcjU1NaSkpDBkyBCrS7FUTEwMv/zlL0lJSaFXr14un+cXZwY1NTVcffXVrF27lvbt23PNNdcE\nbT9hw4YNhIeHM27cOHbu3Gl1OZYqLS2ltLSU5ORkjh07RmpqKkuWLAnK/y4AqqqqaNGiBadPn+aG\nG27g6aef5oYbbrC6LMs888wzfPrpp1RWVrJ06VKry7FMbGwsn376KT/96U/rfZ5fnBk0dkFaIOrb\nty9t2rSxugyfEBUVRXJyMgDh4eF069aNQ4cOWVyVdVq0aAFAdXU1NTU1bv/nD2QHDx5kxYoVTJw4\nET/4967HNeQ98IswuNSCtOLiYgsrEl9TWFjI9u3b6d27t9WlWObMmTMkJycTGRlJeno68fHxVpdk\nmfvvv5+ZM2cSokVI2Gw2BgwYQM+ePXn11VddPs8v3qmGLkiT4HTs2DFuv/12Zs+eTXh4uNXlWCYk\nJITPP/9ifdciAAAEpElEQVScgwcP8uGHHwbtdgzLly+nXbt2pKSk6KwA2LRpE9u3b2flypU8//zz\nbNiw4ZLP84swaN++PUVFRc6fi4qKiI6OtrAi8RWnTp3itttu46677mLYsGFWl+MTWrVqxeDBg9m2\nbZvVpVjio48+YunSpcTGxjJ69Gg++OADxo0bZ3VZlvn5z38OwJVXXsnw4cPZsmXLJZ/nF2HQs2dP\n/v3vf1NYWEh1dTULFy7k1ltvtbossZhhGNx9993Ex8czZcoUq8ux1LfffktFRQUAJ06cYM2aNaSk\npFhclTX+/Oc/U1RUxP79+1mwYAE33XQTb775ptVlWaKqqorKykoAjh8/zurVq13eiegXYVB7QVp8\nfDyjRo0K2jtGRo8ezfXXX8+ePXvo0KED8+fPt7oky2zatIm3336bdevWkZKSQkpKCvn5+VaXZYmS\nkhJuuukmkpOT6d27N0OGDKF///5Wl+UTgvkyc1lZGX379nX+d3HLLbeQkZFxyef6xa2lIiLiWX5x\nZiAiIp6lMBAREYWBiIgoDEREBIWBiIigMBARERQGEqA8vS3Fs88+y4kTJy7reMuWLQvq7dfFt2md\ngQSkiIgI58pLT4iNjWXbtm20bdvWK8cT8TSdGUjQ2Lt3LwMHDqRnz57069ePr776CoBf/epXTJ48\nmT59+hAXF8fixYsBxy6gkyZNolu3bmRkZDB48GAWL17Mc889x6FDh0hPT6+zyvfRRx8lOTmZ6667\njsOHD190/Ndff53f/e539R6ztsLCQrp27cr48eO5+uqrGTNmDKtXr6ZPnz506dKFrVu3euJtkmBl\niASg8PDwix676aabjH//+9+GYRjG5s2bjZtuuskwDMPIzs42srKyDMMwjF27dhmdOnUyDMMw3nvv\nPWPQoEGGYRhGaWmp0aZNG2Px4sWGYRhGTEyM8d133zn/ts1mM5YvX24YhmFMnTrV+OMf/3jR8V9/\n/XXj3nvvrfeYte3fv99o1qyZ8a9//cs4c+aMkZqaakyYMMEwDMPIy8szhg0bdrlvi4hLzawOIxFv\nOHbsGB9//DEjR450PlZdXQ049q45t+Npt27dKCsrA2Djxo1kZWUBOGcEuBIWFsbgwYMBSE1NZc2a\nNfXW4+qYF4qNjSUhIQGAhIQEBgwYAEBiYiKFhYX1HkPkcigMJCicOXOG1q1bs3379kv+PiwszPm9\ncbaNZrPZ6uyHb9TTXgsNDXV+HxISwunTp93WdKljXqh58+Z1/u651zT0GCINpZ6BBIWWLVsSGxvL\n//3f/wGOD98dO3bU+5o+ffqwePFiDMOgrKyM9evXO38XERHB0aNHL6uG+sJExGoKAwlIVVVVdOjQ\nwfn17LPP8s477zB37lySk5NJTEysMyS99jbH576/7bbbiI6OJj4+nrFjx9KjRw9atWoFwD333MPN\nN9/sbCBf+PpLbZt84eOuvr/wNa5+DuatmcV8urVUpB7Hjx/nJz/5Cd999x29e/fmo48+ol27dlaX\nJWI69QxE6nHLLbdQUVFBdXU1jz/+uIJAApbODERERD0DERFRGIiICAoDERFBYSAiIigMREQEhYGI\niAD/D0GjsePfia+aAAAAAElFTkSuQmCC\n",
       "text": [
        "<matplotlib.figure.Figure at 0x5fe5130>"
       ]
      }
     ],
     "prompt_number": 28
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 3.3.11,Page No.115"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "import numpy as np\n",
      "%matplotlib inline\n",
      "\n",
      "#Initilization of Variables\n",
      "\n",
      "w=20 #KN/m #u.v.l\n",
      "F_C=40 #KN #Force at Pt C\n",
      "M_D=40 #KN.m #Moment at pt D\n",
      "L_AB=3 #m #Length of AB\n",
      "L_BC=1 #m #Length of BC\n",
      "L_CD=L_DE=2 #m #Length of CD & DE\n",
      "L=8 #8 #Length of beam\n",
      "\n",
      "#Calculations\n",
      "\n",
      "#Let R_A & R_E be the Reactions at A & E respectively\n",
      "#R_A+R_E=70\n",
      "\n",
      "#Taking Moments At Pt A we get,M_A\n",
      "R_E=(F_C*(L_AB+L_BC)+1*2**-1*L_AB*w*2+40)*L**-1\n",
      "R_A=70-R_E\n",
      "\n",
      "#shear Force Calculations\n",
      "\n",
      "#S.F At Pt E\n",
      "V_E1=0\n",
      "V_E2=R_E #KN\n",
      "\n",
      "#S.F aT pt D\n",
      "V_D=V_E2\n",
      "\n",
      "#S.F At PT C\n",
      "V_C1=V_D\n",
      "V_C2=V_D-F_C #KN\n",
      "\n",
      "#S.F At Pt A\n",
      "V_A1=V_C2-(1*2**-1*w*L_AB)\n",
      "V_A2=V_A1+R_A\n",
      "\n",
      "#Bending Moment Calculations\n",
      "\n",
      "#B.M At Pt E\n",
      "M_E=0\n",
      "\n",
      "#B.M At Pt D\n",
      "M_D1=M_E-R_E*L_DE\n",
      "M_D2=M_D1+M_D\n",
      "\n",
      "#B.M At Pt C\n",
      "M_C=-R_E*(L_DE+L_CD)+M_D\n",
      "\n",
      "#B.M At Pt B\n",
      "M_B=-R_E*(L_DE+L_CD+L_BC)+M_D+F_C*L_BC\n",
      "\n",
      "#B.M At Pt A\n",
      "M_A=-R_E*L+M_D+(1*2**-1*L_AB*w*2)+F_C*(L_BC+L_AB)\n",
      "\n",
      "#Result\n",
      "print \"The Shear Force and Bending Moment Diagrams are the results\"\n",
      "\n",
      "#Plotting the Shear Force Diagram\n",
      "\n",
      "X1=[0,0,L_DE,L_CD+L_DE,L_CD+L_DE,L_CD+L_DE+L_AB,L_CD+L_DE+L_AB]\n",
      "Y1=[V_E1,V_E2,V_D,V_C1,V_C2,V_A1,V_A2]\n",
      "Z1=[0,0,0,0,0,0,0]\n",
      "plt.plot(X1,Y1,X1,Z1)\n",
      "plt.xlabel(\"Length x in m\")\n",
      "plt.ylabel(\"Shear Force in kN\")\n",
      "plt.show()\n",
      "\n",
      "#Plotting the Bendimg Moment Diagram\n",
      "\n",
      "Y2=[M_E,M_D1,M_D2,M_C,M_B,M_A]\n",
      "X2=[0,L_DE,L_DE,L_CD+L_DE,L_DE+L_CD+L_BC,L_AB+L_BC+L_CD+L_DE]\n",
      "Z2=[0,0,0,0,0,0]\n",
      "plt.plot(X2,Y2)\n",
      "plt.xlabel(\"Lenght in m\")\n",
      "plt.ylabel(\"Bending Moment in kN.m\")\n",
      "plt.show()"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The Shear Force and Bending Moment Diagrams are the results\n"
       ]
      },
      {
       "metadata": {},
       "output_type": "display_data",
       "png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEPCAYAAACtCNj2AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XtYVHX+B/D3IGCJqJk69DBsw8NFGDTBG1mrDuHgFTIv\nbFhGKFsrT7bUbyt8tm0pUii7menWmiVWm9qSgZcIWB0vGVKrpRurkEFyr2RJUQlhzu+PiZMowwzC\nzHcu79fz8DjMxfPOdN6ccz7zPQpJkiQQEREBcBMdgIiI7AdLgYiIZCwFIiKSsRSIiEjGUiAiIhlL\ngYiIZMJLob29HREREYiNjQUANDY2QqfTITg4GDExMWhqahKckIjIdQgvhTVr1kCj0UChUAAAsrKy\noNPpUFZWhujoaGRlZQlOSETkOoSWQnV1NXbv3o3k5GR0fIYuLy8PiYmJAIDExER89NFHIiMSEbkU\noaXwyCOPYPXq1XBz+zVGQ0MDlEolAECpVKKhoUFUPCIilyOsFHbu3IkRI0YgIiICplbaUCgU8mEl\nIiKyPndRGz506BDy8vKwe/dutLS04OzZs1i8eDGUSiXq6+vh4+ODuro6jBgx4qrXBgYG4tSpUwJS\nExE5roCAAHzzzTfdP0myA3q9XpozZ44kSZL02GOPSVlZWZIkSVJmZqb0xBNPXPV8O4l9zf7617+K\njtArzC8W84vjyNklybL3TuHTRx06DhOlpaWhsLAQwcHB2LNnD9LS0gQnIyJyHcIOH11u6tSpmDp1\nKgBg6NChKCoqEpyIiMg12c2egivRarWiI/QK84vF/OI4cnZLKX45zuRQFAqFyYklIiLqmiXvndxT\nICIiGUuBiIhkLAUiIpKxFIiISMZSICIiGUuBiIhkLAUiIpKxFIiISMZSICIiGUuBiIhkLAUiIpKx\nFIiISMZSICIiGUuBiIhkdnGRnWvh6Sk6AZHtubkB+/cDEyeKTkLOymFLoblZdAIi25szB2hsFJ2C\nnJnDlgL3FMgVufGAL1mZsL9iLS0tiIyMRHh4ODQaDVasWAEAaGxshE6nQ3BwMGJiYtDU1CQqIhGR\nyxFWCtdddx327t2LL7/8EseOHcPevXtx8OBBZGVlQafToaysDNHR0cjKyhIVkYjI5QjdGR0wYAAA\noLW1Fe3t7bjhhhuQl5eHxMREAEBiYiI++ugjkRGJiFyK0FIwGAwIDw+HUqlEVFQUwsLC0NDQAKVS\nCQBQKpVoaGgQGZGIyKUIPdHs5uaGL7/8Ej/99BOmT5+OvXv3dnpcoVBAoVB0+dr09HT5tlarhVar\ntWJSIiLHo9frodfre/QahSRJknXi9ExGRgauv/56vPnmm9Dr9fDx8UFdXR2ioqJw4sSJTs9VKBSw\nk9hENjVjBpCaavyVqKcsee8Udvjoxx9/lCeLLl68iMLCQkRERCAuLg7Z2dkAgOzsbMydO1dURCIi\nlyPs8FFdXR0SExNhMBhgMBiwePFiREdHIyIiAvHx8di4cSPUajW2bdsmKiIRkcuxm8NHPcHDR+Sq\nePiIesOuDx8REZH9YSkQEZGMpUBERDKWAhERyVgKREQkYykQEZGMpUBERDKWAhERyVgKREQkYykQ\nEZGMpUBERDKWAhERyVgKREQkYykQEZGMpUBERDKWAhERyVgKREQkYykQEZGMpUBERDJhpVBVVYWo\nqCiEhYVh1KhRePXVVwEAjY2N0Ol0CA4ORkxMDJqamkRFJCJyOcJKwcPDAy+//DK+/vprFBcXY926\ndfjvf/+LrKws6HQ6lJWVITo6GllZWaIiEhG5HGGl4OPjg/DwcADAwIEDERoaipqaGuTl5SExMREA\nkJiYiI8++khURCIil2MX5xQqKytx9OhRREZGoqGhAUqlEgCgVCrR0NAgOB0RketwFx2gubkZ8+fP\nx5o1a+Dt7d3pMYVCAYVC0eXr0tPT5dtarRZardaKKYmIHI9er4der+/RaxSSJEnWiWPepUuXMGfO\nHMycOROpqakAgJCQEOj1evj4+KCurg5RUVE4ceJEp9cpFAoIjE0kzIwZQGqq8VeinrLkvVPY4SNJ\nkrB06VJoNBq5EAAgLi4O2dnZAIDs7GzMnTtXVEQiIpcjbE/h4MGDmDJlCm655Rb5EFFmZiYmTpyI\n+Ph4nD59Gmq1Gtu2bcOQIUM6h+aeArko7ilQb1jy3insnMJvf/tbGAyGLh8rKiqycRoiIgLsZPqI\niIjsA0uBiIhkLAUiIpKxFIiISMZSICIiGUuBiIhkLAUiIpKxFIiISMZSICIimclPNEdFRXV5f8eS\nFHv27LFOIiIiEsZkKaxevVq+3VEExcXFeO655zBixAjrJyMiIpszWQrjx4+Xb+v1ejz77LO4ePEi\n3njjDcycOdMm4YiIyLa6XRAvPz8fK1euhKenJ5588kmTh5SIiMg5mCyFCRMm4IcffsCf/vQnTJo0\nCQBw5MgR+fGxY8daPx0REdmUyVLw8vKCl5cXcnJykJOTc9Xje/futWowIiKyPZOl0HFdT4PBADe3\nzpOrLS0tVg1FRERimP2cQnJycqfvm5ubMWvWLKsFIiIiccyWgq+vL1JSUgAA//vf/xATE4PFixdb\nPRgREdme2VLIyMiAl5cXHnzwQeh0Ojz66KNISkqyRTYiIrIxk6XQcYL5ww8/xK233orDhw8jIiIC\nCoUCH374YZ9sfMmSJVAqlRg9erR8X2NjI3Q6HYKDgxETE4OmpqY+2RYREZlnshR27NiBnTt3yr+G\nh4ejra1Nvq8vJCUlIT8/v9N9WVlZ0Ol0KCsrQ3R0NLKysvpkW0REZJ5CkiRJZIDKykrExsbi+PHj\nAICQkBDs27cPSqUS9fX10Gq1OHHiRKfXKBQKCI5NJMSMGUBqqvFXop6y5L3T7lZJbWhogFKpBAAo\nlUo0NDQITkRE5Dq6XeZCNIVCIS/Gd6X09HT5tlarhVartU0oIiIHodfr5c+cWcruSqHjsJGPjw/q\n6upMrsh6eSkQEdHVrvyB+emnnzb7GrOl0NLSgpycHFRWVqKtrQ2A8Sf4p5566tqTdiMuLg7Z2dl4\n4oknkJ2djblz51plO0REdDWzpXDnnXdiyJAhGDduHK677ro+3XhCQgL27duHH3/8EX5+fnjmmWeQ\nlpaG+Ph4bNy4EWq1Gtu2bevTbRIRkWlmS6GmpgaffPKJVTb+/vvvd3l/UVGRVbZHRETdMzt9dNtt\nt+HYsWO2yEJERIKZ3VM4cOAA3n77bfj7+6N///4AjOcUWBRERM7HbCl8/PHHtshBRER2wGQpnD17\nFoMGDcKgQYNsmYeIiAQyWQoJCQnYtWsXxo4de9UHyBQKBb799lurhyMiItsyWQq7du0CYFybiIiI\nXIPdrX1ERETisBSIiEjGUiAiIplFpdDxWQUA+OGHH1BRUWHVUEREJIbZUkhPT8fzzz+PzMxMAEBr\nayvuvfdeqwcjIiLbM1sK27dvR25uLry8vAAAvr6+OHfunNWDERGR7Zkthf79+8PN7dennT9/3qqB\niIhIHLOlsHDhQjz44INoamrC3//+d0RHRyM5OdkW2YiIyMbMrn302GOPoaCgAN7e3igrK0NGRgZ0\nOp0tshERkY2ZLYWKigpMnjwZMTExAICLFy+isrISarXa2tmIiMjGzB4+WrBgAfr16/frC9zcsGDB\nAquGIiIiMcyWQnt7Ozw9PeXv+/fvj0uXLlk1FBERiWG2FIYNG4bc3Fz5+9zcXAwbNsyqoYiISAyz\npfD6669j1apV8PPzg5+fH7KysvDGG29YNVR+fj5CQkIQFBSE5557zqrbIiKiX3V7orm9vR2vv/46\nDh8+LH9gzdvb26qB2tvb8dBDD6GoqAi+vr6YMGEC4uLiEBoaatXtEhGRmT2Ffv364eDBg5AkCd7e\n3lYvBAAoKSlBYGAg1Go1PDw8cPfdd3c6fEVERNZjdiQ1PDwcd955JxYuXIgBAwYAMF55bd68eVYJ\nVFNTAz8/P/l7lUqFw4cPW2VbRESu4swZy55nthRaWlowdOhQ7Nmzp9P91iqFKy/9afJ52suepwbg\nb5U4RPZlEvDJYQD8OYksUQGgsmcvMVsKmzZtuqYs18rX1xdVVVXy91VVVVCpVFc9T9JLtoxFZBdm\nzABSU42/EvXEwYPA5Mnmf+g2O31UVVWFu+66C8OHD8fw4cMxf/58VFdX90nIrowfPx7l5eWorKxE\na2srtm7diri4OKttj4iIfmW2FJKSkhAXF4fa2lrU1tYiNjYWSUlJVgvk7u6O1157DdOnT4dGo8Hv\nfvc7Th4REdmIQpKkbo/DjBkzBl999ZXZ+2xJoVDATGwip8TDR3StOg4fmXvvNLuncOONN+Kdd95B\ne3s72tra8O677/ITzURETspsKbz11lvYtm0bfHx8cNNNN+GDDz6Qr9dMRETOxeT0UXFxMW699Vao\n1Wrs2LHDlpmIiEgQk3sKy5Ytk29PmjTJJmGIiEgss4ePAOMH2IiIyPmZPHzU3t6OxsZGSJIk377c\n0KFDrR6OiIhsy2QpnD17FuPGjQMASJIk3waMI6Hffvut9dMREZFNmSyFyspKG8YgIiJ7YNE5BSIi\ncg0sBSIikrEUiIhI1m0ptLW1YeTIkbbKQkREgnVbCu7u7ggJCcF3331nqzxERCSQ2YvsNDY2Iiws\nDBMnToSXlxcA40hqXl6e1cMREZFtmS2FjIwMW+QgIiI7YLYUtFqtDWIQkaVaW0UnIGdmdvros88+\nw4QJEzBw4EB4eHjAzc0NgwYNskU2IrpCXBywZAnwwgssB7IOs6Xw0EMP4R//+AeCgoLQ0tKCjRs3\nIiUlxRbZiOgKKSnAp58Ce/YAo0cDu3eLTkTOxqLPKQQFBaG9vR39+vVDUlIS8vPzrZ2LiEwYOdJY\nBi+9ZLw055w5QHm56FTkLMyWgpeXF37++WeMGTMGjz/+OF566aVeXx/5gw8+QFhYGPr164cjR450\neiwzMxNBQUEICQlBQUFBr7ZD5MxmzwaOHwemTAEmTQIefxw4e1Z0KnJ0Zkth8+bNMBgMeO211zBg\nwABUV1cjJyenVxsdPXo0tm/fjilTpnS6v7S0FFu3bkVpaSny8/ORkpICg8HQq20RObP+/Y1lcPw4\n8P33QEgIkJ0N8J8NXSuz00dqtRoXLlxAfX090tPT+2SjISEhXd6fm5uLhIQEeHh4QK1WIzAwECUl\nJbj11lv7ZLtEzuqmm4BNm4DDh4Hly4H164G1a4GJE0UnI0djdk8hLy8PERERmD59OgDg6NGjiIuL\ns0qY2tpaqFQq+XuVSoWamhqrbIvIGUVGAsXFwLJlwJ13AklJQH296FTkSMzuKaSnp+Pw4cOIiooC\nAERERFh0gR2dTof6Lv42rlq1CrGxsRYHVCgUJnN10Gq1/DwF0S/c3ID77wfmzQMyMoBRo4C0NODh\nhwFPT9HpyJb0ej30ej0A4PRpy15jthQ8PDwwZMiQTve5uZkfWiosLLQswWV8fX1RVVUlf19dXQ1f\nX98un9tXh7KInNWgQcDq1UByMvDII8CGDcDLLwOzZolORrZy+Q/MBw8Cb7/9tNnXmH13DwsLw3vv\nvYe2tjaUl5dj+fLluO2223odtsPlk0xxcXHYsmULWltbUVFRgfLyckzkQVGiXuEIK/WE2VJYu3Yt\nvv76a/Tv3x8JCQkYNGgQXnnllV5tdPv27fDz80NxcTFmz56NmTNnAgA0Gg3i4+Oh0Wgwc+ZMrF+/\n3uThIyLqGY6wkiUUUm8/dCCAQqHo9WcliFxZXR2wYgVQUABkZgKLFxvPRZDzOngQmDzZ/Hun2VI4\nefIkXnjhBVRWVqKtrc34IoUCe/bs6bu0PcRSIOobHSOsCgVHWJ2dpaVg9kTzwoULsWzZMiQnJ6Nf\nv34ATE8EEZFj6Rhh3bzZOMI6Y4Zxz8HHR3QyEsWi6aNly5bZIgsRCcARVrqcyaOIjY2NOHPmDGJj\nY7Fu3TrU1dWhsbFR/iIi59IxwspVWF2byXMKarXa5GEihUJh0QfYrIXnFIisb9cu4+cbgoONn28I\nChKdiHqj1+cUKisr+zoTETmQ2bOBadOANWuMI6xLlgBPPmncoyDnZfLw0eeff466ujr5++zsbMTF\nxeHhhx/m4SMiF8FVWF2PyVJ44IEH0L9/fwDA/v37kZaWhsTERAwaNAgPPPCAzQISkXgdq7Bu3w6s\nW2fccygpEZ2KrMFkKRgMBgwdOhQAsHXrVjz44IOYP38+nn32WZTzM/JELomrsDo/k6XQ3t6OS5cu\nAQCKiorkVVIByB9iIyLX0zHCevIkMGyYcYT1hReA1lbRyagvmCyFhIQETJ06FXFxcRgwYAAmT54M\nACgvL79q1VQicj0cYXVO3S5z8dlnn6G+vh4xMTHw8vICAJSVlaG5uRljx461WcgrcSSVyP5whNW+\n9dnaR/aIpUBkn37+2TjC+vzzHGG1N5aWAtdFJKI+wxFWx8dSIKI+xxFWx8VSICKr4Qir42EpEJFV\ncYTVsbAUiMgmOMLqGFgKRGRTI0cay+Cll4DUVGDOHICLJNgPIaXw2GOPITQ0FGPGjMG8efPw008/\nyY9lZmYiKCgIISEhKCgoEBGPiGxg9mzjlNKUKcYT0Y8/Dpw9KzoVCSmFmJgYfP311/jqq68QHByM\nzMxMAEBpaSm2bt2K0tJS5OfnIyUlBQbOshE5LY6w2h8hpaDT6eDmZtx0ZGQkqqurAQC5ublISEiA\nh4cH1Go1AgMDUcI5NiKnxxFW+yH8nMJbb72FWbNmAQBqa2uhUqnkx1QqFWpqakRFIyIbu3yEde5c\njrCKYPLKa72l0+lQ38X/zVWrViE2NhYAsHLlSnh6emLRokUmfx9TlwRNT0+Xb2u1Wmi12l7lJSL7\n0DHCOm8ekJFhHGFNSwMefhjw9BSdzrHo9Xro9XoAwOnTlr1G2NpHmzZtwoYNG/Cvf/0L1113HQAg\nKysLAJCWlgYAmDFjBp5++mlERkZ2ei3XPiJyHSdPGhfaO3XKuNDeLwcWqIfseu2j/Px8rF69Grm5\nuXIhAEBcXBy2bNmC1tZWVFRUoLy8HBMnThQRkYjsBEdYbUtIKSxfvhzNzc3Q6XSIiIhASkoKAECj\n0SA+Ph4ajQYzZ87E+vXrTR4+IiLXwhFW2+DS2UTkcOrqgBUrgIICIDMTWLzYeC6CTLPrw0dERL3B\nEVbrYSkQkcPiCGvfYykQkUPrGGE9cYKrsPYFlgIROQWuwto3WApE5FQ4wto7LAUickocYb02LAUi\nclpchbXnWApE5PSuHGG97TaOsJrCUiAil9ExwvqHP3CE1RSWAhG5FI6wdo+lQEQuiSOsXWMpEJFL\n4whrZywFIiJwhLUDS4GI6BccYWUpEBFdxZVHWFkKREQmuOIIK0uBiKgbrjbCylIgIrJAxwjroUPO\nPcIqpBT+8pe/YMyYMQgPD0d0dDSqqqrkxzIzMxEUFISQkBAUFBSIiEdEZFJwsHOPsAq5RvO5c+fg\n7e0NAFi7di2++uorvPnmmygtLcWiRYvw+eefo6amBtOmTUNZWRncrrj4Kq/RTET24OefgTVrgOef\nB5YsAZ580rhHYY/s+hrNHYUAAM3NzRg2bBgAIDc3FwkJCfDw8IBarUZgYCBKXOWUPxE5HGccYRV2\nTuHPf/4zfvOb32DTpk1YsWIFAKC2thYqlUp+jkqlQk1NjaiIREQWcaYRVquVgk6nw+jRo6/62rFj\nBwBg5cqVOH36NJKSkpCammry91EoFNaKSETUp5xhhNXdWr9xYWGhRc9btGgRZs2aBQDw9fXtdNK5\nuroavr6+Xb4uPT1dvq3VaqHVaq85KxFRX+kYYZ03D8jIMI6wpqUBDz8MeHraNoter4derwcAnD5t\n2WuEnGguLy9HUFAQAOOJ5pKSErzzzjvyieaSkhL5RPM333xz1d4CTzQTkaMoKzNOKZ06Bbz8MvDL\nz8A2Z+mJZqvtKXRnxYoVOHnyJPr164eAgAD87W9/AwBoNBrEx8dDo9HA3d0d69ev5+EjInJoHSOs\nu3YZy2H9emM5/PJzsd0RsqfQW9xTICJHdPkI69KlxhHWy4YxrcquR1KJiFzR5SOsDQ3GaznY2wgr\nS4GIyMbseYSVpUBEJIg9jrCyFIiIBLK3VVhZCkREdsBeVmFlKRAR2RHRq7CyFIiI7NDs2cYppSlT\ngEmTgCeeAM6ds/52WQpERHZKxAgrS4GIyM7ZcoSVpUBE5CBsMcLKUiAiciDWHmFlKRAROSBrjbCy\nFIiIHFhfj7CyFIiInEBfjbCyFIiInERfjLDyegpERE7q8GFg+XLjyen4eOD//s/8eydLgYjIiRkM\nwObNxutENzSwFIiICMDZs8DgwSwFIiL6hSXvnUJPNL/44otwc3NDY2OjfF9mZiaCgoIQEhKCgoIC\ngemIiFyPsFKoqqpCYWEhbr75Zvm+0tJSbN26FaWlpcjPz0dKSgoM9nTx0j6i1+tFR+gV5heL+cVx\n5OyWElYKjz76KJ5//vlO9+Xm5iIhIQEeHh5Qq9UIDAxEib1cuLQPOfpfLOYXi/nFceTslhJSCrm5\nuVCpVLjllls63V9bWwuVSiV/r1KpUFNTY+t4REQuy91av7FOp0N9F8v3rVy5EpmZmZ3OF3R34kOh\nUFglHxERdUGysePHj0sjRoyQ1Gq1pFarJXd3d+nmm2+W6uvrpczMTCkzM1N+7vTp06Xi4uKrfo+A\ngAAJAL/4xS9+8asHXwEBAWbfo4WPpPr7++Pf//43hg4ditLSUixatAglJSWoqanBtGnT8M0333Bv\ngYjIRqx2+MhSl7/hazQaxMfHQ6PRwN3dHevXr2chEBHZkPA9BSIish8Ot0pqfn4+QkJCEBQUhOee\ne050nB5ZsmQJlEolRo8eLTrKNamqqkJUVBTCwsIwatQovPrqq6Ij9UhLSwsiIyMRHh4OjUaDFStW\niI7UY+3t7YiIiEBsbKzoKD2mVqtxyy23ICIiAhMnThQdp8eampqwYMEChIaGQqPRoLi4WHQki508\neRIRERHy1+DBg03/++2zM8g20NbWJgUEBEgVFRVSa2urNGbMGKm0tFR0LIvt379fOnLkiDRq1CjR\nUa5JXV2ddPToUUmSJOncuXNScHCwQ/35S5IknT9/XpIkSbp06ZIUGRkpHThwQHCinnnxxRelRYsW\nSbGxsaKj9JharZbOnDkjOsY1u++++6SNGzdKkmT8+9PU1CQ40bVpb2+XfHx8pNOnT3f5uEPtKZSU\nlCAwMBBqtRoeHh64++67kZubKzqWxSZPnowbbrhBdIxr5uPjg/DwcADAwIEDERoaitraWsGpembA\ngAEAgNbWVrS3t2Po0KGCE1muuroau3fvRnJyssOu/eWouX/66SccOHAAS5YsAQC4u7tj8ODBglNd\nm6KiIgQEBMDPz6/Lxx2qFGpqajr9h/DDbeJUVlbi6NGjiIyMFB2lRwwGA8LDw6FUKhEVFQWNRiM6\nksUeeeQRrF69Gm5uDvXPVqZQKDBt2jSMHz8eGzZsEB2nRyoqKjB8+HAkJSVh7Nix+P3vf48LFy6I\njnVNtmzZgkWLFpl83KH+dnESyT40NzdjwYIFWLNmDQYOHCg6To+4ubnhyy+/RHV1Nfbv3+8wyxbs\n3LkTI0aMQEREhMP+tP3pp5/i6NGj+Pjjj7Fu3TocOHBAdCSLtbW14ciRI0hJScGRI0fg5eWFrKws\n0bF6rLW1FTt27MDChQtNPsehSsHX1xdVVVXy91VVVZ2WxSDru3TpEubPn497770Xc+fOFR3nmg0e\nPBizZ8/GF198ITqKRQ4dOoS8vDz4+/sjISEBe/bswX333Sc6Vo/cdNNNAIDhw4fjrrvucqh1zVQq\nFVQqFSZMmAAAWLBgAY4cOSI4Vc99/PHHGDduHIYPH27yOQ5VCuPHj0d5eTkqKyvR2tqKrVu3Ii4u\nTnQslyFJEpYuXQqNRoPU1FTRcXrsxx9/RFNTEwDg4sWLKCwsREREhOBUllm1ahWqqqpQUVGBLVu2\n4I477sDmzZtFx7LYhQsXcO6Xq8ifP38eBQUFDjWF5+PjAz8/P5SVlQEwHpcPCwsTnKrn3n//fSQk\nJHT7HOEfXusJd3d3vPbaa5g+fTra29uxdOlShIaGio5lsYSEBOzbtw9nzpyBn58fnnnmGSQlJYmO\nZbFPP/0U7777rjxWCBivfzFjxgzBySxTV1eHxMREGAwGGAwGLF68GNHR0aJjXRNHO5Ta0NCAu+66\nC4DxUMw999yDmJgYwal6Zu3atbjnnnvQ2tqKgIAAvP3226Ij9cj58+dRVFRk9nwOP7xGREQyhzp8\nRERE1sVSICIiGUuBiIhkLAUiIpKxFIiISMZSICIiGUuBnIq1l9145ZVXcPHixT7f3o4dOxxuKXhy\nTvycAjkVb29v+ZOz1uDv748vvvgCN954o022R2Rr3FMgp3fq1CnMnDkT48ePx5QpU3Dy5EkAwP33\n348//vGPuP322xEQEICcnBwAxpVUU1JSEBoaipiYGMyePRs5OTlYu3YtamtrERUV1emT0E8++STC\nw8MxadIkfP/991dtPzU1FRkZGQCATz75BFOnTr3qOZs2bcLy5cu7zXW5yspKhISEICkpCSNHjsQ9\n99yDgoIC3H777QgODsbnn3/e+z84ck02uq4DkU0MHDjwqvvuuOMOqby8XJIkSSouLpbuuOMOSZIk\nKTExUYqPj5ckSZJKS0ulwMBASZIk6YMPPpBmzZolSZIk1dfXSzfccIOUk5MjSdLVF4pRKBTSzp07\nJUmSpMcff1x69tlnr9r+hQsXpLCwMGnPnj3SyJEjpW+//faq52zatEl66KGHus11uYqKCsnd3V36\nz3/+IxkMBmncuHHSkiVLJEmSpNzcXGnu3Llm/6yIuuJQax8R9VRzczM+++yzTksFt7a2AjCuH9Sx\n0mtoaCgaGhoAAAcPHkR8fDwAyNddMMXT0xOzZ88GAIwbNw6FhYVXPef666/Hhg0bMHnyZKxZswb+\n/v7dZjaV60r+/v7yomxhYWGYNm0aAGDUqFGorKzsdhtEprAUyKkZDAYMGTIER48e7fJxT09P+bb0\ny+k1hULysHnuAAABU0lEQVTR6ZoFUjen3Tw8POTbbm5uaGtr6/J5x44dw/Dhwy2+KFRXua7Uv3//\nTtvueE13OYjM4TkFcmqDBg2Cv78//vnPfwIwvsEeO3as29fcfvvtyMnJgSRJaGhowL59++THvL29\ncfbs2R5l+O677/DSSy/JF5jp6joC3RUPkS2xFMipXLhwAX5+fvLXK6+8gvfeew8bN25EeHg4Ro0a\nhby8PPn5ly9B3XF7/vz5UKlU0Gg0WLx4McaOHStfj/eBBx7AjBkz5BPNV77+yiWtJUlCcnIyXnzx\nRfj4+GDjxo1ITk6WD2GZeq2p21e+xtT3jra0NtkPjqQSdeH8+fPw8vLCmTNnEBkZiUOHDmHEiBGi\nYxFZHc8pEHVhzpw5aGpqQmtrK5566ikWArkM7ikQEZGM5xSIiEjGUiAiIhlLgYiIZCwFIiKSsRSI\niEjGUiAiItn/A+2hg5gYC1MHAAAAAElFTkSuQmCC\n",
       "text": [
        "<matplotlib.figure.Figure at 0x5fd1b90>"
       ]
      },
      {
       "metadata": {},
       "output_type": "display_data",
       "png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEPCAYAAACtCNj2AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XlY1OX+//HnKLjk2mJmjIYKBgOIuLaHKZqWlpooVlqm\npxO2WFZq7paipi1amHayPSUzf2ilRy0x14O55NEpBINvCloeTQU3BD6/P26ZXBgZmBnumeH9uC6u\nYJiZzyvUz829vW+TYRgGQgghBFBFdwAhhBCeQxoFIYQQNtIoCCGEsJFGQQghhI00CkIIIWykURBC\nCGHjkY3CypUrCQkJITg4mOnTp+uOI4QQlYbJ0/YpFBYWcvPNN7NmzRoCAgJo164dCxcuJDQ0VHc0\nIYTweR7XU0hNTSUoKIjAwED8/f3p378/ycnJumMJIUSl4HGNQnZ2No0bN7Z9bTabyc7O1phICCEq\nD49rFEwmk+4IQghRafnpDnCpgIAA9u/fb/t6//79mM3mi55Tp04QeXn7KjqaEEJ4tebNm5ORkXHl\nJxke5ty5c0azZs2MzMxM4+zZs0ZkZKRhtVoveg5gXHutYfzvf5pCOmjChAm6IzhEcrqW5HQtb8jp\n6RknTTKMBx5Q987SeNzwkZ+fH++88w5du3bFYrHQr1+/Elce9ekDM2ZoCCiEEF4kIwNmz1YfjvC4\n4SOAbt260a1btys+Z9w4aNkShg+HRo0qKJgQQngRw4Cnn4aRI6FJE8de43E9BUeZzTBoEEydqjuJ\nfdHR0bojOERyupbkdC1vyOmpGb/6CrKz1S/PjvK4zWuOMJlMGIbBn39CaChs3w433aQ7lRBCeI4T\nJ8BigUWL4I471GPF984r8epGAWDMGDh0CD74QHMoIYTwIM8/D8ePw4IFfz9WKRqFv/6C4GDYtAla\ntNAcTAghPMDOndC1K+zZA9dd9/fjjjQKXjunUOzqq1WLOGGC7iRCCKFfURE89RRMmXJxg+Aor28U\nAJ57DtauhV27dCcRQgi9/vUvMJlg8ODyvd7rh4+KvfkmpKSA1M4TQlRWf/4J4eGwZo1asn+pSjGn\nUOzMGTW3sGQJtG+vKZgQQmg0aJAaMpo1q+TvV6pGAWDePNUorFqlIZQQQmi0bh088ghYrVCnTsnP\nqRQTzRcaPBj27VM/HCGEqCzy89Xk8ttv228QHOVTjYK/v1qFNGaM2t4thBCVwRtvQNOm0KuX8+/l\nU8NHAIWFEBGhxtRKKZ8khBBeLysL2raF1FRo1uzKz610w0cAVavC5Mkwdqz0FoQQvu/ZZ9VerdIa\nBEf5XKMA0Lu3ahC+/lp3EiGEcJ/kZNi7F1580XXv6XPDR8W++079oP77X9V7EEIIX3LypCp49+GH\ncM89jr2mUg4fFevWTZXA+OIL3UmEEML1Jk+GO+90vEFwlJZGYfHixYSFhVG1alW2b99+0fcSEhII\nDg4mJCSEVU5sODCZVO2PiRPh3DknAwshhAfZvVtVP7W3Sc0ZWhqFiIgIli5dyl133XXR41arlaSk\nJKxWKytXriQ+Pp6ioqJyXyc6Wk2+XFg6VgghvFlxwbtJk6BhQ9e/v5ZGISQkhBYl1LlOTk4mLi4O\nf39/AgMDCQoKIjU11alrTZkCr72mymAIIYS3+/hjdT978kn3vL9HzSnk5ORgNpttX5vNZrKzs516\nz/btoXVreO89Z9MJIYReR47AqFHqfuauBTR+7nlbiImJ4dChQ5c9PnXqVHr06OHw+5hMphIfnzhx\nou3z6OjoK56R+uqr0KULDBkCtWs7fGkhhPAoo0ZBv37Qpo1jz09JSSElJaVM13Bbo7B69eoyvyYg\nIID9+/fbvj5w4AABAQElPvfCRqE0LVtCx44weza88kqZYwkhhHabNqml9lar46+59BfmSZMmlfoa\n7cNHF66Z7dmzJ4sWLSI/P5/MzEzS09Np76I62JMmqTMXjh1zydsJIUSFKShQk8uzZkG9eu69lpZG\nYenSpTRu3JgtW7Zw33330e18kSKLxUJsbCwWi4Vu3bqRmJhod/iorFq0gB49YOZMl7ydEEJUmNmz\n4frr1dCRu/nsjuaSZGWpsbhfflE/YCGE8HQHDkCrVmr4qIRFm2VS6Q7ZccTTT0O1aqrUrBBCeLqH\nHoKwMDUE7ixpFEpw8KD6Ae/aBResfhVCCI+zYgU884zawVyjhvPvJ42CHS+/DCdOyN4FIYTnOn0a\nwsMhMRG6dnXNe0qjYMeRI2psbutW19UgF0IIVxo3DtLS4MsvXfee0ihcwcSJ8Ntv8MknrskkhBCu\n8uuvcMcd8PPPYGerVrlIo3AFJ05AUBCkpKia5EII4QkMAzp1gp49Yfhw1753pT5PoTR166pDeCZM\n0J1ECCH+9sUX8NdfaqWkDpW2pwBw6pTqLXz7LURFuSCYEEI44dgxNXKxdCl06OD695fhIwe8845a\n9vXtty55OyGEKLdhw6Cw0H0rI6VRcMDZs3DzzarLdtttLnlLIYQos61b1TyC1aqOEnYHmVNwQPXq\nMH48jBmjJniEEKKiFRaqgnfTp7uvQXBUpW8UAAYOhOxs+P573UmEEJXR3LnqrJdHH9WdRIaPbBYu\nhLfegi1bwEWFWYUQolQHD6ozX9atc//yeBk+KoN+/dS28uXLdScRQlQmI0aoUyE9Zb+U9BQukJys\n5hd27IAq0lwKIdxszRrVIFitcNVV7r+e9BTKqGdPVYnQlbVGhBCiJGfOQHw8zJlTMQ2Co7Q0Ci+9\n9BKhoaFERkbSu3dvjh8/bvteQkICwcHBhISEsGrVqgrNZTLBa6+pXc4FBRV6aSFEJTNjhhoy6tFD\nd5KLaWkUunTpwp49e/j5559p0aIFCQkJAFitVpKSkrBaraxcuZL4+HiKiooqNFvnztCokRTKE0K4\nT0aGOmJz9mzdSS6npVGIiYmhyvlB+w4dOnDgwAEAkpOTiYuLw9/fn8DAQIKCgkhNTa3QbCYTTJkC\nkyerjW1CCOFKhqHqGo0cCU2a6E5zOe1zCgsWLKB79+4A5OTkYL7gODSz2Ux2dnaFZ7r9dtWt+9e/\nKvzSQggf99VXal+Uqyuguoqfu944JiaGQ4cOXfb41KlT6XF+EG3KlClUq1aNAQMG2H0fk51NAxMn\nTrR9Hh0dTXR0tFN5L/Xaa2qs7/HHPWsSSAjhvU6cgOefh0WLwN/f/ddLSUkhJSWlTK8pdUnq8uXL\nGT9+PFlZWRScn301mUycOHGi3EEBPvroI95//32+//57apw/fHTatGkAjBo1CoB7772XSZMm0eGS\ncoHuWpJ6qYceUpUKX3rJ7ZcSQlQCzz8Px4/DggV6ru+SgnjNmzdn6dKlhIeH2+YBnLVy5UpGjBjB\nunXruO6662yPW61WBgwYQGpqKtnZ2XTu3JmMjIzLegsV1ShYrRAdrSaF6tZ1++WEED5s50511vKe\nPXDBba9CuWSfgtlsJiwszGUNAsAzzzxDXl4eMTExREVFER8fD4DFYiE2NhaLxUK3bt1ITEy0O3xU\nESwWuPdeePNNbRGEED6gqEgVvJsyRV+D4KhSewpbtmxh/PjxdOzYkWrVqqkXmUy88MILFRKwJBXV\nUwDYt08NIaWlwbXXVsglhRA+Zv58+Ogj2LBBb7UEl/QUxo0bR+3atTlz5gx5eXnk5eWRm5vrspCe\nrnlz6NNHbTQRQoiy+vNPGDtWHZzjDeVzSu0phIeHs3v37orK45CK7CkAHDigqhju2aM2tgkhhKMG\nDVJDRrNm6U7iop5C9+7d+fe//+2yUN7IbFZ/sFOn6k4ihPAm69bB2rVwwQp6j1dqT6F27dqcOnWK\natWq4X9+Ya0rlqQ6o6J7CqC6gKGhsH073HRThV5aCOGF8vOhVSu156l3b91pFDmj2cXGjIFDh+CD\nDyr80kIILzNtGqxfD9984zkHd0mj4GJ//QUtWsDGjeq/QghRkqwsaNsWUlOhWTPdaf7mtvMUoqKi\nyhXI2119tapX4k3jg0KIivfss2r3sic1CI6SnkIZ5eVBUBCsXg0REVoiuNSGDfDZZ2q5nBDCecnJ\nqgLqzz9D9eq601xMTl5zg9q11R/4uHG6k7hGTg7MmwfbtulOIoT3O3lS9RISEz2vQXCU3Z5C06ZN\n7b/IZOK3335zW6jS6OwpgDpGLzgYliyB9u21xXCJL7+EgQOhY0dYsUJ3GiG828iRqiz2Z5/pTlIy\nR+6ddktnb9269aI3KioqIikpiZkzZ9K6dWvXpfRCNWqoHYpjx0IFnxjqFvfeq4p1bdgAd9yhO40Q\n3mn3blX91MP2+paZ3eGj6667juuuu45rrrmG5cuXEx0dzebNm/nuu+9YsmRJRWb0SIMHq7pI69bp\nTuK8atXUudRjxqhToYQQZVNc8G7SJGjYUHca59htFPLz83nvvfcIDQ1l/fr1JCcn8/nnn2OxWCoy\nn8fy91erkHzlRvroo/DHH2oCXQhRNh9/rIaVn3xSdxLn2Z1TMJvN+Pn58dxzz9GkSRNbCWvDMDCZ\nTPTWuEVP95xCscJCtQJp1izo1k13mvL58kt1POCXX0JSEsycqdZWe8pmGyE83ZEjEBYG334Lbdro\nTnNlTm1ee+yxx2xvUpIPP/zQuXRO8JRGAdQNNSEBfvrJO2+kFzYKRUXQurXqAT34oO5kQniHoUOh\nZk2YPVt3ktK5ZEfzmTNnbMdlFjty5AjXajxcwJMahaIitXNxzBhVYtvbXNgoACxfDq+8oiaeq1bV\nm00IT7dpE/Ttq05prFdPd5rSuWSfQu/evTl37pzt64MHDxITE+NUsHHjxhEZGUmrVq3o1KkT+/fv\nt30vISGB4OBgQkJCWOUFS3uqVFEFr8aNU8NJ3u7++6FWrb8bCSFEyQoK1OTyrFne0SA4qtRGoVev\nXsTGxlJYWEhWVhZdu3Zl2rRpTl305Zdf5ueff2bnzp08+OCDTJo0CVBnNCclJWG1Wlm5ciXx8fEU\nFRU5da2K0K2bKoGxcKHuJM4zmdSRgRMmqL/0QoiSzZ4N118P/frpTuJapTYKQ4cOpVOnTjzwwAP0\n6NGDuXPn0qVLF6cuWqdOHdvneXl5XHf+0NLk5GTi4uLw9/cnMDCQoKAgUlNTnbpWRSi+kU6cCBd0\nqrxWp07qDImPP9adRAjPdOCAOl/l3Xe9cy7xSuxuXpt1/pig4jGo/fv3ExkZyZYtW/jPf/7j9BnN\nY8aM4dNPP6VmzZq2G39OTg633HKL7Tlms5ns7GynrlNRoqOhaVP48EP4xz90p3Hea69BXBw88oj3\nbtcXwl2GD4dhw3yzWrLdRiE3N/eilUe9evXCZDKRl5fn0BvHxMRw6NChyx6fOnUqPXr0YMqUKUyZ\nMoVp06YxfPhwu6uZ7K1+mnhBqdLo6Giio6MdyuVOU6aoyeaBA9WuZ292220QHq4OHH/mGd1phPAc\nK1aohRieWsriQikpKaSkpJTpNdqrpP7+++90796d3bt32+YqRo0aBcC9997LpEmT6NChw0Wv8aTV\nR5d64AFVR2j4cN1JHHPp6qML7dgB3btDRoaafBaisjt9Wv2ylJgIXbvqTlN2HlslNT093fZ5cnKy\n7XyGnj17smjRIvLz88nMzCQ9PZ32XlZx7tVX1YlLDnaoPFpUlKqF9M47upMI4RmmTlUb1LyxQXCU\n3eEjdxo9ejRpaWlUrVqV5s2bM3fuXAAsFguxsbFYLBb8/PxITEy0O3zkqVq2VD2F2bPVen9vN3ky\n3H03/POfvrXsToiy+vVXmDtXnZPgy7QPH5WHJw8fAezdC7ffDunpUL++7jRXdqXho2KDBkFgoCr2\nJURlZBhqVd4DD8Bzz+lOU35Olc4u9ueff/L++++TlZVFwfmF6yaTiQULFrgmpQ9q0QJ69lR1hF57\nTXca502YAO3aqQnn86uHhahUvvhCndE+bJjuJO5XaqPwwAMPcNdddxETE0OVKmoKwtuGdHQYN06N\nPT77rNrg4s2aNYPYWJg+HV5/XXcaISrWsWPw0kuwdCn4aRlwr1ilDh+1atWKnTt3VlQeh3j68FGx\np59WZxW88YbuJPY5MnwE6jSpiAh1gMiNN1ZMNiE8wbBhqoSNL5xj7pLVR/fffz/ffvuty0JVJmPG\nwEcfqd2P3i4gAB5/XO3FEKKy2LoVvv5aVUKuLErtKdSuXZtTp05RrVo1/P391YtMJk6cOFEhAUvi\nLT0FgJdfhtxctWrBEznaUwA4fBhCQmDbNjXxLIQvKyyEDh3UEPDAgbrTuIZLegp5eXkUFRVx5swZ\ncnNzyc3N1dogeJuRI2HxYvjtN91JnNegAcTHq2WqQvi6uXOhdm11KmFlYnfa5JdffiE0NJTt27eX\n+P3WrVu7LZQvufZaNbcwaZJvFJgbMQKCgyEtDW6+WXcaIdzj4EH1b3bdOt8reFcau8NHQ4cO5f33\n3yc6OrrE1UZr1651ezh7vGn4CODECQgKUn/BQkN1p7lYWYaPiiUkqA08ixa5L5cQOg0YADfd5Htz\nCS45ec0TeVujADBjhpq0WrxYd5KLladROHkSmjeHf/8bIiPdl00IHdasgSFD1GlqV12lO41reWzt\no8ro6adh40ZVZM7b1aoFo0apvRhC+JIzZ9S82Zw5vtcgOEoahQpy1VWqFtLYsbqTuMY//6kauC1b\ndCcRwnVmzICwMOjRQ3cSfaRRqEBDh8KePeqwb29Xo4bqKfhKIydERoYqZPn227qT6FVqo9CpUyeH\nHhOlq14dxo9Xm9q8bEqkRI8/DllZoHHNgRAuYRhqiHfkSGjSRHcavew2CqdPn+bIkSMcPnyYo0eP\n2j6ysrK85ohMTzRwoCoZ8f33upM4z99fnUvtK42cqLy++kr9u/SWw7HcyW6jMG/ePNq2bUtaWhpt\n2rSxffTs2ZOnn366IjP6FD8/tf7ZV26kcXFw/Dh8953uJEKUz4kT8PzzarPa+aINlZrdRmH48OFk\nZmby+uuvk5mZafvYtWuXyxqFWbNmUaVKFY4ePWp7LCEhgeDgYEJCQli1apVLruNp+vVTx/otX647\nifOqVlWnzY0dC0VFutMIUXYTJkCXLuqUQeFA6exnn32WTZs2XXSeAsBAJ4uB7N+/n9WrV3PTTTfZ\nHrNarSQlJWG1WsnOzqZz587s3bvXVrLbV1Spom6k48bB/ferr71Zr17qmMIlS6BvX91phHDczp3q\nrIQ9e3Qn8Ryl3o4eeeQRXnzxRTZs2MDWrVttH8564YUXmDFjxkWPJScnExcXh7+/P4GBgQQFBZGa\nmur0tTxRz55qBY+nbWYrD5NJHSY0frwqIiaENygqgqeeUpV/5fCov5XaU9i2bRtWq9WlB+skJydj\nNptp2bLlRY/n5ORwyy232L42m80+O6ldfCN9+mno08f7D+/o2lX9w/r8c9+pKCl827/+pf4dDh6s\nO4lnKfVWFB4ezsGDB7mxjCerxMTEcOjQocsenzJlCgkJCRfNF1xp27Uvn/LWuTM0agSffqqWd3oz\nk0n9xvXYY9C/vzpcSAhP9eefah5szRrvH751tVIbhcOHD2OxWGjfvj3Vq1cH1I162bJlV3zd6tWr\nS3x89+7dZGZmEnm+aM6BAwdo06YN//nPfwgICGD//v225x44cICAgIAS32fixIm2z6Ojo4mOji7t\nf8XjFN9IH35YFeA6/+P1WnfdpSqoLligdjwL4aleekmVxL5ksMLnpKSkkJKSUqbXlFoQr/gNLyyk\nZDKZuPvuu8sV8lJNmzZl27ZtXHPNNVitVgYMGEBqaqptojkjI+Oy3oI3FsS7ku7d4b779BwKXp6C\neFeydauaeE5Ph5o1XfOeQrjSunWqQdizB+rU0Z2mYjly7yy1pxAdHU1WVhYZGRl07tyZU6dOXbQK\nyRUhi1ksFmJjY7FYLPj5+ZGYmOjTw0fFXntN1Vp5/HHvL8LVrp36mDsXXnhBdxohLpafryaX33qr\n8jUIjiq1pzB//nzef/99jh49yr59+9i7dy9PPfUU32vckutrPQWAhx5SR/+99FLFXtfVPQWA//5X\nzZdkZMg/POFZpk2D9evhm28q3+E54KLS2e+++y4bNmygbt26ALRo0YI///zTNQmFzeTJ8Prranel\nt4uIgE6dpLCY8CxZWTBzpiqLXRkbBEeV2ihUr17dNsEMUFBQUCmGdCqaxQL33gtvvqk7iWtMmqS6\n6H/9pTuJEMqzz6pyFs2a6U7i2UptFO6++26mTJnCqVOnWL16NX379qVHZS427kYTJqjfYo4c0Z3E\necHB8OCDqvcjhG7JybB3L7z4ou4knq/UOYXCwkI++OAD276Crl27MmTIEK29BV+cUyj25JNQvz5M\nn14x13PHnEKx33+HqCh1rGHDhq5/fyEccfKk6ol/+CHcc4/uNHrJGc1e6MABtXbaaoUbbnD/9dzZ\nKIDqslepooaShNBh5EhVFvuzz3Qn0c8lE83Lly8nKiqKq6++mjp16lCnTh3bpLNwPbMZBg1SBeZ8\nwSuvwCefwAV7EoWoMLt3q82Us2bpTuI9Su0pNG/enKVLlxIeHu4x1Up9uacAagt+aKg6A9ndp0C5\nu6cAMGoUHD0K8+e77xpCXKqoCO6+W535ER+vO41ncElPwWw2ExYW5jENQmVw/fWqTMTkybqTuMbL\nL8PXX6t9C0JUlI8/hrNn1TydcFypPYUtW7Ywfvx4OnbsSLXzVc5MJhMvaNyu6us9BVBLOVu0gE2b\n1Eoed6mIngKoBi49XRX/E8LdjhyBsDB1ImDr1rrTeA6X9BTGjRtH7dq1OXPmDHl5eeTl5ZGbm+uy\nkKJkV1+tzoudMEF3EtcYPhxWrZLDTETFGDUKYmOlQSiPUmsfHTx40G7FU+Fezz0HQUGqbEREhO40\nzqlbV5XwGD9endAmhLts2qR6CFar7iTeqdSeQvfu3fn3v/9dEVnEJWrXVsvpxo3TncQ14uNhyxbY\ntk13EuGrCgpUwbtZs6BePd1pvFOpjUJiYiLdunWjRo0asiRVg6eeUjdRXziV9Kqr1BLVsWN1JxG+\navZstVCjXz/dSbxXqY1CXl4eRUVFnDlzhtzcXHJzcznhC1XbvESNGuom6is30qFD4ZdfYMMG3UmE\nrzlwQO3vefddKXjnDIfWmSYnJzNixAhefPFFli9f7u5M4hKDB8O+fepwEG9XrZqaPB8zBnx8AZmo\nYMOHq4OqWrTQncS7ldoojBo1itmzZxMWFkZoaCizZ89m9OjRFZFNnOfvDxMn+s6N9NFH4Y8/QNYv\nCFdZsQJ27gS5NTmv1Ebh22+/ZdWqVQwePJgnnniClStX8s033zh10YkTJ2I2m4mKiiIqKooVK1bY\nvpeQkEBwcDAhISG2InxCneF89Cj4wpy/n58qre0rjZzQ6/RpePppNWxUo4buNN6v1EbBZDJx7Ngx\n29fHjh1zukJq8ea3HTt2sGPHDrp16waA1WolKSkJq9XKypUriY+Pp6ioyKlr+YqqVdUGsLFjfeNG\n2rcvnDunShoL4YypU6FNG+jaVXcS31BqozB69Ghat27NoEGDGDRoEG3atOGVV15x+sIl7apLTk4m\nLi4Of39/AgMDCQoKItUXlt24SO/eqp7L0qW6kzivShV49VW13LawUHca4a1+/RXee893DqfyBKU2\nCnFxcWzevJnevXvTp08ftmzZQv/+/Z2+8Jw5c4iMjOSJJ56w9URycnIwm82255jNZrKzs52+lq+o\nUgVee813bqT33w+1akFSku4kwhsZhtr7MnYsBAToTuM77DYK27dvt30cOnQIs9lMQEAAOTk5bN++\nvdQ3jomJISIi4rKPZcuW8dRTT5GZmcnOnTtp1KgRI0aMsPs+cvTnxbp1U4fwLFyoO4nzTCaYMkWt\nRjp3Tnca4W2++ELVCBs2THcS32K3zEXbtm0JDw/n2muvLfH7a9euveIbO1oaY8iQIbbjPQMCAth/\nQeH9AwcOEGDnV4CJEyfaPo+OjiY6Otqh63m74hvpkCFqg46/v+5EzunUCRo3VmcuPPGE7jTCWxw7\npsqmLF2qFi6IkqWkpJCSklKm19itkvrWW2+xePFi6tevT79+/ejVqxd16tRxRU4OHjxIo0aNAHjz\nzTfZunUrX3zxBVarlQEDBpCamkp2djadO3cmIyPjst5CZaiSWpqYGDVZ+49/OPc+FVUl9Uo2b4b+\n/dUZutWr68shvMewYWoI9b33dCfxLi45jnPfvn0kJSXx//7f/+Omm25izJgxtGrVyqlgAwcOZOfO\nnZhMJpo2bcq8efNoeP4Q36lTp7JgwQL8/Px4++236VrCkgJpFFTZiz59VDlqZ5bheUKjAGp+oWtX\neOYZvTmE59u6FXr2VAXvrr5adxrv4rIzmvfs2cPChQv57LPPmD59Ov00FxaRRkF54AHo2FHt5Cwv\nT2kUdu6E7t1VI1erlt4swnMVFkKHDurs74EDdafxPk6dp7Bv3z6mTJlC+/btmTBhApGRkfzyyy/a\nGwTxt1dfhWnTIC9PdxLntWoFd9wB77yjO4nwZHPnqurBjz6qO4nvsttTqFKlChERETz44IO2qqjF\nrYycvOY54uLUWQvl3TriKT0FUIXy7r5b9Rak7LG41MGD0LKlqgFmsehO450cuXfanbcfP368bYI3\nzxd+FfVRkybB7ber9dr16+tO45zQULXk9o031P+XEBcaMUKtupMGwb0cmlPwNNJTuNgTT8CNN6rh\npLLypJ4CwG+/Qbt2kJYG112nO43wFGvWqAbBalXncojycckZzcLzjR8PiYlw+LDuJM5r1kydrTt9\nuu4kwlOcOaN6wu+8Iw1CRZBGwQfcdJOaW5g2TXcS1xg7Fj74AHJydCcRnmDGDAgLU8uWhftJo+Aj\nxoyBjz4CXygVFRAAjz+udm6Lyi0jQx2x+fbbupNUHqXOKcyaNeuicSiTyUS9evVo06aN05vYykvm\nFEr28suQm6uW7TnK0+YUih0+DCEh6nzqwEDdaYQOhqEWHnTqpEpaCOe5ZE5h27ZtvPfee+Tk5JCd\nnc28efNYsWIFQ4cOZboM/HqUkSNh8WI1WevtGjRQ48iyCqny+uor1fN1ZnOmKLtSewp33nknK1as\noHbt2oCAyRB3AAAbiklEQVRantq9e3dWrlxJmzZt+OWXXyok6IWkp2DfxImQmQkff+zY8z21pwCq\n6FlwMGzYADffrDuNqEgnTqilp4sWqU2NwjVc0lM4fPgw1apVs33t7+/PH3/8wVVXXUUNOfvO47zw\ngjqvVkNb7XL166v/nwkTdCcRFW3CBOjSRRoEHUotOvvwww/ToUMHHnzwQQzDYPny5QwYMICTJ09i\nkV0kHqduXXjxRbVMdfFi3Wmc9+yzEBQEP/8MkZG604iKsHOnOithzx7dSSonhzavbd26lY0bN2Iy\nmbj99ttp27ZtRWSzS4aPruzUKXUj/fZbiIq68nM9efio2Ntvw/ffw7JlupMIdysqUjv0n3hCbVYT\nruWyKqmFhYUcOnSIgoICW+mLJk2auCZlOUijULp33lHDSN9+e+XneUOjcOaMmltYvBhuuUV3GuFO\n8+erpdUbNqjjZ4VrOVX7qNicOXOYNGkS119/PVWrVrU9/t///tf5hMJthg6FmTNh0ya47TbdaZxT\no4Y6l3rsWFXuQPimP//8+89YGgR9Su0pNG/enNTUVLvHcuogPQXHLFgAn30GP/xg/zne0FMAdYZz\naCi8/746Q0L4nkGD1FLkmTN1J/FdLll91KRJE1vpbFeaM2cOoaGhhIeHM3LkSNvjCQkJBAcHExIS\nwqpVq1x+3cpk4EC1zvv773UncZ6/v1puO2aM2tQkfMu6dbB2rfozFnqVOnzUtGlTOnbsyH333Wdb\nmurseQpr165l2bJl7Nq1C39/fw6fr+RmtVpJSkrCarXazmjeu3cvVaQvWS5+fmrz15gxcM89cMlR\n114nLg4SEuC77+C++3SnEa6Snw9PPQVvvaUO0BF6OdRT6Ny5M/n5+eTl5ZGbm0tubq5TF507dy6j\nR4/G398fgAYNGgCQnJxMXFwc/v7+BAYGEhQURGpqqlPXquxiY9VqpG++0Z3EeVWrqvLgY8eqVSrC\nN7zxBjRtCr166U4iwIGewkQ39OfS09P58ccfeeWVV6hRowYzZ86kbdu25OTkcMsFy0vMZjPZvlDh\nTaMqVf6+kd53n/dP4PXqBVOnwpIl0Lev7jTCWVlZag4hNdX7e7K+wm6j8Nxzz/H222/To0ePy75n\nMplYVsqi8ZiYGA4dOnTZ41OmTKGgoIC//vqLLVu2sHXrVmJjY/nNTsEek52/KRc2VtHR0URHR18x\nT2XWs6e6kS5eDN5+xLbJBK+9Bs8/D717q96D8F7PPqv+LJs1053EN6WkpJCSklKm19htFB49fzL2\niBEjyhVm9erVdr83d+5cevfuDUC7du2oUqUK//vf/wgICGD//v225x04cICAgIAS38MdPRhfVXwj\nffpp6NNHzTV4s65d1alsn32mVqwI75ScDHv3+sbOe0916S/MkxypMGlo8N577xnjx483DMMw0tLS\njMaNGxuGYRh79uwxIiMjjbNnzxq//fab0axZM6OoqOiy12uK7dWKigzj7rsNY8GCix9PSjKMvn21\nRHLKunWGERhoGGfP6k4iyiMvzzCaNDGM77/XnaRyceTeafd3xoiICLsNiclkYteuXWVory42ePBg\nBg8eTEREBNWqVeOTTz4BwGKxEBsbi8Viwc/Pj8TERLvDR6JsTCZ1aM3DD8OAAVC9uu5EzrnrLmjR\nQu3F+Oc/dacRZTV5Mtx5p1oVJzyL3c1rWVlZACQmJgJqOMkwDD7//HMArWcpyOa18uveXU04Dxum\nvvaWzWsl2bpVTTynp0PNmrrTCEft3q02IO7eDQ0b6k5Tubik9lGrVq3YuXPnRY9FRUWxY8cO5xOW\nkzQK5bd9O/TooW6kV13l3Y0CqEbhzjtViW3h+YqK4O671Z6T+HjdaSofl+xoNgyDDRs22L7euHGj\n3JC9WOvWcOut8O67upO4xquvqoPdndw6IyrIxx/D2bPw5JO6kwh7Su0pbNu2jccff5zjx48DUL9+\nfT788ENat25dIQFLIj0F51itqvueng4rV3p3TwHUPEloqNqLITzXkSMQFqZ2pGu8fVRqLiudDdga\nhXr16jmfzEnSKDhv4EB15kJIiPc3CunpqveTng5XX607jbBn6FA19zN7tu4klZdLGoUzZ86wZMkS\nsrKyKCgosL3x+PHjXZe0jKRRcN5vv0H79mr/wg8/eHejAOpAluuvV5v0hOfZtEntQLdawQN+r6y0\nXDKn8MADD7Bs2TL8/f2pXbs2tWvXplatWi4LKfRo1gweekjVnfEF48fDvHnwxx+6k4hLFRSognez\nZkmD4A1K7SmEh4eze/fuisrjEOkpuMaBA2oIqWdP7+8pgCqZUKWKqrYpPMcbb6hTAFetkvpGurmk\np3Dbbbc5tVFNeC6zWf0G5+1F8oq98gp88glcUClFaHbggBrSe/ddaRC8Rak9hdDQUDIyMmjatCnV\nz2+DdXZHs7Okp+A6p06pYxADA3UncY1Ro+DoUXXWr9DvoYfUiiNHSu4I93PJRHPxzuZLBWq8i0ij\nIOw5elSVv9iyRQ2NCX1WrIBnnlE7l2vU0J1GgIuGjwIDA9m/fz9r164lMDCQWrVqyQ1ZeKxrrlFz\nC1JEV6/Tp1VV3nfflQbB25TaU5g4cSLbtm0jLS2NvXv3kp2dTWxsLBs3bqyojJeRnoK4khMnIDhY\nLbUNC9OdpnIaO1aVxfaFBQy+xCU9haVLl5KcnGxbhhoQEOD0cZxCuFPduvDSS2qZqqh4v/6qlge/\n+abuJKI8Sm0UqlevTpULlqecPHnSrYGEcIVhw9S8wrZtupNULoahCt2NHQt2zscSHq7URqFv3748\n+eSTHDt2jPnz59OpUyeGDBlSEdmEKLeaNWHMGKmHVNG++AL++uvv0uzC+zhU+2jVqlWsWrUKgK5d\nuxITE+P2YFcicwrCEfn5cPPN8OmncMcdutP4vmPHwGKBpUuhQwfdaURJXFoQD+Dw4cNcd911Tp+G\n1r9/f9LS0gA4duwY9evXt53PkJCQwIIFC6hatSqzZ8+mS5cul4eWRkE46MMP4aOPICVFNk+527Bh\nUFgI772nO4mwx6mJ5s2bNxMdHU3v3r3ZsWMH4eHhRERE0LBhQ1asWOFUsEWLFrFjxw527NhBnz59\n6NOnDwBWq5WkpCSsVisrV64kPj6eoqIip64lKrdHH1X1kFav1p3Et23dCl9/DQkJupMIZ9ltFJ5+\n+mleeeUV4uLi6NixI//61784dOgQP/74I6NHj3bJxQ3D4MsvvyQuLg6A5ORk4uLi8Pf3JzAwkKCg\nIFJTU11yLVE5+fmp3bRjxqhJUOF6hYWqXMr06VK63BfYbRQKCwvp0qULffv2pVGjRtxyyy0AhISE\nOD18VGz9+vU0bNiQ5s2bA5CTk4PZbLZ932w2k52d7ZJricqrb184dw6Sk3Un8U1z50Lt2qpXJryf\nn71vXHjjr1GOLYkxMTEcOnTossenTp1Kjx49AFi4cCEDBgy44vvYa4AmXrBlNTo6mujo6DJnFJVD\nlSrq2M5XXlHnU1etqjuR7zh4UPXE1q2TORtPlJKSQkpKSpleY3eiuWrVqlx11VUAnD59mpo1a9q+\nd/r0aduBO+VVUFCA2Wxm+/bt3HjjjQBMmzYNgFGjRgFw7733MmnSJDpcspRBJppFWRmGOp3t2Weh\nlN9DRBkMGAA33SRzCd7CqYnmwsJCcnNzyc3NpaCgwPZ58dfOWrNmDaGhobYGAaBnz54sWrSI/Px8\nMjMzSU9Pp3379k5fSwiTCaZMgQkT1FCScN7q1bB5M4wbpzuJcCW7w0fulpSUZJtgLmaxWIiNjcVi\nseDn50diYqLL5i+E6NQJGjeGjz9Wx3eK8jtzRi1BnTMHzg8oCB9Rpn0KnkKGj0R5bd4M/fpBejqc\nPx5ElMPkybBjh9qoJryHyzeveQppFIQz7r8funZVtf5F2WVkwC23wPbt0KSJ7jSiLKRREKIEO3dC\n9+6qt3C++K9wkGFAt25qKO6ll3SnEWXlktLZQviaVq1ULaR33tGdxPt89RVkZ8Pw4bqTCHeRnoKo\nlH79Fe66S/UW6tXTncY7nDihCt4tWiQFBr2V9BSEsCMkRA0hvfGG7iTeY8IE6NJFGgRfJz0FUWn9\n9hu0awdpaXDddbrTeLadO9Xk/J498rPyZtJTEOIKmjWD2FhVyE3YV1SkCt5NmSINQmUgPQVRqWVn\nQ0QE7N4NF2yuFxeYP1+dSbFhg6ojJbyXLEkVwgEjRqgduu++qzuJ5/nzTwgPhzVroGVL3WmEs6RR\nEMIBhw+riedt2yAwUHcazzJoEDRoADNn6k4iXEEaBSEcNG4cHDigju8Uyrp16owEq1WdlyC8nzQK\nQjjo2DEIDob161WvobLLz1eb/F57DXr31p1GuIqsPhLCQfXrwwsvqLX4Qu3faNoUevXSnURUNOkp\nCHHeyZMQFAQrV0JkpO40+mRlQdu2kJqqlu0K3yE9BSHKoFYtGDVKDo159ll4/nlpECoraRSEuMCT\nT6rdu1u26E6iR3Iy7N0LL76oO4nQRUujkJqaSvv27YmKiqJdu3Zs3brV9r2EhASCg4MJCQlh1apV\nOuKJSqxGDdVTGDtWd5KKd/Kk6iUkJsoBRJWZljmF6OhoRo8eTdeuXVmxYgUzZsxg7dq1WK1WBgwY\nwNatW8nOzqZz587s3buXKpdso5Q5BeFO585BaCi8/z507Kg7TcUZOVLt8P7sM91JhLt47JxCo0aN\nOH78OADHjh0jICAAgOTkZOLi4vD39ycwMJCgoCBSU1N1RBSVmL8/TJwIY8aoQ2Uqg927YcECmDVL\ndxKhm5ZGYdq0aYwYMYImTZrw0ksvkZCQAEBOTg5ms9n2PLPZTHZ2to6IopKLi4Pjx+G773Qncb/i\ngneTJ0PDhrrTCN383PXGMTExHDp06LLHp0yZwuzZs5k9eza9evVi8eLFDB48mNWrV5f4PiaTqcTH\nJ06caPs8Ojqa6OhoV8QWAoCqVeHVV9XcQrduvl0I7uOP4exZ+Mc/dCcRrpaSkkJKSkqZXqNlTqFu\n3bqcOHECAMMwqF+/PsePH2fatGkAjBo1CoB7772XSZMm0aFDh4teL3MKoiIYhjpvYeRI6NtXdxr3\nOHIEwsJUj6h1a91phLt57JxCUFAQ69atA+CHH36gRYsWAPTs2ZNFixaRn59PZmYm6enptG/fXkdE\nITCZVJmH8eOhsFB3GvcYNUqdKSENgijmtuGjK5k/fz7Dhg3j7Nmz1KxZk/nz5wNgsViIjY3FYrHg\n5+dHYmKi3eEjISpC167qYJnPPlMVQ33Jpk2qh2C16k4iPImUuRCiFD/+qBqEtDSoVk13GtcoKIA2\nbWD0aOjfX3caUVE8dvhICG9y113QogV88IHuJK5hGDBjBlx/PfTrpzuN8DTSUxDCAVu3woMPQkYG\n1KypO0355OfDokWqAmp+PixbpgoAispDegpCuEi7dtC+PcydqztJ2R05AlOnqlPlPv0UEhLUZjVp\nEERJpKcghIN274bOnSE9HerU0Z2mdGlp8NZbqnfQqxcMHy7nLFd20lMQwoXCw6FTJ3j7bd1J7DMM\nWLsWevSAO+9U5yv/8osqYSENgnCE9BSEKIOMDLj1VlVe+uqrdaf524XzBWfPqlPkHnnEe+c/hHvI\nGc1CuMHQoeo38KlTdSdR8wXz5sE776idyS+8oPZW+HJZDlF+0igI4Qa//w5RUWrTl64CcjJfIMpD\n5hSEcIMmTeDhh9Uqnook8wWiIkhPQYhyOHQILBb4+Wdo3Ni918rPh6QkNV9w5ozMF4jyk+EjIdxo\n1Cg4ehTOl+5yOZkvEK4mjYIQbnT0qCp/sWWLazeC7d2r5gsWLpT5AuFaMqcghBtdc4066P6C857K\n7cL5gjvuUJVZZb5A6CA9BSGccOIEBAfD99+rzW1lJfMFoiLJ8JEQFWDmTHU2wddfO/4amS8QOnjs\n8NHPP//MrbfeSsuWLenZsye5ubm27yUkJBAcHExISAirVq3SEU+IMhk2DP7zH9i2rfTn7t0L8fFq\nDiIjA1auhNWrff8caOE9tPw1HDJkCDNmzGDXrl306tWL119/HQCr1UpSUhJWq5WVK1cSHx9PUVGR\njoguUdYDs3WRnM6pWRPGjIGxY9XXl+b01PkCT/15XsobcnpDRkdpaRTS09O58847AejcuTNLliwB\nIDk5mbi4OPz9/QkMDCQoKIjU1FQdEV3CW/6iSE7nDRkCv/4KGzb8nTM/X5Wqbt1a9Q569oT/+z+Y\nPBluuEFvXvDsn+eFvCGnN2R0lJZGISwsjOTkZAAWL17M/v37AcjJycFsNtueZzabyc7O1hFRiDKp\nVg0mTFA9hlOn/j6/4JNP1Od79qiaSTKBLDyd2xqFmJgYIiIiLvtYvnw5CxYsIDExkbZt25KXl0e1\nKxx8azKZ3BVRCJd65BH44w9VWlvmC4TXMjRLS0sz2rdvbxiGYSQkJBgJCQm273Xt2tXYsmXLZa9p\n3ry5AciHfMiHfMhHGT6aN29e6j1Zy5LUw4cP06BBA4qKinjssce45557eOyxx7BarQwYMIDU1FSy\ns7Pp3LkzGRkZ0lsQQogKoqVTu3DhQm6++WZCQ0Mxm8089thjAFgsFmJjY7FYLHTr1o3ExERpEIQQ\nogJ55eY1IYQQ7uF1018rV64kJCSE4OBgpk+frjtOiQYPHkzDhg2JiIjQHeWK9u/fT8eOHQkLCyM8\nPJzZs2frjlSiM2fO0KFDB1q1aoXFYmH06NG6I9lVWFhIVFQUPXr00B3FrsDAQFq2bElUVBTt27fX\nHceuY8eO8dBDDxEaGorFYmHLli26I10mLS2NqKgo20e9evU89t9RQkICYWFhREREMGDAAM6ePVvy\nE10zXVwxCgoKjObNmxuZmZlGfn6+ERkZaVitVt2xLvPjjz8a27dvN8LDw3VHuaKDBw8aO3bsMAzD\nMHJzc40WLVp45M/TMAzj5MmThmEYxrlz54wOHToY69ev15yoZLNmzTIGDBhg9OjRQ3cUuwIDA40j\nR47ojlGqgQMHGh988IFhGOrP/dixY5oTXVlhYaFxww03GL///rvuKJfJzMw0mjZtapw5c8YwDMOI\njY01PvrooxKf61U9hdTUVIKCgggMDMTf35/+/fvb9jt4kjvvvJOrPelUdztuuOEGWrVqBUDt2rUJ\nDQ0lJydHc6qSXXXVVQDk5+dTWFjINddcoznR5Q4cOMB3333HkCFDPL42l6fnO378OOvXr2fw4MEA\n+Pn5Ua9ePc2prmzNmjU0b96cxu4+dakc6tati7+/P6dOnaKgoIBTp04REBBQ4nO9qlHIzs6+6Acu\nm9tcJysrix07dtChQwfdUUpUVFREq1ataNiwIR07dsRiseiOdJnnn3+e119/nSoevinBZDLRuXNn\n2rZty/vvv687TokyMzNp0KABjz/+OK1bt2bo0KGcOnVKd6wrWrRoEQMGDNAdo0TXXHMNI0aMoEmT\nJtx4443Ur1+fzp07l/hcz/7bewlZieQeeXl5PPTQQ7z99tvUrl1bd5wSValShZ07d3LgwAF+/PFH\njysr8M0333D99dcTFRXl8b+Fb9y4kR07drBixQreffdd1q9frzvSZQoKCti+fTvx8fFs376dWrVq\nMW3aNN2x7MrPz2f58uX07dtXd5QS7du3j7feeousrCxycnLIy8vj888/L/G5XtUoBAQE2EpigJoo\nvbAshii7c+fO0adPHx555BEefPBB3XFKVa9ePe677z5++ukn3VEusmnTJpYtW0bTpk2Ji4vjhx9+\nYODAgbpjlahRo0YANGjQgF69enlkfTGz2YzZbKZdu3YAPPTQQ2zfvl1zKvtWrFhBmzZtaNCgge4o\nJfrpp5+47bbbuPbaa/Hz86N3795s2rSpxOd6VaPQtm1b0tPTycrKIj8/n6SkJHr27Kk7ltcyDIMn\nnngCi8XC8OHDdcex63//+x/Hjh0D4PTp06xevZqoqCjNqS42depU9u/fT2ZmJosWLeKee+7hk08+\n0R3rMqdOnbKVqj958iSrVq3yyFVyN9xwA40bN2bv3r2AGq8PCwvTnMq+hQsXEhcXpzuGXSEhIWzZ\nsoXTp09jGAZr1qyxPwRbQZPfLvPdd98ZLVq0MJo3b25MnTpVd5wS9e/f32jUqJFRrVo1w2w2GwsW\nLNAdqUTr1683TCaTERkZabRq1cpo1aqVsWLFCt2xLrNr1y4jKirKiIyMNCIiIowZM2bojnRFKSkp\nHrv66LfffjMiIyONyMhIIywszGP/DRmGYezcudNo27at0bJlS6NXr14eu/ooLy/PuPbaa40TJ07o\njnJF06dPNywWixEeHm4MHDjQyM/PL/F5snlNCCGEjVcNHwkhhHAvaRSEEELYSKMghBDCRhoFIYQQ\nNtIoCCGEsJFGQQghhI00CsKnubtsR2BgIEePHr3s8XXr1rF58+YSX7N8+XKPLfsuhJ/uAEK4k7vr\nZZlMphJrHa1du5Y6depw6623Xva9Hj16ePR5C6Jyk56CqHT27dtHt27daNu2LXfddRdpaWkAPPbY\nYzz33HPcfvvtNG/enCVLlgCqQmt8fDyhoaF06dKF++67z/Y9gDlz5tCmTRtatmxJWloaWVlZzJs3\njzfffJOoqCg2bNhw0fU/+ugjnnnmmSte80JZWVmEhITw+OOPc/PNN/Pwww+zatUqbr/9dlq0aMHW\nrVvd9aMSlZA0CqLS+cc//sGcOXP46aefeP3114mPj7d979ChQ2zcuJFvvvmGUaNGAfD111/zf//3\nf/zyyy98+umnbN68+aIeSIMGDdi2bRtPPfUUM2fOJDAwkH/+85+88MIL7NixgzvuuOOi61/aeynp\nmpfat28fL774Ir/++itpaWkkJSWxceNGZs6cydSpU131oxFCho9E5ZKXl8fmzZsvKnGcn58PqJt1\ncaXY0NBQ/vjjDwA2bNhAbGwsgO08hwv17t0bgNatW/P111/bHnekgoy9a16qadOmtoJwYWFhtlr4\n4eHhZGVllXodIRwljYKoVIqKiqhfvz47duwo8fvVqlWzfV58U7903uDSm3316tUBqFq1KgUFBWXO\nVNI1L1V8DVBnSxS/pkqVKuW6phD2yPCRqFTq1q1L06ZN+eqrrwB1E961a9cVX3P77bezZMkSDMPg\njz/+YN26daVep06dOrYS1ZeSGpTCk0mjIHzaqVOnaNy4se3jrbfe4vPPP+eDDz6gVatWhIeHs2zZ\nMtvzLxzvL/68T58+mM1mLBYLjz76KK1bty7xvGCTyWR7TY8ePVi6dClRUVFs3LjR7vPsXbOk97b3\ntZxIKFxJSmcL4YCTJ09Sq1Ytjhw5QocOHdi0aRPXX3+97lhCuJzMKQjhgPvvv59jx46Rn5/P+PHj\npUEQPkt6CkIIIWxkTkEIIYSNNApCCCFspFEQQghhI42CEEIIG2kUhBBC2EijIIQQwub/A4tFvTZr\nGhPHAAAAAElFTkSuQmCC\n",
       "text": [
        "<matplotlib.figure.Figure at 0x5f260d0>"
       ]
      }
     ],
     "prompt_number": 16
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 3.3.12,Page No.116"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "import numpy as np\n",
      "%matplotlib inline\n",
      "\n",
      "#Initilization of Variables\n",
      "\n",
      "F_G=10 #KN #Force at Pt G\n",
      "F_B=F_E=15 #KN #Force at Pt B & E\n",
      "w=20 #KN/m #U.d.L\n",
      "L_FG=L_EF=L_DE=L_CD=L_BC=L_AB=1 #m #Lengths of FG,EF,DE,CD,BC,AB respectively\n",
      "L=6 #m #Length of beam\n",
      "\n",
      "#Calculations\n",
      "\n",
      "#LEt R_F & R_A be the Reactions at E & A respectively\n",
      "#R_F+R_A=60\n",
      "\n",
      "#Taking Moment At Pt A,M_A\n",
      "R_F=(F_G*L+F_E*(L_AB+L_BC+L_CD+L_DE)+w*L_CD*(L_AB+L_BC+L_CD*2**-1)+F_B*L_AB)*(L_AB+L_BC+L_CD+L_DE+L_EF)**-1\n",
      "R_A=60-R_F\n",
      "\n",
      "#Shear Force Calculations\n",
      "\n",
      "#S.F At G\n",
      "V_G1=0 #KN \n",
      "V_G2=F_G #KN\n",
      "\n",
      "#S.F At F\n",
      "V_F1=V_G2 #KN\n",
      "V_F2=V_F1-R_F\n",
      "\n",
      "#S.F At E\n",
      "V_E1=V_F2 #KN\n",
      "V_E2=V_F2+F_E\n",
      "\n",
      "#S.F At D\n",
      "V_D=V_E2\n",
      "\n",
      "#S.F At C\n",
      "V_C=V_E2+w*L_CD\n",
      "\n",
      "#S.F At B\n",
      "V_B1=V_C\n",
      "V_B2=V_B1+F_B\n",
      "\n",
      "#S.F At A\n",
      "V_A1=V_B2\n",
      "V_A2=V_B2-R_A\n",
      "\n",
      "#Bending Moment Calculations\n",
      "\n",
      "#B.M At Pt G\n",
      "M_G=0\n",
      "\n",
      "#B.M At F\n",
      "M_F=F_G*L_FG \n",
      "\n",
      "#B.M At E\n",
      "M_E=F_G*(L_FG+L_EF)-R_F*L_EF\n",
      "\n",
      "#B.M At D\n",
      "M_D=F_G*(L_FG+L_EF+L_DE)-R_F*(L_EF+L_DE)+F_E*L_DE\n",
      "\n",
      "#B.M At C\n",
      "M_C=F_G*(L_FG+L_EF+L_DE+L_CD)-R_F*(L_EF+L_DE+L_CD)+F_E*(L_DE+L_CD)+w*L_CD*L_CD*2**-1\n",
      "\n",
      "#B.M At B\n",
      "M_B=F_G*(L_FG+L_EF+L_DE+L_CD+L_BC)-R_F*(L_EF+L_DE+L_CD+L_BC)+F_E*(L_DE+L_CD+L_BC)+w*L_CD*(L_CD*2**-1+L_BC)\n",
      "\n",
      "#B.M At A\n",
      "M_A=F_G*L-R_F*(L_EF+L_DE+L_CD+L_BC+L_AB)+F_E*(L_DE+L_CD+L_BC+L_AB)+F_B*L_AB+w*L_CD*(L_CD*2**-1+L_BC+L_AB)\n",
      "\n",
      "#Result\n",
      "print \"The Shear Force and Bending Moment Diagrams are the results\"\n",
      "\n",
      "#Plotting the Shear Force Diagram\n",
      "\n",
      "X1=[0,0,L_FG,L_FG,L_FG+L_EF,L_FG+L_EF,L_FG+L_EF+L_DE,L_FG+L_EF+L_DE+L_CD,L_FG+L_EF+L_DE+L_CD+L_BC,L_FG+L_EF+L_DE+L_CD+L_BC,L_FG+L_EF+L_DE+L_CD+L_BC+L_AB,L_FG+L_EF+L_DE+L_CD+L_BC+L_AB]\n",
      "Y1=[V_G1,V_G2,V_F1,V_F2,V_E1,V_E2,V_D,V_C,V_B1,V_B2,V_A1,V_A2]\n",
      "Z1=[0,0,0,0,0,0,0,0,0,0,0,0]\n",
      "plt.plot(X1,Y1,X1,Z1)\n",
      "plt.xlabel(\"Length x in m\")\n",
      "plt.ylabel(\"Shear Force in kN\")\n",
      "plt.show()\n",
      "\n",
      "#Plotting the Bendimg Moment Diagram\n",
      "\n",
      "X2=[0,L_FG,L_EF+L_FG,L_EF+L_FG+L_DE,L_EF+L_FG+L_DE+L_CD,L_EF+L_FG+L_DE+L_CD+L_BC,L_EF+L_FG+L_DE+L_CD+L_BC+L_AB]\n",
      "Y2=[M_G,M_F,M_E,M_D,M_C,M_B,M_A]\n",
      "Z2=[0,0,0,0,0,0,0]\n",
      "plt.plot(X2,Y2)\n",
      "plt.xlabel(\"Lenght in m\")\n",
      "plt.ylabel(\"Bending Moment in kN.m\")\n",
      "plt.show()"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The Shear Force and Bending Moment Diagrams are the results\n"
       ]
      },
      {
       "metadata": {},
       "output_type": "display_data",
       "png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEPCAYAAACtCNj2AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAHZJJREFUeJzt3XtYVAX+x/HPIOgmYt6hB3ie8eESF03whtZaoIKVK1kq\nhWUsZvbLrd32ktlly3IT3GrLLm5tP1O7PWnLFtiF1DVMKjTDbFf2UUowQGBLIu+LwPn9wXp+KgyD\nOTMHhvfreXicyxnPZ8pnPpzznXOOzTAMQwAASPKxOgAAoPOgFAAAJkoBAGCiFAAAJkoBAGCiFAAA\nJstK4cSJE0pISFBcXJxiYmJ07733SpLq6uqUnJysyMhIpaSkqL6+3qqIANDt2Kw8TuHYsWPq3bu3\nGhsb9dOf/lSPP/648vLyNGjQIC1cuFDLli3T999/r+zsbKsiAkC3Yunuo969e0uSGhoa1NTUpP79\n+ysvL08ZGRmSpIyMDL399ttWRgSAbsXSUmhublZcXJwCAwOVlJSk2NhY1dbWKjAwUJIUGBio2tpa\nKyMCQLfia+XKfXx89MUXX+iHH37QlClT9OGHH57xvM1mk81msygdAHQ/lpbCKRdeeKGmTp2qzz//\nXIGBgaqpqVFQUJCqq6s1ZMiQVsuHh4fr66+/tiApAHRdYWFh+uqrr9pdxrLdR9999535zaLjx49r\n48aNio+PV2pqqtasWSNJWrNmjaZPn97qtV9//bUMw/Dan4ceesjyDLw/3l93fH/e/N4Mw+jQL9OW\nbSlUV1crIyNDzc3Nam5u1pw5czRp0iTFx8crLS1NK1eulN1u17p166yKCADdjmWlMHz4cBUXF7d6\nfMCAAdq0aZMFiQAAHNHcCSUmJlodwa14f12bN78/b35vHWXpwWs/ls1mUxeMDQCW6shnJ1sKAAAT\npQAAMFEKAAATpQAAMFEKAAATpQAAMFEKAAATpQAAMFEKAAATpQAAMFEKAAATpQAAMFEKAAATpQAA\nMFEKAAATpQAAMFEKAAATpQAAMFEKAACTr9UBAKAzaGyUxo6VDh2yOom1bIazqzh3Qh25+DQAnIvj\nx6V+/aTdu61O4h47dkjp6c4/O9lSAID/8vGRwsOtTuEeNTUdW46ZAgDARCkAAEyUAgDARCkAAEyW\nlUJFRYWSkpIUGxurYcOG6emnn5Yk1dXVKTk5WZGRkUpJSVF9fb1VEQGg27GsFPz8/PTkk09q9+7d\nKioq0nPPPad//etfys7OVnJysvbu3atJkyYpOzvbqogA0O1YVgpBQUGKi4uTJPXp00fR0dGqqqpS\nXl6eMjIyJEkZGRl6++23rYoIAN1Op5gplJeXa+fOnUpISFBtba0CAwMlSYGBgaqtrbU4HQB0H5aX\nwpEjRzRjxgwtX75cAQEBZzxns9lks9ksSgYA3Y+lRzSfPHlSM2bM0Jw5czR9+nRJLVsHNTU1CgoK\nUnV1tYYMGdLmaxcvXmzeTkxMVGJiogcSA0DXUVBQoIKCAknSN9907DWWnfvIMAxlZGRo4MCBevLJ\nJ83HFy5cqIEDB+qee+5Rdna26uvrWw2bOfcRAFc7flwaMKDlT29UWChNmOD8s9OyUigsLNTll1+u\nSy65xNxFlJWVpbFjxyotLU3ffPON7Ha71q1bp379+p0ZmlIA4GKUQgvOkgoAohROsXzQDADoPCgF\nAICJUgAAmCgFAICJUgAAmCgFAICJUgAAmCgFAICJUgAAmCgFAICJUgAAmCgFAICJUgAAmCgFAICJ\nUgAAmCgFAICJUgAAmCgFAICJUgAAmCgFAICJUgAAmCgFAICJUgAAmCgFAICJUgAAmCgFAICJUgAA\nmCgFAIDJ19ETSUlJbT5us9kkSZs3b3ZPIgCAZRyWwmOPPWbePlUERUVFWrZsmYYMGeKSlc+dO1fv\nvvuuhgwZon/84x+SpLq6Ol1//fXav3+/7Ha71q1bp379+rlkfQCA9jncfTR69Gjz5/Dhw7rnnnv0\n+uuv64UXXtCOHTtcsvLMzEzl5+ef8Vh2draSk5O1d+9eTZo0SdnZ2S5ZFwDAOYdbCpKUn5+vRx99\nVD179tQDDzzgcJfSjzVhwgSVl5ef8VheXp62bNkiScrIyFBiYiLFAAAe4rAUxowZo2+//Va/+93v\nNH78eElScXGx+fzIkSPdEqi2tlaBgYGSpMDAQNXW1ra53OLFbll9pxAXJ02fbnUKAN2Rw1Lw9/eX\nv7+/cnJylJOT0+r5Dz/80K3BpJZZxql5xtkKChabt+32RNntiW7P4wnffCNt2kQpADh/BQUFKigo\nkNTy2dIRDkvh1F/U3NwsH58zRw8nTpz4UQE7IjAwUDU1NQoKClJ1dbXDofbppeBNCgulRYusTgHA\nGyQmJioxMVFSy2fLqlUPO32N0+MU5s2bd8b9I0eO6Oqrr/5xCTsgNTVVa9askSStWbNG0/mVGQA8\nxmkpBAcHa8GCBZKk77//XikpKZozZ45LVp6enq5LL71Ue/bsUWhoqFatWqVFixZp48aNioyM1ObN\nm7WIX5sBwGNshmEYzha6++67dejQIX3++edatGiRZs6c6YlsDtlsNnUgdpd0avdRYaHVSYDu5fhx\nacCAlj+9UWGhNGGC889OhzOFU8Nlm82mcePGacmSJRozZoxsNpv+9re/6brrrnNtYgCA5RyWwvr1\n68/45k9cXJwaGxv1zjvvSBKlAHRDDQ3e+5u0t76vc+WwFFavXu3BGAA6u+pqacwY6fBhq5O4z9Ch\nViewXrtHNAOAJDU1SbNnS/PnSw8+aHUauBOnzgbg1COPSD16SPffb3USuBtbCgDatWmT9L//KxUX\ntxQDvJvTUjhx4oRycnJUXl6uxsZGSS3fSHqQbUjA61VXSzffLL32mvTfU5LByzkthWuuuUb9+vXT\nqFGj9JOf/MQTmQB0AqfmCP/zP5KLT5CMTsxpKVRVVemDDz7wRBYAnQhzhO7J6aD50ksv1ZdffumJ\nLAA6iVNzhNdeY47Q3TjdUti6datWrVqloUOHqlevXpJaZgoUBeCdmCN0b05L4f333/dEDgCdAHME\nOCyFQ4cOqW/fvurbt68n8wCwEHMEOCyF9PR0vfvuuxo5cmSrq5/ZbDbt27fP7eEAeA7HI0BqpxTe\nffddSVJ5ebmnsgCwCHMEnMJpLoBujjkCTkcpAN0ccwScjnMfAd0YcwScrUNbCqeOVZCkb7/9VmVl\nZW4NBcD9Ts0RXn2VOQL+n9NSWLx4sf74xz8qKytLktTQ0KCbbrrJ7cEAuA9zBDjitBTeeust5ebm\nyt/fX5IUHBysw9586SWgG2COAEeczhR69eolH5//746jR4+6NRAA92KOgPY43VKYNWuWbrvtNtXX\n1+svf/mLJk2apHnz5nkiGwAXY44AZ5xuKdx9993asGGDAgICtHfvXi1ZskTJycmeyAbAhZgjoCOc\nlkJZWZkmTJiglJQUSdLx48dVXl4uu93u7mwAXIg5AjrC6e6jmTNnqsdpOx59fHw0c+ZMt4YC4Fpc\nHwEd5XRLoampST179jTv9+rVSydPnnRrKACuw3mNcC6cbikMGjRIubm55v3c3FwNGjTIraEAuAZz\nBJwrp6Xw/PPPa+nSpQoNDVVoaKiys7P1wgsvuDVUfn6+oqKiFBERoWXLlrl1XYA3Y46Ac9Xu7qOm\npiY9//zz2rZtm3nAWkBAgFsDNTU16Y477tCmTZsUHBysMWPGKDU1VdHR0W5dL+BtOB4BP0a7Wwo9\nevRQYWGhDMNQQECA2wtBkrZv367w8HDZ7Xb5+fnphhtuOGP3FQDnOB4BP5bTQXNcXJyuueYazZo1\nS71795bUcuW16667zi2BqqqqFBoaat4PCQnRtm3b3LIuwBsxR8D5cFoKJ06c0IABA7R58+YzHndX\nKZx96U+HyyWetpxd0lC3xLFGsmR72OoQ6NISpQJDeoh/R91bmaTyc3uJ01JYvXr1j8ryYwUHB6ui\nosK8X1FRoZCQkFbLGQWGJ2N5TGGhtGhRy5/Audq0ScrIaJkjsNsIZ+vIL91Ov31UUVGha6+9VoMH\nD9bgwYM1Y8YMVVZWuiRgW0aPHq3S0lKVl5eroaFBa9euVWpqqtvWB3gL5ghwBaelkJmZqdTUVB04\ncEAHDhzQtGnTlJmZ6bZAvr6+evbZZzVlyhTFxMTo+uuv55tHgBPMEeAqNsMw2t0PM2LECO3atcvp\nY55ks9nkJHaXxe4j/BgPPSR9/LH0wQd8/RSOdeSz0+mWwsCBA/XKK6+oqalJjY2NevXVVzmiGehE\nOK8RXMlpKbz00ktat26dgoKCdNFFF+nNN980r9cMwFrMEeBqDr99VFRUpHHjxslut2v9+vWezASg\nA5gjwB0cbincfvvt5u3x48d7JAyAjuO8RnAHp8cpSC0HsAHoPDivEdzFYSk0NTWprq5OhmGYt083\nYMAAt4cD0BrXR4A7OSyFQ4cOadSoUZIkwzDM21LL15r27dvn/nQAzsAcAe7msBTKy8s9GANARzBH\ngLt1aKYAwHrMEeAJlALQBTBHgKc4PXgNgLWYI8CT2i2FxsZGXXzxxZ7KAqANzBHgSe2Wgq+vr6Ki\norR//35P5QFwGs5rBE9zOlOoq6tTbGysxo4dK39/f0ktX0nNy8tzezigO2OOACs4LYUlS5Z4IgeA\n0zBHgFWclkJiYqIHYgA4HXMEWMXpt48+/fRTjRkzRn369JGfn598fHzUt29fT2QDuiXmCLCS01K4\n44479PrrrysiIkInTpzQypUrtWDBAk9kA7odro8Aq3XoOIWIiAg1NTWpR48eyszMVH5+vrtzAd0O\ncwR0Bk5nCv7+/vrPf/6jESNGaOHChQoKCvLa6yMDVmKOgM7A6ZbCyy+/rObmZj377LPq3bu3Kisr\nlZOT44lsQLfBHAGdhdMtBbvdrmPHjqmmpkaLFy/2QCSge+F4BHQmTrcU8vLyFB8frylTpkiSdu7c\nqdTUVLcHA7oD5gjobJyWwuLFi7Vt2zb1799fkhQfH88FdgAXYY6Azsbp7iM/Pz/169fvjMd8fDi5\nKnC+uD4COiOnn+6xsbF67bXX1NjYqNLSUt1555269NJLPZEN8Focj4DOymkpPPPMM9q9e7d69eql\n9PR09e3bV0899ZQnsgFeiTkCOjOb0QUPOrDZbF57rERhobRoUcuf8E4PPSR9/LH0wQfsNoJndeSz\n0+mWwp49e3TrrbcqOTlZSUlJSkpK0sSJE88r2JtvvqnY2Fj16NFDxcXFZzyXlZWliIgIRUVFacOG\nDee1HqCz4XgEdHZOB82zZs3S7bffrnnz5qnHf/8V22y281rp8OHD9dZbb+m222474/GSkhKtXbtW\nJSUlqqqq0uTJk7V3714G2/AKHI+ArqBD3z66/fbbXbrSqKioNh/Pzc1Venq6/Pz8ZLfbFR4eru3b\nt2vcuHEuXT/gacwR0FU4/BW8rq5OBw8e1LRp0/Tcc8+purpadXV15o87HDhwQCEhIeb9kJAQVVVV\nuWVdgCdxPAK6CodbCiNHjjxjN9Hjjz9u3rbZbE4PYEtOTlZNTU2rx5cuXapp06Z1OKCjXVWnn3Ij\nMTGRiwGh0+J4BFiloKBABQUF5/Qah6VQXl5+XmE2btx4zq8JDg5WRUWFeb+yslLBwcFtLst5mNAV\nMEeAlc7+hfnhhx92+hqHu48+++wzVVdXm/fXrFmj1NRU/fKXv3Tp7qPTvx6VmpqqN954Qw0NDSor\nK1NpaanGjh3rsnUBnsQcAV2Rw1KYP3++evXqJUn66KOPtGjRImVkZKhv376aP3/+ea30rbfeUmho\nqIqKijR16lRdddVVkqSYmBilpaUpJiZGV111lVasWHHe33QCrMIcAV2Rw4PXRowYoV27dkmSfvGL\nX2jw4MHmLpvTn7MCB6+hs9u0ScrIaJkjsNsIncV5HbzW1NSkkydPSpI2bdqkpNO2fxsbG10UEfA+\nnNcIXZnDQXN6erquuOIKDRo0SL1799aECRMkSaWlpa3OmgqgBXMEdHXtnvvo008/VU1NjVJSUuTv\n7y9J2rt3r44cOaKRI0d6LOTZ2H3UdW3bJv3pT1ancJ/aWsnXl/MaoXPqyGdnu0c0jx8/vtVjkZGR\n55cK3VpRkXTokPTzn1udxD1sNiklhUJA1+X0NBeAq0VGStdfb3UKAG3hTHMAABOlAAAwUQoAABOl\nAAAwUQoAABOlAAAwUQoAABOlAAAwUQoAABOlAAAwUQoAABOlAAAwUQoAABOlAAAwUQoAABOlAAAw\nUQoAABOlAAAwUQoAABOlAAAwUQoAABOlAAAwUQoAAJMlpXD33XcrOjpaI0aM0HXXXacffvjBfC4r\nK0sRERGKiorShg0brIgHAN2WJaWQkpKi3bt3a9euXYqMjFRWVpYkqaSkRGvXrlVJSYny8/O1YMEC\nNTc3WxERALolS0ohOTlZPj4tq05ISFBlZaUkKTc3V+np6fLz85Pdbld4eLi2b99uRUQA6JYsnym8\n9NJLuvrqqyVJBw4cUEhIiPlcSEiIqqqqrIoGAN2Or7v+4uTkZNXU1LR6fOnSpZo2bZok6dFHH1XP\nnj01e/Zsh3+PzWZzV0QAwFncVgobN25s9/nVq1frvffe09///nfzseDgYFVUVJj3KysrFRwc3Obr\nFy9ebN5OTExUYmLieeUFAG9TUFCggoKCc3qNzTAMwz1xHMvPz9dvf/tbbdmyRYMGDTIfLykp0ezZ\ns7V9+3ZVVVVp8uTJ+uqrr1ptLdhsNlkQ2yMKC6VFi1r+9EbLl0v79rX8CcCzOvLZ6bYthfbceeed\namhoUHJysiRp/PjxWrFihWJiYpSWlqaYmBj5+vpqxYoV7D4CAA+ypBRKS0sdPnfffffpvvvu82Aa\nAMApln/7CADQeVAKAAATpQAAMFEKAAATpQAAMFEKAAATpQAAMFEKAAATpQAAMFEKAAATpQAAMFEK\nAAATpQAAMFEKAAATpQAAMFEKAAATpQAAMFEKAAATpQAAMFEKAAATpQAAMPlaHQBn6tlT2rFDCg+3\nOol71NdLmZlWpwDgiM0wDMPqEOfKZrOpC8buEMOQysulpiark7hPcLB0wQVWpwC6n458dlIKANBN\ndOSzk5kCAMBEKQAATJQCAMBEKQAATJaUwu9//3uNGDFCcXFxmjRpkioqKsznsrKyFBERoaioKG3Y\nsMGKeADQbVlSCgsXLtSuXbv0xRdfaPr06Xr44YclSSUlJVq7dq1KSkqUn5+vBQsWqLm52YqIlioo\nKLA6glvx/ro2b35/3vzeOsqSUggICDBvHzlyRIMGDZIk5ebmKj09XX5+frLb7QoPD9f27dutiGgp\nb/+Hyfvr2rz5/Xnze+soy45ovv/++/XKK6/oggsuMD/4Dxw4oHHjxpnLhISEqKqqyqqIANDtuG1L\nITk5WcOHD2/1s379eknSo48+qm+++UaZmZm66667HP49NpvNXREBAGczLLZ//34jNjbWMAzDyMrK\nMrKyssznpkyZYhQVFbV6TVhYmCGJH3744Yefc/gJCwtz+plsye6j0tJSRURESGqZI8THx0uSUlNT\nNXv2bP3mN79RVVWVSktLNXbs2Fav/+qrrzyaFwC6C0tK4d5779WePXvUo0cPhYWF6c9//rMkKSYm\nRmlpaYqJiZGvr69WrFjB7iMA8KAueUI8AIB7dLkjmvPz8xUVFaWIiAgtW7bM6jguNXfuXAUGBmr4\n8OFWR3GLiooKJSUlKTY2VsOGDdPTTz9tdSSXOXHihBISEhQXF6eYmBjde++9Vkdyi6amJsXHx2va\ntGlWR3E5u92uSy65RPHx8W3utu7q6uvrNXPmTEVHRysmJkZFRUVtL+iqgbEnNDY2GmFhYUZZWZnR\n0NBgjBgxwigpKbE6lst89NFHRnFxsTFs2DCro7hFdXW1sXPnTsMwDOPw4cNGZGSkV/3/O3r0qGEY\nhnHy5EkjISHB2Lp1q8WJXO+JJ54wZs+ebUybNs3qKC5nt9uNgwcPWh3DbW6++WZj5cqVhmG0/But\nr69vc7kutaWwfft2hYeHy263y8/PTzfccINyc3OtjuUyEyZMUP/+/a2O4TZBQUGKi4uTJPXp00fR\n0dE6cOCAxalcp3fv3pKkhoYGNTU1acCAARYncq3Kykq99957mjdvntdez8Rb39cPP/ygrVu3au7c\nuZIkX19fXXjhhW0u26VKoaqqSqGhoeZ9Dm7rusrLy7Vz504lJCRYHcVlmpubFRcXp8DAQCUlJSkm\nJsbqSC7161//Wo899ph8fLrUx0aH2Ww2TZ48WaNHj9aLL75odRyXKisr0+DBg5WZmamRI0fq1ltv\n1bFjx9pctkv93+WbSN7hyJEjmjlzppYvX64+ffpYHcdlfHx89MUXX6iyslIfffSRV50y4Z133tGQ\nIUMUHx/vtb9Nf/zxx9q5c6fef/99Pffcc9q6davVkVymsbFRxcXFWrBggYqLi+Xv76/s7Ow2l+1S\npRAcHHzGGVUrKioUEhJiYSKcq5MnT2rGjBm66aabNH36dKvjuMWFF16oqVOnaseOHVZHcZlPPvlE\neXl5Gjp0qNLT07V582bdfPPNVsdyqYsuukiSNHjwYF177bVedd61kJAQhYSEaMyYMZKkmTNnqri4\nuM1lu1QpjB49WqWlpSovL1dDQ4PWrl2r1NRUq2OhgwzD0C233KKYmJh2T23SFX333Xeqr6+XJB0/\nflwbN240D8r0BkuXLlVFRYXKysr0xhtvaOLEiXr55ZetjuUyx44d0+HDhyVJR48e1YYNG7zqW4BB\nQUEKDQ3V3r17JUmbNm1SbGxsm8tadkK8H8PX11fPPvuspkyZoqamJt1yyy2Kjo62OpbLpKena8uW\nLTp48KBCQ0P1yCOPKDMz0+pYLvPxxx/r1VdfNb/2J7VcP+PKK6+0ONn5q66uVkZGhpqbm9Xc3Kw5\nc+Zo0qRJVsdyG2/blVtbW6trr71WUsuulhtvvFEpKSkWp3KtZ555RjfeeKMaGhoUFhamVatWtbkc\nB68BAExdavcRAMC9KAUAgIlSAACYKAUAgIlSAACYKAUAgIlSgFdx92kznnrqKR0/ftzl61u/fr3X\nnQoeXRPHKcCrBAQEmEemusPQoUO1Y8cODRw40CPrAzyNLQV4va+//lpXXXWVRo8ercsvv1x79uyR\nJP385z/Xr371K1122WUKCwtTTk6OpJaznS5YsEDR0dFKSUnR1KlTlZOTo2eeeUYHDhxQUlLSGUcr\nP/DAA4qLi9P48eP173//u9X677rrLi1ZskSS9MEHH+iKK65otczq1at15513tpvrdOXl5YqKilJm\nZqYuvvhi3XjjjdqwYYMuu+wyRUZG6rPPPjv//3DonjxxcQfAU/r06dPqsYkTJxqlpaWGYRhGUVGR\nMXHiRMMwDCMjI8NIS0szDMMwSkpKjPDwcMMwDOPNN980rr76asMwDKOmpsbo37+/kZOTYxhG6wux\n2Gw245133jEMwzAWLlxo/OEPf2i1/mPHjhmxsbHG5s2bjYsvvtjYt29fq2VWr15t3HHHHe3mOl1Z\nWZnh6+tr/POf/zSam5uNUaNGGXPnzjUMwzByc3ON6dOnO/1vBbSlS537CDhXR44c0aeffqpZs2aZ\njzU0NEhqOX/PqTO1RkdHq7a2VpJUWFiotLQ0STKvjeBIz549NXXqVEnSqFGjtHHjxlbLXHDBBXrx\nxRc1YcIELV++XEOHDm03s6NcZxs6dKh5UrPY2FhNnjxZkjRs2DCVl5e3uw7AEUoBXq25uVn9+vXT\nzp0723y+Z8+e5m3jv+M1m812xjUDjHbGbn5+fuZtHx8fNTY2trncl19+qcGDB3f4olBt5Tpbr169\nzlj3qde0lwNwhpkCvFrfvn01dOhQ/fWvf5XU8gH75Zdftvuayy67TDk5OTIMQ7W1tdqyZYv5XEBA\ngA4dOnROGfbv368//elP5gVc2jpPf3vFA3gSpQCvcuzYMYWGhpo/Tz31lF577TWtXLlScXFxGjZs\nmPLy8szlTz8F9KnbM2bMUEhIiGJiYjRnzhyNHDnSvJ7t/PnzdeWVV5qD5rNff/YppQ3D0Lx58/TE\nE08oKChIK1eu1Lx588xdWI5e6+j22a9xdN/bTm0Nz+ErqUAbjh49Kn9/fx08eFAJCQn65JNPNGTI\nEKtjAW7HTAFow89+9jPV19eroaFBDz74IIWAboMtBQCAiZkCAMBEKQAATJQCAMBEKQAATJQCAMBE\nKQAATP8HttSK1NQ812EAAAAASUVORK5CYII=\n",
       "text": [
        "<matplotlib.figure.Figure at 0x5febb90>"
       ]
      },
      {
       "metadata": {},
       "output_type": "display_data",
       "png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEPCAYAAACtCNj2AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XtclHX6//HXcLATeMrUCg1DXUBIUDcss8YUj2FqmonV\npmW11pq11dq2KprHTduyo5racVu3r7qorWRZqJn9sEQzzyfMUMzDWiIZivP749ZJBGRg7pl7Du/n\n48EjHGbu+6JsrvmcrsvmcDgciIiIACFWByAiIr5DSUFERJyUFERExElJQUREnJQURETESUlBRESc\nLE0KgwcPpkGDBiQmJjofO3LkCKmpqTRv3pzOnTtz9OhRCyMUEQkuliaFQYMGkZWVVeqxSZMmkZqa\nyrZt2+jYsSOTJk2yKDoRkeBjs/rwWl5eHmlpaWzYsAGA2NhYli9fToMGDSgoKMBut7NlyxYrQxQR\nCRo+t6Zw4MABGjRoAECDBg04cOCAxRGJiAQPn0sK57LZbNhsNqvDEBEJGmFWB3C+s9NGDRs2ZP/+\n/dSvX7/Mc5o2bcrOnTstiE5ExH/FxMSwY8eOCz7H50YKPXv25O233wbg7bffplevXmWes3PnThwO\nR8B8FRc7GDzYQevWDgoKHNjto3nwQevj8tTX6NGjLY9Bv59+v2D73RwOh0sfpi1NCgMGDODGG29k\n69atNGrUiDlz5jBixAg++eQTmjdvzmeffcaIESOsDNHjCgvh9tth/37IzoYGDaB1a/j3v0G7cUXE\n2yydPvrggw/KffzTTz/1ciTW+PFH6NEDEhNh+nQIDzcej4iALl3gnXdg2DBrYxSR4OJz00fBYscO\nuPFG6NYNZs36LSEA2O12HnkEXnsNHAHY7cJut1sdgkfp9/Nfgfy7ucrycwrVYbPZ8MOwnXJyjCmj\nMWPgwQfLf47DAS1bwgsvQKdO3o1PRAKTK++dGil42eLFxpTRjBkVJwQAmw2GDjVGCyIi3qKRghfN\nnAkjR0JmJqSkVP78wkK45hpYtw4aNfJ8fCIS2DRS8BEOB4weDZMmwcqVriUEMBacBw40FqFFRLxB\nIwUPO3kSHn4Y1q+Hjz4ytpxWxebN0KEDfP891KjhmRhFJDhopGCx8s4gVFVcHLRoAfPmmR6eiEgZ\nSgoe8uOPxif8hg2NNYSIiOpf65FH4NVXzYtNRKQiSgoecKEzCNXRsyfk5RlTUCIinqSkYLKcHGjf\nHp5+GsaONbaWuissDB56SNtTRcTztNBsosWLYdAgmD0b0tLMvXZBgbG+sHs31K5t7rVFJDhoodmL\nZs6EBx4wEoPZCQGMtYmz9ZBERDxFIwU3ORyQkQHvvQdZWdCsmefutXIlDBlibFNV7yERqSqNFDzs\n5EljdPDRR/Dll55NCAA33WScVVi2zLP3EZHgpaRQTWacQagq1UMSEU/T9FE1VNQHwRtUD0lEqsuV\n906fTQrR0dHUrFmT0NBQwsPDycnJcf7MyqSwYwd07Qrp6Ubpayvm9ocNg5o1Ydw4799bRPyXXyeF\nJk2a8M0331C3bt0yP7MqKbjSB8EbtmwBu131kESkavx+odmX8pWrfRC8ITZW9ZBExDN8NinYbDY6\ndepEmzZtmDlzpqWxePoMQnWoHpKIeEKY1QFUZNWqVVx55ZUcPHiQ1NRUYmNjad++vfPnGRkZzu/t\ndrtHequeewZh5UrPbzmtip494bHHjHpILVtaHY2I+KLs7Gyys7Or9BqfXVM415gxY4iIiODPf/4z\n4J01BXf7IHjDc8/BDz+oCY+IuMZv1xSKioo4duwYAMePH2fp0qUkJiZ67f5WnEGojiFD4N//hqNH\nrY5ERAKFTyaFAwcO0L59e5KSkkhJSeG2226jc+fOXrm3mX0QPK1hQ2N7rOohiYhZ/GL66Hyemj7y\nhTMIVaV6SCLiKr+dPrKCJ/ogeIPqIYmImZQU8K0zCFVlsxnbU1UPSUTMEPTTRzNnwsiRxvpBSoop\nl/Q61UMSEVdo+ugCHA4YPRomTTLm5f01IYCxGD5woLamioj7gnKk4A9nEKpK9ZBEpDIaKZTDX84g\nVJXqIYmIGYIqKfjTGYTqUD0kEXFX0CSFHTvgxhuhWzeYNcu7jXG8pWdP2LPHmBYTEamOoEgK/noG\noarCwowttdqeKiLVFfALzYsXw6BBMHu275S99qSCAoiLg927oXZtq6MREV8S9AvNvtgHwdNUD0lE\n3BGQI4Vz+yBkZflWHwRvUD0kESlPUI4UTp40RgcffQRffhl8CQFUD0lEqi+gkkKgnkGoKtVDEpHq\nCpjpox9/NIraJSYa5R4CcctpVagekoicL2imj4LhDEJVqR6SiFSHTyaFrKwsYmNjadasGZMnT77g\nc4PlDEJ1DB0Kb74JxcVWRyIi/sLnkkJJSQmPPvooWVlZbNq0iQ8++IDNmzeX+1x/7oPgDaqHJCJV\n5XNJIScnh6ZNmxIdHU14eDh33XUXmZmZZZ4XjGcQqkP1kESkKnwuKeTn59PonJXRqKgo8vPzyzwv\nEPogeIPqIYkIQFGRa88L82wYVWdzcVGgd+8M3n/f+N5ut2O32z0XlB87tx6SFp1Fgkt2djbZ2dkA\nrF7t2msqTQqLFi1i1KhR5OXlcerUKcB44/7555+rHeiFXH311ezdu9f557179xIVFVXmeVOmZHjk\n/oFoyBCjHtLkyaqHJBJMzn5gPnECrr0WYEylr6l0+mj48OG8/fbbHD58mGPHjnHs2DGPJQSANm3a\nsH37dvLy8iguLmbu3Ln07NnTY/cLBqqHJBLcZs2C1q1de26lSSEqKooWLVoQEuKd5YewsDBeeeUV\nunTpQnx8PP379ycuLs4r9w5kQ4caU0j+d1RRRNzx66/GGuzIka49v9ITzV999RWjRo2iQ4cO1DjT\n/Ndms/HEE0+4HWx1udujORg5HNCyJbzwAnTqZHU0IuItM2bA/PlGcVBX3jsrXVMYOXIkkZGRnDhx\ngmKdgvJb59ZDUlIQCQ4nT8LEiUbFaFdVOlJISEjgu+++czc2U2mkUD2qhyQSXN56y1hL/Owz48+m\n1D7q3r07H3/8sRnxicVUD0kkeJw6BRMmuL6WcFalI4WIiAiKioqoUaMG4WcqzXlyS6orNFKovi1b\nwG6H7783ei6ISGB6/3144w1YseK3mnCuvHcGTOlscV3HjkaJkAEDrI5ERDzh9GlISIAXX4TOnX97\nPGhKZ0vVqB6SSGCbNw8iIyE1teqvrVZSSE5Ors7LxEeoHpJI4Dp9GsaNM9YSqtNKoFpJITc3tzov\nEx9xbj0kEQksixZBaKjRVqA6tKYQpAoKjHpIu3erHpJIoHA4oE0b+NvfoHfvsj936/BakyZNKnyR\nzWZj165drkcqPufcekjDhlkdjYiYYckSo9Pi7bdX/xoVjhQOHTr025NsNk6fPs3cuXOZMmUKrVu3\nZp6F7bw0UjDHypVGBdXNm9XGVMTfORxGr/rhw6F///Kf49buo3r16lGvXj3q1q3LokWLsNvtrF69\nmv/+97+WJgQxz003GWcVli2zOhIRcdeyZfC//0Hfvu5dp8KkUFxczBtvvEFcXBwrV64kMzOT999/\nn/j4ePfuKD7j3HpIIuLfxo411hJCQ927ToXTR1FRUYSFhfHYY4/RuHFjZ0c0h8OBzWajT58+7t3Z\nDZo+Mo/qIYn4v+XL4f77jYoFYRcoc+rWieb77rvPeZHyzJkzx7VoPUBJwVzDhkHNmsbeZhHxP506\nQXo6DB584eeZUubixIkTXHzxxaUeO3z4MJdffrlr0XqAkoK5VA9JxH+tXm2UrNm+Hc6Up6uQKWUu\n+vTpw8mTJ51/3r9/P6nVOTvtooyMDKKiokhOTiY5OZmsrCyP3UsMsbHQooVxNF5E/Mtzz8Ezz1Se\nEFxVaVLo3bs3d955JyUlJeTl5dGlSxcmTZpkzt3LcbarW25uLrm5uXTt2tVj95LfqB6SiP9ZswY2\nbIAzs/2mqLTz2pAhQ/j111+5/fbb2bNnD2+88Qbt2rUzL4JyaGrI+3r2hMceM+ohtWxpdTQi4opx\n4+Dpp+Gii8y7ZoVrClOnTjWecGYO6p133iExMZHk5GSP9mgeM2YMc+bMoVatWrRp04apU6dS+7w6\nDFpT8IznnoMfflATHhF/sH49dOsGO3fCJZe49hq3FpozMjJK7Tw6uxX1rNGjR7sWRTlSU1MpKCgo\n8/j48eNp27YtV1xxBWD0h96/fz+zZs0qHbTNVur+drsdu91e7XjEoHpIIv6jXz9o2xb+/OeKn5Od\nnU12drbzz2PGjPHvJjt5eXmkpaWxYcOGUo9rpOA5AwbADTeoHpKIL9u4EW69FXbtgssuc/11ftlk\nZ//+/c7vFyxYQGJiooXRBJ+hQ40Tzsq5Ir5r/Hh4/PGqJQRX+dxI4d5772XdunXYbDaaNGnC9OnT\nadCgQannaKTgOQ6HsdD8wgvGgRgR8S3btkG7dsYoITKyaq9Vj2aplunT4eOPYf58qyMRkfPddx9c\ney2MGlX115qSFH788UdmzpxJXl4ep06dcl549uzZVY/IJEoKnqV6SCK+adcuuP562LGjeptBTEkK\nN9xwAzfffDOtW7cmJCTEeeE77rij6hGZREnB81QPScT3DBliNMh67rnqvd6UpJCUlMS6deuqF4GH\nKCl4nuohifiW77+H5GRjTaG6pedM2X1022238dFHH1UvAvFbqock4lsmT4YHHqh+QnBVpSOFiIgI\nioqKqFGjBuFnKi7ZbDZ+/vlnz0Z2ARopeMf8+cYupC++sDoSkeC2bx8kJBgj+Pr1q38d7T4St5w6\nBU2awOLFqockYqXHHzc6Jb7wgnvXcSspbN68mbi4ONauXVvuC1u1auVedG5QUvAe1UMSsdaBA0b5\nmY0b4cor3buWW0lhyJAhzJw5E7vdXm73tc8//9y96NygpOA9qockYq2nn4aiInjlFfevpekjMYXq\nIYlY49AhaN7cqIhqxpkhv6x9JL5H9ZBErPHii0Y1VG8eIlVSkErddJNxVmHZMqsjEQke//sfvPEG\njBjh3fsqKUilbDa16xTxtmnTIC3N2AHoTZUmhY4dO7r0mAS2gQNh+XLYu9fqSEQC388/GwvLf/2r\n9+9dYVL45ZdfOHz4MAcPHuTIkSPOr7y8PPLz870Zo/iAiAi4+25tTRXxhldfhc6doVkz79+7wt1H\nL774Ii+99BL79u3jqquucj4eGRnJgw8+yKOPPuq1IM+n3UfWOFsPac8ecxuFi8hvCgshJgY+/xzi\n4829tlu7j4YPH87u3bt5/vnn2b17t/Pr22+/dTshfPjhh7Ro0YLQ0NAyh+MmTpxIs2bNiI2NZenS\npW7dR8x1th6S+iyIeM4bb8Att5ifEFzl0jmFL7/8slQ/BTA6pFXXli1bCAkJ4aGHHmLq1KnO09Gb\nNm0iPT2dNWvWkJ+fT6dOndi2bZuzZLczaI0ULKN6SCKe88svRgOdjz+G664z//quvHeGVXaRu+++\nm127dpGUlERoaKjzcXeSQmxsbLmPZ2ZmMmDAAMLDw4mOjqZp06bk5OTQtm3bat9LzNWzJzz2mHGY\nRvWQRMw1cyakpHgmIbiq0qTwzTffsGnTpnJLXZht3759pRJAVFSUFrV9TFgYPPSQcZhNi84i5vn1\nV/j73yEz09o4Kk0KCQkJ7N+/v9RisytSU1MpKCgo8/iECRNIS0tz+TreSEZSNQ88YNRDmjxZ9ZBE\nzDJnjjH6bt3a2jgqTQoHDx4kPj6e66+/novObDmx2WwsXLjwgq/75JNPqhzM1Vdfzd5zNsL/8MMP\nXH311eU+NyMjw/m93W7HbrdX+X5SPQ0bQteu8PbbxlSSiLinuBgmToS5c829bnZ2NtnZ2VV6TaUL\nzWcveO4Chc1m45ZbbqlWkOfq0KEDU6ZMofWZ1Hh2oTknJ8e50Lxjx44yowUtNFvviy/g/vuNbaoa\nzIm4Z9Ys+Ne/oBqfpavElIVmu91OXl4eO3bsoFOnThQVFZXahVQdCxYsYNiwYRw6dIgePXqQnJzM\nkiVLiI+P58477yQ+Pp6wsDBee+01TR/5qHbtjLMKy5ZBp05WRyPiv06dMkYJs2dbHYmh0pHCjBkz\nmDlzJkeOHGHnzp1s27aNP/7xjyyzsDqaRgq+Yfp0yMqCBQusjkTEf737rjFSqOIsT7WY0k+hZcuW\nzm2hubm5ACQmJrJhwwbzIq0iJQXfUFgI11wD69Z5t7SvSKAoKTEOhL76KnijpJwp/RQuuugi5wIz\nwKlTpzSlI4BRD2ngQG1NFamuDz+EunXh1lutjuQ3lSaFW265hfHjx1NUVMQnn3xCv379qrSlVALb\n0KHw5pvGHmsRcd3p0zBuHIwc6VubNSqdPiopKWHWrFnOOkRdunThgQcesHS0oOkj39Kpk7ETacAA\nqyMR8R/z5xsLzDk53ksK6tEsXqF6SCJV43BAq1YwZoxROsZbTFlTWLRoEcnJydSpU4fIyEgiIyOp\nWbOmaUGK/+vZ0yinvX691ZGI+IfFi43E4Isz8ZWOFGJiYliwYAEJCQllqpVaRSMF3zNunNGVTYvO\nIhfmcBhF755+Gvr29e69TRkpREVF0aJFC59JCOKbHngA/v1vOHrU6khEfNvSpXD8OPTpY3Uk5at0\npPDVV18xatQoOnToQI0aNYwX2Ww88cQTXgmwPBop+KYBA6BtW9VDEqmIwwHt28Mjj1izMcOUkcLI\nkSOJiIjgxIkTFBYWUlhYyLFjx0wLUgLHI48YJbWVr0XKl50NBw/CnXdaHUnFKq19tH///mpVPJXg\no3pIIhc2diz89a9wTr8yn1PpSKF79+58/PHH3ohF/JzNZowWXn3V6khEfM8XXxi79NLTrY7kwipd\nU4iIiKCoqIgaNWoQHh5uvMhm4+eff/ZKgOXRmoLvUj0kkfJ16QL9+hmbMqyiw2tiiWHDoGZNY5uq\niBinlvv1g+3b4cx+HUuYlhQyMzNZsWKFs7mO1bWPlBR825YtYLcbQ+VzaimKBK20NOjWzagVZiVT\ndh+NGDGCadOm0aJFC+Li4pg2bRrPPPOMaUFK4ImNhYQEo/yFSLBbu9b4GjzY6khcU+lIITExkXXr\n1hF6Zrm8pKSEpKQkt/opfPjhh2RkZLBlyxbWrFlDq1atAMjLyyMuLo7Y2FgAbrjhBl577bWyQWuk\n4PNUD0nE0KcP3HwzDB9udSQmteO02WwcPXqUyy+/HICjR4+6XSE1MTGRBQsW8NBDD5X5WdOmTZ3N\nfMR/9expHGJbvx5atrQ6GhFrbNgAq1fDe+9ZHYnrKk0KzzzzDK1atcJutwOwfPlyJk2a5NZNz44E\nJHCFhcFDDxmH2VQPSYLV+PHwxBNw6aVWR+I6lxaa9+3bx5o1a7DZbFx//fU0bNjQlJt36NCBqVOn\nlpo+SkhIoFmzZtSqVYtx48Zx0003lQ1a00d+oaAA4uJg926oXdvqaES8a/NmuOUW2LXL6FLoC9ya\nPlq7dm2pP0dFRQFGgti3b5/zjbwiqampFBQUlHl8woQJFe5euuqqq9i7dy916tRh7dq19OrVi40b\nNxIZGXnBe4lvatgQunaFt99WPSQJPhMmGH/vfSUhuKrCpNCmTRsSEhKcawnn+/zzzy944eqUxqhR\no4az6F6rVq2IiYlh+/bt5SagjIwM5/d2u905vSW+5ZFHjK5sw4b5VstBEU/asQOysuCVV6yNIzs7\nm+zs7Cq9psLpoxdffJEPP/yQ2rVr079/f3r37m36J/YOHTowZcoUWrduDcChQ4eoU6cOoaGh7Nq1\ni5tvvpnvvvuO2ufNPWj6yH84HMZC8wsvqB6SBI/77zdO9J/z2dUnmHJ4befOncydO5f//Oc/XHPN\nNTz77LMkJSW5FdiCBQsYNmwYhw4dolatWiQnJ7NkyRLmzZvH6NGjCQ8PJyQkhLFjx9KjR49q/WLi\nO6ZPNz41LVhgdSQinpeXB61bG6OFOnWsjqY00040b9y4kQ8++ID33nuPyZMn079/f9OCrA4lBf+i\nekgSTB5+GOrWNdYUfI1bSWHnzp3861//IjMzk8aNG9O/f39uu+02LrnkEo8EWxVKCv5H9ZAkGPzw\nA1x3HWzdCldcYXU0ZbmVFEJCQkhMTKRXr17UrFmz1AXVeU2qSvWQJBgMG2b8/X7+easjKZ9bW1JH\njRrlPLlcWFhobmQSdM6th2RFG0IRTysoME4ub9pkdSTuUels8RrVQ5JA9uSTcPIkvPSS1ZFUTP0U\nxKecOgVNmsDixaqHJIHl4EH43e+MWkdXX211NBUzpXS2iFnCwox68k8+CcXFVkcjYp4XXoD+/X07\nIbhKIwXxqpMnoW9fuPhi+Oc/fbuBuYgrjhyBZs2MngnXXGN1NBdmyvTR1KlTS13IZrNRq1YtWrdu\n7fYhtupSUvBvJ05A9+4QEwMzZqj8hfi30aMhPx/efNPqSCpnSlJIT0/n66+/Ji0tDYfDwUcffURi\nYiJ79uyhb9++/OUvfzE1aFcoKfi/Y8eMshft2xvb95QYxB/99JPx4eb//T/jn77OlKTQvn17lixZ\nQsSZUn+FhYV0796drKwsWrduzebNm82L2EVKCoHhyBGjtPBdd8Gzz1odjUjVjRsH27bBO+9YHYlr\nTOm8dvDgQWflUoDw8HAOHDjApZdeysUXX+x+lBK06taFpUuN0UKtWvDoo1ZHJOK6Y8dg2jRYudLq\nSMxVaVIYOHAgKSkp9OrVC4fDwaJFi0hPT+f48ePEx8d7I0YJYFdeCZ98YvSwrVkT7r3X6ohEXPP6\n69Cxo7EVNZC4tPtozZo1rFq1CpvNRrt27WjTpo03YquQpo8Cz6ZNcOut8MYb0KuX1dGIXFhREVx7\nLXz6qXFS31+YdnitpKSEgoICTp065Sx90bhxY3OirAYlhcD09dfGrqQPPjA+gYn4qn/8wziZP2+e\n1ZFUjSlJ4eWXX2bMmDHUr1+f0HM2lW/YsMGcKKtBSSFwLV9unGNYtAjatrU6GpGyTpwwdhotXgzJ\nyVZHUzWmJIWYmBhycnIqbMtpBSWFwPbRRzB4sLHWcN11VkcjUtqrr8LHH8PChVZHUnWmlLlo3Lix\ns3S2WZ566ini4uJo2bIlffr04aeffnL+bOLEiTRr1ozY2FiWLl1q6n3FP/ToYRQV69bN6F4l4iuK\ni2HyZBg50upIPKfSkcLgwYPZtm0bPXr0cG5NdbefwieffELHjh0JCQlhxIgRAEyaNIlNmzaRnp7O\nmjVryM/Pp1OnTmzbto2QkNK5SyOF4DBjBkycaGz5i4qyOhoRmDnTWEfIyrI6kuox5ZxC48aNady4\nMcXFxRQXFzub7LgjNTXV+X1KSgrzzqzWZGZmMmDAAMLDw4mOjqZp06bk5OTQVpPLQenBB40To6mp\nsGKFb3aykuBx8qTRYvO996yOxLMqTQoZGRkeDWD27NkMONN1Zd++faUSQFRUFPn5+R69v/i2p56C\no0eha1f47DPjkJuIFd5/39iG2q6d1ZF4VoVJ4bHHHuOll14iLS2tzM9sNhsLK1llSU1NpaCgoMzj\nEyZMcF5z/Pjx1KhRg/T09AqvU9Go5NxkZbfbsdvtF4xH/Ne4cUZiSEszhu2XXmp1RBJsSkqMUcKM\nGVZHUjXZ2dlkZ2dX6TUVril8/fXXtGnTpsILuvsm/NZbbzFz5kyWLVvmLJcxadIkAOc6Q9euXRkz\nZgwpKSmlg9aaQtA5fRr+8Ac4fBj+8x84p/KKiMf985/GCeYVK/y7eKPPdl7Lysriz3/+M8uXL6de\nvXrOx88uNOfk5DgXmnfs2FFmtKCkEJzUi0GscPq0cWr5xRehc2ero3GPW0khMTHxghf+9ttvqx1Y\ns2bNKC4upm7dugDccMMNvPbaa4AxvTR79mzCwsJ46aWX6NKlS7n3V1IITurFIN724YcwZQp89ZX/\n/31zKynk5eUBON+s77nnHhwOB++//z4AkydPNjHUqlFSCG7qxSDecvq0cWp5wgTj/Iy/M2X6KCkp\niXXr1pV6LDk5mdzcXPcjrCYlBVEvBvGGzEwYO9aoyxUIHz5MOdHscDj44osvnH9etWqV3pDFcmd7\nMcyZA6+8YnU0EogcDnjuOfjb3wIjIbiq0nMKs2fPZtCgQc5SFLVr12bOnDkeD0ykMurFIJ60ZAn8\n+ivcfrvVkXiXy7uPziaFWj5wekjTR3Iu9WIQszkccOON8PjjcOedVkdjHlPKXJw4cYJ58+aRl5fH\nqVOnnBceNWqUOVGKuCk+3ihj3L07REaqF4O4b9ky48DkHXdYHYn3VbqmcPvtt7Nw4ULCw8OJiIgg\nIiKCyy67zBuxibisTRtj6+BddxlbB0Xc8dxzxgaGYDwLU+n0UUJCAt9995234nGJpo+kIurFIO5a\nvhzuvx+2bIGwSudS/Ispu49uvPFGtw6qiXiTejGIu557Dv7618BLCK6qdKQQFxfHjh07aNKkCRdd\ndJHxIjdPNLtLIwWpjHoxSHWsXg3p6bBtG4SHWx2N+UxZaF6yZIlpAYl4i3oxSFWdPZcwYkRgJgRX\nVTp9FB0dzd69e/n888+Jjo7msssu06d08QtPPQV9+hi9GM7p+CpSxtGjMHAg5OfDffdZHY21Kk0K\nGRkZ/P3vf2fixIkAFBcXc/fdd3s8MBEzjBsHbdsavRiKiqyORnzRypWQlASXX27sXDszSx60Kk0K\nCxYsIDMz07kN9eqrr+bYsWMeD0zEDDYbvPwyXHONUXa7uNjqiMRXnDxplLDo3x9efdX4e3LJJVZH\nZb1Kk8JFF11ESMhvTzt+/LhHAxIxW0gIzJ5tzBPfc4/RRUuC2/btRlvNtWshNzcwKqCapdKk0K9f\nPx566CGOHj3KjBkz6NixIw888IA3YhMxTXg4zJ0LBw/Cww8bi4oSfBwO4wPCjTcatbI++ggaNLA6\nKt/iUu2jpUuXsnTpUgC6dOlCamqqxwO7EG1JlepSL4bgdeSIsStt+3ajc1+LFlZH5H2mt+M8ePAg\n9erVK9Mes6qeeuopFi9eTI0aNYiJiWHOnDnUqlWLvLw84uLiiI2NBUp3ZCsVtJKCuEG9GILPZ58Z\nPb779TM4Pr9wAAAQoUlEQVQa5pxpCx903DrRvHr1aux2O3369CE3N5eEhAQSExNp0KCB22cXOnfu\nzMaNG1m/fj3Nmzd37mwCaNq0Kbm5ueTm5pabEETcpV4MwaO4GJ5+2lhLmjULXngheBOCqyo8vPbo\no48yceJEfvrpJzp06EBWVhZt27Zly5Yt3HXXXXTr1q3aNz13+iklJYV58+ZV+1oi1XHllfDpp8Y0\nknoxBKYtW4zTyY0bw/r1UK+e1RH5hwpHCiUlJXTu3Jl+/fpx5ZVX0rZtWwBiY2Pdnj461+zZs+ne\nvbvzz7t37yY5ORm73V6q45uI2aKjjRHDX/4C//mP1dGIWRwOo7dG+/bGpoIFC5QQqqLCkcK5b/wX\nV2O8lZqaSkFBQZnHJ0yYQFpaGgDjx4+nRo0apKenA3DVVVexd+9e6tSpw9q1a+nVqxcbN24kMjKy\nzHUyMjKc39vtdux2e5VjFImLM3oxdOumXgyB4OBBo8Jpfr5xKO3M8mTQys7OJjs7u0qvqXChOTQ0\nlEsvvRSAX375hUvOOdXxyy+/OBvuVNdbb73FzJkzWbZsWYVJp0OHDkydOpVWrVqVDloLzWKyFSuM\nw20LFxonoMX/fPyxUTb9nntg7FioUcPqiHyPWwXxSjx4wicrK4vnn3+e5cuXl0oIhw4dok6dOoSG\nhrJr1y62b9/Otdde67E4RM66+WZ46y2jH696MfiXEyfgmWdg3jx47z3o0MHqiPxblbakmqVZs2YU\nFxdTt25d4Letp/PmzWP06NGEh4cTEhLC2LFj6VHOUUONFMRT5s6FJ54wGq00bWp1NFKZ774zFpN/\n9zuYPt3YWSYVM/2cgq9QUhBPmjnT2MuuXgy+y+EwthOPHWscQvzDH3QQ0RWm9FMQCTZDhqgXgy8r\nKIBBg4xDiKtXa0RntkprH4kEoyefhDvuUC8GX7N4MSQnw+9/D198oYTgCZo+EqmAwwF/+hN8+y1k\nZcGZzXhigaIio2nSf/8L774LN91kdUT+ya0yFyLBzmaDadPUi8Fq69ZBmzZGd7R165QQPE1JQeQC\nQkKMGkk1aqgXg7edPg1TphhrO88+C++/D7VqWR1V4NP0kYgLTpwwGrFcey3MmKGdLp6Wn2/sKDpx\nwpguatLE6ogCg6aPRExy8cVGfaQNG4y5bX0m8Zz586FVK6O8eXa2EoK3aUuqiIsiI42FzltugTp1\n1IvBbIWFMHw4fP45ZGaq3IhVNFIQqQL1YvCMNWuM0UFJibGYrIRgHY0URKpIvRjMU1ICf/87/OMf\nRpK9806rIxIlBZFqONuL4dZbjcTQq5fVEfmf7783dnTZbPDNN9CokdURCWj6SKTazvZiePBBWLbM\n6mj8y9y5xtmD7t2Nf3dKCL5DW1JF3KReDK77+WfjlPhXX8E//wmtW1sdUXDRllQRLzi3F8O331od\nje9avRqSkoztvWvXKiH4Ko0URExythfDpEnQsqXRClLdv+DUKRg/Hl57zeid3Lu31REFL/VTEPGy\n+fON5LBhA+zebVTxvO46SEz87Z9RUcFzInrXLrj7brjsMnj7bbjqKqsjCm4+mxRGjhzJwoULsdls\nXH755bz11ls0OrPSNHHiRGbPnk1oaCjTpk2jc+fOZYNWUhA/cOIEbN5sTClt2PDbP0+cKJ0krrsO\nEhKMw3GBwuEwWmM+8YTRKnP4cKOOlFjLZ5PCsWPHiDzzf8DLL7/M+vXrefPNN9m0aRPp6emsWbOG\n/Px8OnXqxLZt2wg572+TkoL4s4MHSyeJb7+FTZugQYOyyaJpUwjzs43jR4/CH/8I69cbi8lJSVZH\nJGf5bOe1yHM+EhUWFlKvXj0AMjMzGTBgAOHh4URHR9O0aVNycnJoqy0dEkCuuMI433Drrb89VlIC\nO3f+liQ++AD++lfYt8/Y+np+smjQwLr4L2TFCuPsQVoafP21elD4I8s+gzz77LO8++67XHLJJeTk\n5ACwb9++UgkgKiqK/Px8q0IU8ZrQUGje3Pi6447fHi8shI0bfxtVLFxo/DM0tOxaRXy8dW/CJ09C\nRgbMnm30uL7tNmviEPd5LCmkpqZSUFBQ5vEJEyaQlpbG+PHjGT9+PJMmTWL48OHMmTOn3OvYKliR\ny8jIcH5vt9ux2+1mhC3iUyIiICXF+DrL4TBGEGdHFZ99Bi++CNu2QePGZZNFkyaenc/fvh0GDoR6\n9Yy6Rb46iglG2dnZZGdnV+k1lu8++v777+nevTvfffcdkyZNAmDEiBEAdO3alTFjxpBy7v8RaE1B\npDwnT8LWrWXXK/73P2jRomyyqFvXvfs5HMbI4C9/MUYJjzwSPLuq/JXPLjRv376dZs2aAcZCc05O\nDu+++65zoTknJ8e50Lxjx44yowUlBRHX/e9/8N13pZPFhg1Gzabz1ypcPVtx+LBR3mP7dmMxOSHB\n87+HuM9nk0Lfvn3ZunUroaGhxMTE8Prrr1O/fn3AmF6aPXs2YWFhvPTSS3Tp0qVs0EoKIm5xOGDP\nHiNJnDuqyMszdjydnyzOPVuxbBncdx/06wcTJhgnlMU/+GxScJeSgohn/PKLcbbi/CmoX381EkT9\n+ka5itmzoZzPa+LjlBRExBQ//mgkiB07oE8fY1ut+B8lBRERcVKVVBERqRIlBRERcVJSEBERJyUF\nERFxUlIQEREnJQUREXFSUhARESclBRERcVJSEBERJyUFERFxUlIQEREnJQUREXFSUhARESdLksLI\nkSNp2bIlSUlJdOzYkb179wKQl5fHJZdcQnJyMsnJyQwdOtSK8EREgpYlSeHpp59m/fr1rFu3jl69\nejFmzBjnz5o2bUpubi65ubm89tprVoRnuao22vY3+v38WyD/foH8u7nKkqQQGRnp/L6wsJB69epZ\nEYbPCvS/mPr9/Fsg/36B/Lu5KsyqGz/77LO8++67XHrppXz11VfOx3fv3k1ycjK1atVi3Lhx3HTT\nTVaFKCISdDw2UkhNTSUxMbHM16JFiwAYP34833//Pffddx+PP/44AFdddRV79+4lNzeXF154gfT0\ndI4dO+apEEVE5HwOi+3Zs8fRokWLcn9mt9sd33zzTZnHY2JiHIC+9KUvfemrCl8xMTGVvidbMn20\nfft2mjVrBkBmZibJyckAHDp0iDp16hAaGsquXbvYvn071157bZnX79ixw6vxiogEC0uSwjPPPMPW\nrVsJDQ0lJiaG119/HYAVK1YwatQowsPDCQkJYfr06dSuXduKEEVEgpLN4XA4rA5CRER8g9+daM7K\nyiI2NpZmzZoxefJkq8Mx1eDBg2nQoAGJiYlWh+IRe/fupUOHDrRo0YKEhASmTZtmdUimOXHiBCkp\nKSQlJREfH88zzzxjdUgeUVJSQnJyMmlpaVaHYrro6Giuu+46kpOTuf76660Ox3RHjx6lb9++xMXF\nER8fX2rXZylurhN71alTpxwxMTGO3bt3O4qLix0tW7Z0bNq0yeqwTLNixQrH2rVrHQkJCVaH4hH7\n9+935ObmOhwOh+PYsWOO5s2bB9R/v+PHjzscDofj5MmTjpSUFMfKlSstjsh8U6dOdaSnpzvS0tKs\nDsV00dHRjsOHD1sdhsfce++9jlmzZjkcDuPv6NGjR8t9nl+NFHJycmjatCnR0dGEh4dz1113kZmZ\naXVYpmnfvj116tSxOgyPadiwIUlJSQBEREQQFxfHvn37LI7KPJdeeikAxcXFlJSUULduXYsjMtcP\nP/zAf//7Xx544AEcATrrHKi/108//cTKlSsZPHgwAGFhYdSqVavc5/pVUsjPz6dRo0bOP0dFRZGf\nn29hRFJdeXl55ObmkpKSYnUopjl9+jRJSUk0aNCADh06EB8fb3VIpnr88cd5/vnnCQnxq7cNl9ls\nNjp16kSbNm2YOXOm1eGYavfu3VxxxRUMGjSIVq1aMWTIEIqKisp9rl/917XZbFaHICYoLCykb9++\nvPTSS0RERFgdjmlCQkJYt24dP/zwAytWrAiokgmLFy+mfv36JCcnB+yn6VWrVpGbm8uSJUt49dVX\nWblypdUhmebUqVOsXbuWoUOHsnbtWi677DImTZpU7nP9KilcffXVzoqqYCxcRkVFWRiRVNXJkye5\n4447uPvuu+nVq5fV4XhErVq16NGjB19//bXVoZjmyy+/ZOHChTRp0oQBAwbw2Wefce+991odlqmu\nvPJKAK644gp69+5NTk6OxRGZJyoqiqioKH7/+98D0LdvX9auXVvuc/0qKbRp04bt27eTl5dHcXEx\nc+fOpWfPnlaHJS5yOBzcf//9xMfHM3z4cKvDMdWhQ4c4evQoAL/88guffPKJ81BmIJgwYQJ79+5l\n9+7d/Otf/+LWW2/lnXfesTos0xQVFTlL6hw/fpylS5cG1C7Ahg0b0qhRI7Zt2wbAp59+SosWLcp9\nrmUF8aojLCyMV155hS5dulBSUsL9999PXFyc1WGZZsCAASxfvpzDhw/TqFEjxo4dy6BBg6wOyzSr\nVq3ivffec277A5g4cSJdu3a1ODL37d+/nz/84Q+cPn2a06dPc88999CxY0erw/KYQJvKPXDgAL17\n9waMqZaBAwfSuXNni6My18svv8zAgQMpLi4mJiaGOXPmlPs8HV4TEREnv5o+EhERz1JSEBERJyUF\nERFxUlIQEREnJQUREXFSUhARESclBQloni6jER0dzZEjR8o8vnz5clavXl3uaxYtWhRwZd8lcPjV\n4TWRqvL0ISubzVZuLaDPP/+cyMhIbrjhhjI/S0tLC8h+BBIYNFKQoLNz5066detGmzZtuPnmm9m6\ndSsA9913H4899hjt2rUjJiaGefPmAUb106FDhxIXF0fnzp3p0aOH82dgnBRt3bo11113HVu3biUv\nL4/p06fzj3/8g+TkZL744otS93/rrbf405/+dMF7nisvL4/Y2FgGDRrE7373OwYOHMjSpUtp164d\nzZs3Z82aNZ76VyVBSElBgs6DDz7Iyy+/zNdff83zzz/P0KFDnT8rKChg1apVLF68mBEjRgAwf/58\n9uzZw+bNm3n33XdZvXp1qRHIFVdcwTfffMMf//hHpkyZQnR0NA8//DBPPPEEubm53HTTTaXuf/7o\npbx7nm/nzp08+eSTbNmyha1btzJ37lxWrVrFlClTmDBhgln/akQ0fSTBpbCwkNWrV9OvXz/nY8XF\nxYDxZn22cmtcXBwHDhwA4IsvvuDOO+8EcPZKOFefPn0AaNWqFfPnz3c+7koFmYrueb4mTZo4C5i1\naNGCTp06AZCQkEBeXl6l9xFxlZKCBJXTp09Tu3ZtcnNzy/15jRo1nN+ffVM/f93g/Df7iy66CIDQ\n0FBOnTpV5ZjKu+f5zt4DjL4NZ18TEhJSrXuKVETTRxJUatasSZMmTfi///s/wHgT/vbbby/4mnbt\n2jFv3jwcDgcHDhxg+fLlld4nMjLSWYr5fKpBKb5MSUECWlFREY0aNXJ+vfjii7z//vvMmjWLpKQk\nEhISWLhwofP55873n/3+jjvuICoqivj4eO655x5atWpVbn9bm83mfE1aWhoLFiwgOTmZVatWVfi8\niu5Z3rUr+nOglbEWa6l0togLjh8/zmWXXcbhw4dJSUnhyy+/pH79+laHJWI6rSmIuOC2227j6NGj\nFBcXM2rUKCUECVgaKYiIiJPWFERExElJQUREnJQURETESUlBRESclBRERMRJSUFERJz+P8O/Vq30\nkcIBAAAAAElFTkSuQmCC\n",
       "text": [
        "<matplotlib.figure.Figure at 0x5c11c90>"
       ]
      }
     ],
     "prompt_number": 29
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 3.3.13,Page No.117"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "import numpy as np\n",
      "%matplotlib inline\n",
      "\n",
      "#Initilization of Variables\n",
      "L_AB=L_BC=L_CD=L_DE=L_EF=1 #m #LEngth of AB,BC,CD,DE,EF respectively\n",
      "M_A=50 #KN/m #Moment at A\n",
      "w=5 #KN/m #u.v.l\n",
      "F_D=10 #KN\n",
      "w2=5 #KN/m #u.d.l\n",
      "\n",
      "#Calculations\n",
      "\n",
      "#Let R_B & R_E be the Reactions at B and E respectively\n",
      "#R_B+R_E=20\n",
      "\n",
      "#Taking Moment At Pt B,M_B\n",
      "R_E=(w2*L_EF*(L_EF*2**-1+L_DE+L_CD+L_BC)+w*L_BC*2**-1*2*3**-1+50+F_D*(L_BC+L_CD))*3**-1\n",
      "R_B=17.5-R_E #KN\n",
      "\n",
      "#Shear Force Calculations\n",
      "\n",
      "#S.F At F\n",
      "V_F=0\n",
      "\n",
      "#S.F aT E\n",
      "V_E1=-w2*L_EF #KN\n",
      "V_E2=V_E1+R_E\n",
      "\n",
      "#S.F at D\n",
      "V_D1=R_E-w2*L_EF #KN\n",
      "V_D2=V_D1-F_D #KN\n",
      "\n",
      "#S.F At C\n",
      "V_C=V_D2\n",
      "\n",
      "#S.F aT B\n",
      "V_B1=-L_BC*w*2**-1-F_D+R_E-w2*L_EF\n",
      "V_B2=V_B1+R_B\n",
      "\n",
      "#Bending Moment Calculations\n",
      "\n",
      "#B.M at F\n",
      "M_F=0 #KN.m\n",
      "\n",
      "#B.M At E\n",
      "M_E=w2*L_EF*L_EF*2**-1 #KN.m\n",
      "\n",
      "#B.M at D\n",
      "M_D=-R_E*L_DE+w2*L_EF*(L_EF*2**-1+L_DE) #KN.m\n",
      "\n",
      "#B.M At C\n",
      "M_C=F_D*L_CD*R_E*(L_CD+L_DE)+w2*L_EF*(L_EF*2**-1+L_DE+L_CD) #KN.m\n",
      "\n",
      "#B.M At B\n",
      "M_B=F_D*(L_CD+L_BC)-R_E*(L_BC+L_CD+L_DE)+w2*L_EF*(L_EF*2**-1+L_BC+L_CD+L_DE)+1*2**-1*L_BC*w*2*3**-1\n",
      "\n",
      "#B.M At A\n",
      "M_A1=w*L_EF*(L_EF*2**-1+L_AB+L_BC+L_CD+L_DE)-R_E*(L_AB+L_BC+L_CD+L_DE)+F_D*(L_AB+L_BC+L_CD)+1*2**-1*L_BC*w*(2*3**-1*L_BC+L_AB)-R_B*L_AB\n",
      "M_A2=M_A1+M_A\n",
      "\n",
      "#Result\n",
      "print \"The Shear Force and Bending Moment Diagrams are the results\"\n",
      "\n",
      "#Plotting the Shear Force Diagram\n",
      "\n",
      "X1=[0,L_EF,L_EF,L_DE+L_EF,L_DE+L_EF,L_CD+L_DE+L_EF,L_CD+L_DE+L_EF+L_BC,L_CD+L_DE+L_EF+L_BC]\n",
      "Y1=[V_F,V_E1,V_E2,V_D1,V_D2,V_C,V_B1,V_B2]\n",
      "Z1=[0,0,0,0,0,0,0,0]\n",
      "plt.plot(X1,Y1,X1,Z1)\n",
      "plt.xlabel(\"Length x in m\")\n",
      "plt.ylabel(\"Shear Force in kN\")\n",
      "plt.show()\n",
      "\n",
      "#Plotting the Bendimg Moment Diagram\n",
      "\n",
      "X2=[0,L_EF,L_DE+L_EF,L_CD+L_DE+L_EF,L_CD+L_DE+L_EF+L_BC,L_CD+L_DE+L_EF+L_BC+L_AB,L_CD+L_DE+L_EF+L_BC+L_AB]\n",
      "Y2=[M_F,M_E,M_D,M_C,M_B,M_A1,M_A2]\n",
      "Z2=[0,0,0,0,0,0,0]\n",
      "plt.plot(X2,Y2,X2,Z2)\n",
      "plt.xlabel(\"Length in m\")\n",
      "plt.ylabel(\"Bending Moment in kN.m\")\n",
      "plt.show()"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The Shear Force and Bending Moment Diagrams are the results\n"
       ]
      },
      {
       "metadata": {},
       "output_type": "display_data",
       "png": "iVBORw0KGgoAAAANSUhEUgAAAYQAAAEPCAYAAABCyrPIAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAHYxJREFUeJzt3Xl0VPXdx/HPDQSULLJIFkmeJoc1CyRhMSKmJkAii0Rq\nQKVVI0vhgUcshWrpqfWJB0WsWkW0lVpELdaNHCSKTUUxogiiNREVH0RJbIAkomkOe7Pd549MRkIy\nmWQyM3eSvF/nzMnMnTv3983vkPnwu7+7GKZpmgIAdHt+VhcAAPANBAIAQBKBAACwIRAAAJIIBACA\nDYEAAJDkhUAoLS1VWlqa4uLiFB8fr0cffVSSlJOTo4iICCUlJSkpKUn5+fmeLgUA0ArD0+chlJeX\nq7y8XImJiTp58qTGjBmjV155RS+99JKCgoK0fPlyTzYPAGijnp5uICwsTGFhYZKkwMBAxcTE6MiR\nI5IkzokDAN/h1TmEkpISFRYW6rLLLpMkrVu3TgkJCZo/f76qqqq8WQoA4DxeC4STJ09q1qxZWrt2\nrQIDA7V48WIVFxerqKhI4eHhWrFihbdKAQC0xPSC6upqMyMjw3z44YdbfL+4uNiMj49vtnzw4MGm\nJB48ePDg0Y7H4MGDXfqu9vgcgmmamj9/vmJjY7Vs2TL78rKyMoWHh0uStmzZopEjRzb77Ndff90p\n5hlycnKUk5NjdRmtuuUWadu2HIWE5FhdilPffuv7dfr55ejTT3OsLsOpzvBvU6JOdzMMw6XPeTwQ\ndu3apU2bNmnUqFFKSkqSJK1evVrPP/+8ioqKZBiGoqOjtX79ek+X0q3t3StNnizdeafVlTj3+OPS\n//yP1VU4VloqzZljdRWA+3k8EK644grV19c3Wz516lRPN43z9O8vxcVZXYVzISG+XeeFF1pdAeAZ\nnKnsBqmpqVaX0CbjxqVaXUKbdIb+vOCCVKtLaJPO0JcSdfoKj5+Y1hGGYXSKOYTOIDZW2ry54Sc6\n5tChht1vhw5ZXQnQMle/OxkhAAAkEQgAABsCAQAgiUAAANgQCAAASQQCAMCGQAAASCIQAAA2BAIA\nQBKBAACwIRAAAJIIBACADYEAAJBEIAAAbAgEAIAkAgEAYEMgAAAkEQgAABsCAQAgiUAAANgQCAAA\nSQQCAMCGQAAASCIQAAA2BAIAQBKBAACw8XgglJaWKi0tTXFxcYqPj9ejjz4qSaqsrFR6erqGDRum\njIwMVVVVeboUAEArPB4I/v7+evjhh/X5559rz549evzxx/XFF19ozZo1Sk9P15dffqlJkyZpzZo1\nni4FANAKjwdCWFiYEhMTJUmBgYGKiYnRkSNHlJeXp+zsbElSdna2XnnlFU+XAgBohVfnEEpKSlRY\nWKjk5GRVVFQoNDRUkhQaGqqKigpvlgIAOI/XAuHkyZPKysrS2rVrFRQU1OQ9wzBkGIa3SgEAtKCn\nNxqpqalRVlaWbrrpJs2cOVNSw6igvLxcYWFhKisrU0hISIufzcnJsT9PTU1VamqqFyoGgM6joKBA\nBQUFHd6OYZqm2fFyHDNNU9nZ2RowYIAefvhh+/I77rhDAwYM0K9//WutWbNGVVVVzSaWDcOQh8vr\nNmJjpc2bG36iYw4dkiZPbvgJ+CJXvzs9PkLYtWuXNm3apFGjRikpKUmSdN9992nlypW67rrrtGHD\nBkVFRemll17ydCkAgFZ4PBCuuOIK1dfXt/jem2++6enmAQBtxJnKAABJBAIAwIZAAABIIhAAADYE\nAgBAEoEAALAhEAAAkggEAIANgQAAkEQgAABsCAQAgCQCAQBgQyAAACQRCAAAGwIBACCJQAAA2BAI\nAABJBAIAwIZAAABIIhAAADYEAgBAEoEAALAhEAAAkggEAIANgQAAkEQgAABsCAQAgCQCAQBg09PR\nG2lpaS0uNwxDkrRjxw7PVAQAsITDQHjggQfszxtDYM+ePbr//vsVEhLS5gbmzZunbdu2KSQkRJ9+\n+qkkKScnR3/5y180cOBASdJ9992nKVOmuPQLAADcw2EgjB071v68oKBA99xzj86cOaP169dr6tSp\nbW5g7ty5Wrp0qW6++Wb7MsMwtHz5ci1fvtzFsgEA7uYwECQpPz9f9957r3r16qU777zT4W6k1qSk\npKikpKTZctM0270tAIDnOAyEcePG6dixY/rVr36l8ePHS5I+/vhj+/ujR4/uUMPr1q3Ts88+q7Fj\nx+qhhx5S3759O7Q9AEDHOAyEgIAABQQEKDc3V7m5uc3ef/vtt11udPHixbrrrrskSb/73e+0YsUK\nbdiwocV1c3Jy7M9TU1OVmprqcrsA0BUVFBSooKCgw9sxTCf7burr6+Xn1/To1LNnz+qCCy5ocyMl\nJSWaMWOGfVK5re8ZhsGuJTeJjZU2b274iY45dEgaN06y/Z8GbjBwoHTZZVJ0tGQ7hgUd4Op3Z6tz\nCJK0YMECPfXUU/bXJ0+eVGZmZocOOy0rK1N4eLgkacuWLRo5cqTL2wK87ZJLpPnzG4IB7rFzp/Sr\nX0n19Q3BMH58w2PsWKlPH6ur6z6cBsKgQYO0ZMkS/fGPf9S///1vTZ8+XT//+c/b3MCcOXP0zjvv\n6LvvvlNkZKTuvvtuFRQUqKioSIZhKDo6WuvXr+/QLwF40wUXSL//vdVVdD2mKf3rX9Lu3dKePdLt\nt0uffSbFxPwQEOPHS1FRjCI8xekuI0m6/fbbdfz4cf3zn//UypUrNWvWLG/Uxi4jN2KXETqjM2ek\njz9uCInGB6MI51z97nQYCI0TyY0bXrVqlcaNG6cpU6bIMAxde+21Hau4LcURCG5DIKArOH8UsXs3\no4iWuD0QbrnlFvsZylLDeQPnvt64caMLZbazOALBbQgEdFWMIppzeyD4AgLBfQgEdBeMIggEOEEg\noDvrbqMIAgGtIhCAH3T1UQSBgFYRCEDrutIowmOBcPbsWeXm5qqkpES1tbX2xu7ywmmaBIL7EAhA\n+zSOIhpHEJ1pFOGxM5WvueYa9e3bV2PGjGnX5SoAoDMzDOlHP2p4XH99w7JzRxG5uT+cXd0YDpdd\n1nlGES1xOkKIj4/XZ5995q16mmCE4D6MEAD3M02ptLTpbiZfGEV4bIRw+eWXa9++fRo1apRLhQFA\nV2UY0n/9V8OjK4winI4QYmJi9NVXXyk6Olq9e/du+JBhaN++fZ4vjhGC2zBCAKxhxSjCY5PKLd3t\nTJKioqLa3Vh7EQjuQyAAvsPREU3uGkW4fZfR8ePHFRwcrODgYNcqAgC06MILpQkTGh5S81GEVVd6\ndThCmD59urZt26aoqKgm1zCSGtLnkBcuBs8IwX0YIQCdS0dGEZyYhlYRCEDn1p65CD8/AgGtIBCA\nrqelUYRpSuXlHjrsFADgm1qai5g4USovd217fu4rDQBgJcOQevRw/fNtCoR3333XfkOcY8eOqbi4\n2PUWAQA+yWkg5OTk6Pe//73uu+8+SVJ1dbVuvPFGjxcGAPAup4GwZcsWbd26VQEBAZKkQYMG6cSJ\nEx4vDADgXU4DoXfv3vLz+2G1U6dOebQgAIA1nAbC7NmztWjRIlVVVenPf/6zJk2apAULFnijNgCA\nFzk97PT222/XG2+8oaCgIH355ZdatWqV0tPTvVEbAMCLnAZCcXGxUlJSlJGRIUk6c+aMSkpKvHJx\nOwCA9zjdZTRr1iz1OOfAVj8/P82aNcujRQEAvM9pINTV1alXr172171791ZNTY1HiwIAeJ/TQLj4\n4ou1detW++utW7fq4osv9mhRAADvcxoITzzxhFavXq3IyEhFRkZqzZo1Wr9+fZsbmDdvnkJDQzVy\n5Ej7ssrKSqWnp2vYsGHKyMhQVVWVa9UDANym1UCoq6vTE088oQ8++ED79+/X/v37tXv3bg0ZMqTN\nDcydO1f5+flNlq1Zs0bp6en68ssvNWnSJK1Zs8a16gEAbtNqIPTo0UPvvfeeTNNUUFCQgoKC2t1A\nSkqK+vXr12RZXl6esrOzJUnZ2dl65ZVX2r1dAIB7OT3sNDExUddcc41mz56tPrZb8xiGoWuvvdbl\nRisqKhQaGipJCg0NVUVFhcvbAgC4h9NAOHv2rPr3768dO3Y0Wd6RQDiXYRjNbtF5rpycHPvz1NRU\npaamuqVdAOgqCgoKVFBQIEnqyN2NnQbC008/7frWHQgNDVV5ebnCwsJUVlamkJAQh+ueGwgAgObO\n/c/ye+9JxcV3u7Qdp0cZlZaW6ic/+YkGDhyogQMHKisrS4cPH3apsUaZmZl65plnJEnPPPOMZs6c\n2aHtAQA6zmkgzJ07V5mZmTp69KiOHj2qGTNmaO7cuW1uYM6cObr88st14MABRUZGauPGjVq5cqW2\nb9+uYcOGaceOHVq5cmWHfgkAQMcZppM7MSckJOiTTz5xuswTDMO1G0WjudhYafPmhp8Auq7Jk6W3\n3nLtu9PpCGHAgAH661//qrq6OtXW1mrTpk2cqQwAXZDTQHjqqaf00ksvKSwsTOHh4Xr55Zft91cG\nAHQdDo8y2rNnjy677DJFRUXp1Vdf9WZNAAALOBwhLF682P58/PjxXikGAGAdp7uMpIaT0wAAXZvD\nXUZ1dXWqrKyUaZr25+fq37+/x4sDAHiPw0A4fvy4xowZI0kyTdP+XGo4HPRQR86PBgD4HIeBUFJS\n4sUyAABWa9McAgCg6yMQAACSCAQAgE2rgVBbW6vhw4d7qxYAgIVaDYSePXtqxIgR+uabb7xVDwDA\nIk5vkFNZWam4uDhdeumlCggIkNRw2GleXp7HiwMAeI/TQFi1apU36gAAWMxpIHAPYwDoHpweZbR7\n926NGzdOgYGB8vf3l5+fn4KDg71RGwDAi5wGwq233qq//e1vGjp0qM6ePasNGzZoyZIl3qgNAOBF\nbToPYejQoaqrq1OPHj00d+5c5efne7ouAICXOZ1DCAgI0H/+8x8lJCTojjvuUFhYGPc5BoAuyOkI\n4dlnn1V9fb0ee+wx9enTR4cPH1Zubq43agMAeJHTEUJUVJROnz6t8vJy5eTkeKEkAIAVnI4Q8vLy\nlJSUpKuuukqSVFhYqMzMTI8XBgDwLqeBkJOTow8++ED9+vWTJCUlJXFzHADogpwGgr+/v/r27dv0\nQ35cJBUAuhqn3+xxcXF67rnnVFtbq4MHD2rp0qW6/PLLvVEbAMCLnAbCunXr9Pnnn6t3796aM2eO\ngoOD9cgjj3ijNgCAFxmmD59UYBgG5zy4SWystHlzw08AXdfkydJbb7n23en0sNMDBw7owQcfVElJ\niWprayU1fFHv2LGj/ZWeJyoqSsHBwerRo4f8/f21d+/eDm8TAOAap4Ewe/ZsLV68WAsWLFCPHj0k\nNQSCOxiGoYKCAvXv398t2wMAuM5pIPj7+2vx4sUeK4BdQgDgGxxOKldWVur777/XjBkz9Pjjj6us\nrEyVlZX2hzsYhqHJkydr7NixevLJJ92yTQCAaxyOEEaPHt1k19CDDz5of24YhltOTtu1a5fCw8N1\n7Ngxpaena8SIEUpJSWmyzrmXy0hNTeWGPQBwnoKCAhUUFEiSOvLV7DNHGd19990KDAzUihUr7Ms4\nysh9OMoI6B46cpSRw11GH374ocrKyuyvn3nmGWVmZuq2225zyy6j06dP68SJE5KkU6dO6Y033tDI\nkSM7vF0AgGscBsLChQvVu3dvSdLOnTu1cuVKZWdnKzg4WAsXLuxwwxUVFUpJSVFiYqKSk5N19dVX\nKyMjo8PbBQC4xuEcQn19vf1w0BdffFGLFi1SVlaWsrKylJCQ0OGGo6OjVVRU1OHtAADcw+EIoa6u\nTjU1NZKkN998U2lpafb3Gk9QAwB0HQ5HCHPmzNGVV16piy++WH369LEf/XPw4MFmVz8FAHR+DgPh\nt7/9rSZOnKjy8nJlZGTYL3ltmqbWrVvntQIBAN7R6pnK48ePb7Zs2LBhHisGAGAd7nQDAJBEIAAA\nbAgEAIAkAgEAYEMgAAAkEQgAABsCAQAgiUAAANgQCAAASQQCAMCGQAAASCIQAAA2BAIAQBKBAACw\nIRAAAJIIBACADYEAAJBEIAAAbAgEAIAkAgEAYEMgAAAkEQgAABsCAQAgiUAAANhYGgj5+fkaMWKE\nhg4dqvvvv9/KUgCg27MsEOrq6nTrrbcqPz9f+/fv1/PPP68vvvjCqnIAoNuzLBD27t2rIUOGKCoq\nSv7+/rrhhhu0detWq8oBgG7PskA4cuSIIiMj7a8jIiJ05MgRq8oBgG7PskAwDKNN623fLpmmh4sB\nAKinVQ0PGjRIpaWl9telpaWKiIhotl7GvYZ0r+1FlKRor5TX9Vwvxb1sdREAPKJYUknHN2OYpjX/\n/66trdXw4cP11ltv6ZJLLtGll16q559/XjExMT8UZxiqrze1fbv0hz9In3wiLVki/fd/SwMHWlF1\n5xUbK23e3PATQNdmGIZc+Wq3bJdRz5499dhjj+mqq65SbGysrr/++iZh0MgwpIwMKT+/YffRN99I\nw4ZJCxdK+/dbUDgAdFGWjRDawlHKffut9Kc/SX/8ozRmjPTLX0qTJzeEB1rGCAHoPjrdCKEjQkKk\n//3fhtFCVpa0bJmUkCBt3Cj95z9WVwcAnVOnDIRGF1wgzZ8vffaZ9OCD0osvSlFR0qpV0rFjVlcH\nAJ1Lpw6ERswzAEDHdYlAOFd8vPSXv0gHDkiDBklpadK0aZzPAADOdLlAaMQ8AwC0T5cNhEbMMwBA\n23T5QGjEPAMAtK7bBMK5mGcAgOa6ZSA0Yp4BAH7QrQOhEfMMAEAgNNHaPAM3cwPQ1REIDpw/z5Ca\n2jDP8OabzDMA6JoIBCfOn2f4xS+YZwDQNREIbcQ8A4CujkBoJ0fzDIsWMc8AoHMjEDrg3HmGSy5h\nngFA50YguAHzDAC6AgLBjZhnANCZEQgewDwDgM6IQPAw5hkAdBYEgpcwzwDA1xEIXsY8AwBfRSBY\nhHkGAL6GQPABzDMA8AUEgg9hngGAlQgEH8Q8AwArEAg+jHkGAN5EIHQSzDMA8DRLAiEnJ0cRERFK\nSkpSUlKS8vPzrSijU2KeAYCnWBIIhmFo+fLlKiwsVGFhoaZMmWJFGW5TUFDg9TZdmWfYu7fAmyW6\nzIr+bK/OUKNEne7WWep0lWW7jMwutJ/Dyn8k7Zln+PDDAktqbK/O8EfXGWqUqNPdOkudrrIsENat\nW6eEhATNnz9fVVVVVpXRpTDPAKAjPBYI6enpGjlyZLNHXl6eFi9erOLiYhUVFSk8PFwrVqzwVBnd\n0vnzDMuWSf/3fw2jCQBwxDAt3ndTUlKiGTNm6NNPP2323pAhQ/T1119bUBUAdF6DBw/WV1991e7P\n9fRALU6VlZUpPDxckrRlyxaNHDmyxfVc+YUAAK6xZIRw8803q6ioSIZhKDo6WuvXr1doaKi3ywAA\nnMPyXUYAAN/gE2cq5+fna8SIERo6dKjuv//+Fte57bbbNHToUCUkJKiwsNDLFTZwVmdBQYEuuugi\n+wl399xzj9drnDdvnkJDQx3uhpN8oy+d1ekLfVlaWqq0tDTFxcUpPj5ejz76aIvrWd2fbanTF/rz\n7NmzSk5OVmJiomJjY/Wb3/ymxfWs7s+21OkL/SlJdXV1SkpK0owZM1p8v919aVqstrbWHDx4sFlc\nXGxWV1ebCQkJ5v79+5uss23bNnPq1KmmaZrmnj17zOTkZJ+s8+233zZnzJjh9drOtXPnTvPjjz82\n4+PjW3zfF/rSNJ3X6Qt9WVZWZhYWFpqmaZonTpwwhw0b5pP/NttSpy/0p2ma5qlTp0zTNM2amhoz\nOTnZfPfdd5u87wv9aZrO6/SV/nzooYfMn/70py3W4kpfWj5C2Lt3r4YMGaKoqCj5+/vrhhtu0Nat\nW5usk5eXp+zsbElScnKyqqqqVFFR4XN1StafcJeSkqJ+/fo5fN8X+lJyXqdkfV+GhYUpMTFRkhQY\nGKiYmBgdPXq0yTq+0J9tqVOyvj8lqU+fPpKk6upq1dXVqX///k3e94X+bEudkvX9efjwYb3++uta\nsGBBi7W40peWB8KRI0cUGRlpfx0REaEjR444Xefw4cNeq9FRDefXaRiG3n//fSUkJGjatGnav3+/\nV2tsC1/oy7bwtb4sKSlRYWGhkpOTmyz3tf50VKev9Gd9fb0SExMVGhqqtLQ0xcbGNnnfV/rTWZ2+\n0J+//OUv9cADD8jPr+WvcVf60vJAMNp4ttT5CdjWz7lLW9obPXq0SktL9cknn2jp0qWaOXOmFypr\nP6v7si18qS9PnjypWbNmae3atQoMDGz2vq/0Z2t1+kp/+vn5qaioSIcPH9bOnTtbvBSEL/Snszqt\n7s/XXntNISEhSkpKanWk0t6+tDwQBg0apNLSUvvr0tJSRUREtLrO4cOHNWjQIK/V2FINLdUZFBRk\nH2pOnTpVNTU1qqys9GqdzvhCX7aFr/RlTU2NsrKydOONN7b4R+8r/emsTl/pz0YXXXSRpk+fro8+\n+qjJcl/pz0aO6rS6P99//33l5eUpOjpac+bM0Y4dO3TzzTc3WceVvrQ8EMaOHauDBw+qpKRE1dXV\nevHFF5WZmdlknczMTD377LOSpD179qhv375eP2+hLXVWVFTYE3nv3r0yTbPFfY9W8oW+bAtf6EvT\nNDV//nzFxsZq2bJlLa7jC/3Zljp9oT+/++47+3XLzpw5o+3btyspKanJOr7Qn22p0+r+XL16tUpL\nS1VcXKwXXnhBEydOtPdbI1f60pIzlZsU0LOnHnvsMV111VWqq6vT/PnzFRMTo/Xr10uSFi1apGnT\npun111/XkCFDFBAQoI0bN/pknZs3b9af/vQn9ezZU3369NELL7zg9TrnzJmjd955R999950iIyN1\n9913q6amxl6jL/RlW+r0hb7ctWuXNm3apFGjRtm/EFavXq1//etf9jp9oT/bUqcv9GdZWZmys7NV\nX1+v+vp63XTTTZo0aZLP/a23pU5f6M9zNe4K6mhfcmIaAECSD+wyAgD4BgIBACCJQAAA2BAIAABJ\nBAIAwIZAAABIIhDQCbV0+Qh3euSRR3TmzBm3t/fqq686vLw74As4DwGdTlBQkE6cOOGx7UdHR+uj\njz7SgAEDvNIe4CsYIaBL+PrrrzV16lSNHTtWP/7xj3XgwAFJ0i233KJf/OIXmjBhggYPHqzc3FxJ\nDVezXLJkiWJiYpSRkaHp06crNzdX69at09GjR5WWlqZJkybZt3/nnXcqMTFR48eP17ffftus/WXL\nlmnVqlWSpH/84x+68sorm63z9NNPa+nSpa3Wda6SkhKNGDFCc+fO1fDhw/Wzn/1Mb7zxhiZMmKBh\nw4bpww8/7HjHAedy9cYMgFUCAwObLZs4caJ58OBB0zQbbgYyceJE0zRNMzs727zuuutM0zTN/fv3\nm0OGDDFN0zRffvllc9q0aaZpmmZ5ebnZr18/Mzc31zRN04yKijK///57+7YNwzBfe+010zRN8447\n7jDvueeeZu2fPn3ajIuLM3fs2GEOHz7cPHToULN1nn76afPWW29tta5zFRcXmz179jQ/++wzs76+\n3hwzZow5b9480zRNc+vWrebMmTOd9hXQHpZfywjoqJMnT2r37t2aPXu2fVl1dbWkhmu8NF79MyYm\nxn6DkPfee0/XXXedJNmvee9Ir169NH36dEnSmDFjtH379mbrXHjhhXryySeVkpKitWvXKjo6utWa\nHdV1vujoaMXFxUmS4uLiNHnyZElSfHy8SkpKWm0DaC8CAZ1efX29+vbt6/Cesb169bI/N21TZoZh\nNLlWvNnKVJq/v7/9uZ+fn2pra1tcb9++fRo4cGCzGyc50lJd5+vdu3eTths/01odgKuYQ0CnFxwc\nrOjoaG3evFlSw5frvn37Wv3MhAkTlJubK9M0VVFRoXfeecf+XlBQkI4fP96uGr755hv94Q9/UGFh\nof7+979r7969zdZpLXQAX0AgoNM5ffq0IiMj7Y9HHnlEzz33nDZs2KDExETFx8crLy/Pvv65d4lq\nfJ6VlaWIiAjFxsbqpptu0ujRo3XRRRdJkhYuXKgpU6bYJ5XP//z5d50yTVMLFizQQw89pLCwMG3Y\nsEELFiyw77Zy9FlHz8//jKPXvninO3RuHHaKbuvUqVMKCAjQ999/r+TkZL3//vsKCQmxuizAMswh\noNu6+uqrVVVVperqat11112EAbo9RggAAEnMIQAAbAgEAIAkAgEAYEMgAAAkEQgAABsCAQAgSfp/\np8METwRPdJcAAAAASUVORK5CYII=\n",
       "text": [
        "<matplotlib.figure.Figure at 0x5462a10>"
       ]
      },
      {
       "metadata": {},
       "output_type": "display_data",
       "png": "iVBORw0KGgoAAAANSUhEUgAAAYwAAAEPCAYAAABRHfM8AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XtU1HX+x/HnIGgpeEllyBltXFEBsUBNK1NRAe+3UkxM\nSLM6689fVr9dtW23dC+CW7ubtnnadQW1XEVzFWyL1JJSs/C62mIhJgrDxVJJ8BIC398fXxlvwAww\nw3cu78c5nGBmvjMvZt1587nrFEVREEIIIazw0jqAEEII1yAFQwghhE2kYAghhLCJFAwhhBA2kYIh\nhBDCJlIwhBBC2ESzgvHtt98SHh5u+WrTpg3Lly/n/PnzREVF0aNHD6KjoykpKbFck5CQQPfu3QkK\nCmL79u1aRRdCCI+kc4Z1GFVVVRgMBjIzM3nrrbfo0KED8+fPZ+nSpVy4cIHExESysrKIjY1l//79\nmM1mIiMjyc7OxstLGklCCNEUnOLTdufOnQQGBtK5c2fS0tKIj48HID4+nq1btwKQmprKtGnT8PHx\nwWQyERgYSGZmppaxhRDCozhFwdiwYQPTpk0DoLi4GL1eD4Ber6e4uBiAgoICjEaj5Rqj0YjZbG76\nsEII4aE0Lxjl5eVs27aNKVOm3HGfTqdDp9PVem1d9wkhhLAvb60DfPTRR/Tt25eOHTsCaquiqKiI\ngIAACgsL8ff3B8BgMJCXl2e5Lj8/H4PBcMfzBQYGcvLkyaYJL4QQbqJbt27k5OTU+RjNWxjr16+3\ndEcBjB8/njVr1gCwZs0aJk6caLl9w4YNlJeXc+rUKU6cOEH//v3veL6TJ0+iKIp8KQqvvfaa5hmc\n5UveC3kv5L2o+8uWP7Q1bWFcunSJnTt3snLlSsttCxcuJCYmhlWrVmEymdi4cSMAISEhxMTEEBIS\ngre3NytWrJAuKSGEaEKaFoxWrVrxww8/3HLbPffcw86dO2t8/K9+9St+9atfNUU0IYQQt9G8S0o4\nTkREhNYRnIa8FzfIe3GDvBf14xQL9+xJp9PhZr+SEEI4nC2fndLCEEIIYRMpGEIIIWwiBUMIIYRN\npGAIIYSwiRQMIYQQNpGCIYQQwiZSMIQQQthECoYQQgibSMEQQghhEykYQgghbCIFQwghhE2kYAgh\nhLCJFAwhhBA2kYIhhBDCJlIwhBBC2EQKhhBCCJtIwRBCCGETTQtGSUkJkydPJjg4mJCQEL766ivO\nnz9PVFQUPXr0IDo6mpKSEsvjExIS6N69O0FBQWzfvl3D5EII4Xk0LRjz5s1j9OjRHD9+nKNHjxIU\nFERiYiJRUVFkZ2czfPhwEhMTAcjKyiIlJYWsrCzS09OZM2cOVVVVWsYXQgiPolnB+PHHH9m9ezez\nZs0CwNvbmzZt2pCWlkZ8fDwA8fHxbN26FYDU1FSmTZuGj48PJpOJwMBAMjMztYovhEuaPBkOHtQ6\nhXBVmhWMU6dO0bFjR2bOnEmfPn145plnuHTpEsXFxej1egD0ej3FxcUAFBQUYDQaLdcbjUbMZrMm\n2YVwRceOwebNsHKl1kmEq9KsYFRUVHDo0CHmzJnDoUOHaNWqlaX7qZpOp0On09X6HHXdJ4S4VXIy\nzJgBmzbB1atapxGuyFurFzYajRiNRh588EEAJk+eTEJCAgEBARQVFREQEEBhYSH+/v4AGAwG8vLy\nLNfn5+djMBhqfO5FixZZvo+IiCAiIsJhv4cQrqC8HN57D774AvLz4YMP1O4p4bkyMjLIyMio1zU6\nRVEUx8SxbvDgwfzjH/+gR48eLFq0iMuXLwPQvn17FixYQGJiIiUlJSQmJpKVlUVsbCyZmZmYzWYi\nIyPJycm5o5Wh0+nQ8FcSwin961+wbBl89hmsXg1btkBqqtaphDOx5bNT04Lxn//8h9mzZ1NeXk63\nbt1ITk6msrKSmJgYzpw5g8lkYuPGjbRt2xaAJUuWkJSUhLe3N8uWLWPEiBF3PKcUDCHuNG6c2qKI\nj4fSUjAaIScHOnbUOplwFk5fMBxBCoYQtyoogF691K6oVq3U26ZPh4cfhrlztc0mnIctn52y0lsI\nN/fuu/D44zeKBaiD32vXapdJuCYpGEK4MUVRZ0ddX+5kERkJeXnwzTfa5BKuSQqGEG5s3z71vw8/\nfOvt3t4QG6u2PoSwlRQMIdxYUhLMnAk1LVmKi1On2soOO8JWUjCEcFOXLqkru+Piar7/gQegTRv4\n/POmzSVclxQMIdzU++/DwIFw7721PyYuTrqlhO1kWq0QbmrIEJg3Dx57rPbHVE+5NZuhZcumyyac\nj0yrFcJD5eTA8eMwdmzdj+vUCfr3h7S0psklXJsUDCHc0OrV6uK85s2tPzYuTtZkCNtIl5QQbqay\nEu67Dz76CHr3tv74S5fUrUKOH4eAAMfnE85JuqSE8EA7d6oD3bYUC1BXgE+YAOvXOzaXcH1SMIRw\nM9VrL+pjxgyZLSWsky4pIdzI+fPws5/BqVPQrp3t11VWgsmkdmOFhjosnnBi0iUlhIf55z9h9Oj6\nFQuAZs3UQXJpZYi6SMEQwo00pDuq2owZ6lYhlZX2zSTchxQMIdzEkSNw7hwMG9aw63v1UmdJ7dpl\n31zCfUjBEMJNJCfDU0+p3UsNJWsyRF1k0FsIN/DTT+paisxM6Nq14c9z9iz06KGezufra798wvnZ\nZdB727ZthIeH065dO/z8/PDz86N169Z2CymEaLxt29R1F40pFgD+/vDoo7Bli31yCfditWC88MIL\nrFmzhnPnzlFaWkppaSkXL160y4ubTCbuv/9+wsPD6d+/PwDnz58nKiqKHj16EB0dTUlJieXxCQkJ\ndO/enaCgILZv326XDEK4g6SkO0/Vayg5vlXUxmqX1JAhQ/j0009p1piO0Vp07dqVgwcPcs8991hu\nmz9/Ph06dGD+/PksXbqUCxcukJiYSFZWFrGxsezfvx+z2UxkZCTZ2dl4ed1a86RLSngas1ltXeTn\n22fH2StXwGCAY8fU/wrPYMtnp7e1J1m6dCmjRo1i6NChNL++k5lOp+Oll16yS8jbA6alpfHZZ58B\nEB8fT0REBImJiaSmpjJt2jR8fHwwmUwEBgaSmZnJQw89ZJccQriqtWthyhT7bU9+993qlujr1sH8\n+fZ5TuEerHZJ/eY3v8HX15erV69SVlZGWVkZpaWldnlxnU5HZGQk/fr1Y+XKlQAUFxej1+sB0Ov1\nFBcXA1BQUIDRaLRcazQaMZvNdskhhKtSFPt2R1Wrni0ljXVxM6stjMLCQnbs2OGQF9+7dy/33nsv\n33//PVFRUQQFBd1yv06nQ1fTYcQ33V+TRYsWWb6PiIggIiLCHnGFcDp79oCPj3qmhT09+iiUlalr\nO8LD7fvcwjlkZGSQkZFRr2usFozRo0fz8ccfM2LEiIbmqtW918+O7NixI5MmTSIzMxO9Xk9RUREB\nAQEUFhbi7+8PgMFgIC8vz3Jtfn4+hlo6WG8uGEK4s+RktXVRx99VDeLldWNDQikY7un2P6YXL15s\n9Rqrg96+vr5cvnyZ5s2b4+Pjo16k0zV6ptTly5eprKzEz8+PS5cuER0dzWuvvcbOnTtp3749CxYs\nIDExkZKSklsGvTMzMy2D3jk5OXe0MmTQW3iK0lLo0gW++Qau9+LaVXY2DB6sDqZ7W/3TUrg6uwx6\nl5WV2S3QzYqLi5k0aRIAFRUVTJ8+nejoaPr160dMTAyrVq3CZDKxceNGAEJCQoiJiSEkJARvb29W\nrFhRZ3eVEO5u0yb1A90RxQLUBXwmE+zYAaNGOeY1hGuRld5CuKhBg+AXv1APP3KUt99Wx0nkcCX3\nZ8tnZ4MKRnh4OIcPH25wMEeSgiE8QXV3UV6eOujtKD/8AIGBcOYMyAYP7s1h52E4a7EQwlMkJ8OT\nTzq2WAB06ABDh8L77zv2dYRrkN1qhXAxFRXqGomGnntRX3J8q6hWa5dU1zp2MdPpdHz33XcOC9UY\n0iUl3N2HH8Jvfwtfftk0r/fTT+oWIQcPwn33Nc1riqbXqFlS+/fvv+WJqqqqSElJ4Y033qBPnz72\nSymEqJfGnKrXEC1aqFuPrFsHv/pV072ucD5WB72rqqpYu3Ytr7/+OmFhYbzyyiuEhIQ0Vb56kxaG\ncGfVg9CnT0ObNk33uvv2qUXq+HH7LxIUzqFRg97l5eW88847BAcHs3v3blJTU1m3bp1TFwsh3N26\ndTBuXNMWC4CHHlLP+j5woGlfVziXWlsYRqMRb29v5s2bR5cuXSyL5BRFQafT8dhjjzVpUFtJC0O4\nK0WBsDD4y18afm53Y/z2t/D99/DWW03/2sLxGrUO46mnnrI8SU2Sk5Mbl85BpGAId3XoEDz+OJw8\nqe711NS++05taeTnw/WTDoQbscvCvatXr3LXXXfdctu5c+do37594xM6gBQM4a7mzoWOHeG117TL\nMGgQ/PKXMH68dhmEY9hl4d5jjz3GtWvXLD8XFhYSFRXV+HRCCJtdvapuz3G94a8ZWZPh2awWjEmT\nJhETE0NlZSW5ubmMGDGCxMTEpsgmhLguNRX69NF+HcSUKbB9O1y4oG0OoQ2ru9U+88wz/PTTT0yY\nMIHTp0/zzjvvMHDgwKbIJoS4rqnXXtSmXTuIjoaNG+G557ROI5parWMYf/rTn9QHXO/XWrt2Lb17\n9yY8PNyuZ3rbm4xhCHdz5ox6iFF+vnretta2bYOlS9VdbIX7aNRK79LS0ltmSE2aNAmdTuew8zGE\nEDVbuxamTnWOYgEwciQ8/bQ6W6tbN63TiKYk52EI4cSqqqB7d9iwAR58UOs0Nzz/PLRvr+2MLWFf\nDtveXAjRNHbvhpYtoV8/rZPcqnq2lPxt5lmkYAjhxJKSYNYs59u/qV8/9SyOffu0TiKaknRJCeGk\nLl6ELl3gxAl1wZ6zWbJEHZB/5x2tkwh7sMtK77Nnz7Jy5Upyc3OpqKiwPHFSUpJdQlZWVtKvXz+M\nRiPbtm3j/PnzTJ06ldOnT2Mymdi4cSNt27YFICEhgaSkJJo1a8by5cuJjo6+8xeSgiHcxD/+oZ59\n8a9/aZ2kZtWztwoK1C3QhWuzyxjGhAkTuHjxIlFRUYwZM8byZS/Lli0jJCTEMiMrMTGRqKgosrOz\nGT58uGWRYFZWFikpKWRlZZGens6cOXOoqqqyWw4hnE11d5Sz6tIF7r8fPvhA6ySiyShWPPDAA9Ye\n0mB5eXnK8OHDlU8//VQZO3asoiiK0rNnT6WoqEhRFEUpLCxUevbsqSiKoixZskRJTEy0XDtixAhl\n3759dzynDb+SEE4vK0tRAgIU5do1rZPULSlJUSZM0DqFsAdbPjuttjDGjh3Lv//9b4cUqxdffJHX\nX38dr5u23iwuLkav1wOg1+spLi4GoKCgAKPRaHmc0WjEbDY7JJcQWlu9GuLiwNvqXgzaevxx2LVL\nPdhJuD+r/xzffPNNlixZQvPmzfHx8QHUvq6LFy826oU/+OAD/P39CQ8PJyMjo8bH6HS6WrdXr76/\nJosWLbJ8HxERQURERCOSCtG0rl1TF+vt2qV1Eutat4YxYyAlBf7nf7ROI+ojIyOj1s/e2lgtGI5a\n2f3FF1+QlpbGhx9+yNWrV7l48SIzZsxAr9dTVFREQEAAhYWF+Pv7A2AwGMjLy7Ncn5+fj8FgqPG5\nby4YQria9HTo2hWCgrROYpu4OHUBnxQM13L7H9OLFy+2ek2ts6SOHz9OcHAwhw4dqvHCPn36NCxl\nDT777DPeeOMNtm3bxvz582nfvj0LFiwgMTGRkpISEhMTycrKIjY2lszMTMxmM5GRkeTk5NzRypBZ\nUsLVPfYYjB4Ns2drncQ2FRXQuTNkZEDPnlqnEQ3VqL2k/vznP7Ny5UpeeumlGrt+dtm5vVz9GgsX\nLiQmJoZVq1ZZptUChISEEBMTQ0hICN7e3qxYsaLO7iohXNHZs/Dpp+oYhqvw9obYWHXl9+9/r3Ua\n4UiycE8IJ/LnP8N//gNr1midpH6OHIGJE9VjXLU4PlY0nuwlJYQLURTnX3tRmwceUAfAd+/WOolw\nJCkYQjiJAwfUo1gHD9Y6Sf3pdHJ8qyeQLikhnMTPfw4GA/z611onaZiCAggNBbPZec7uELazS5fU\n8OHDbbpNCNFwV66ox57Gx2udpOE6dVJ3sU1L0zqJcJRaZ0lduXKFy5cv8/3333P+/HnL7RcvXpQV\n1kLY2ZYt6gFJnTtrnaRx4uJunBAo3E+tBeNvf/sby5Yto6CggL59+1pu9/PzY+7cuU0STghPkZQE\nzzyjdYrGmzQJ5s6F4mK4vsOPcCNWxzCWL1/O888/31R5Gk3GMISryc1Vu3Ly8+Guu7RO03jx8eq2\n5y+8oHUSUR92OQ8D1G08bj4PAyAuLq7xCR1ACoZwNYsXq5v3vfWW1knsY+dOmD8fatkkQjgpuxSM\nJ598ku+++46wsDCaNWtmuf0tJ/3XLQVDuJKqKvjZz9RDkuy4246mKivhvvvUPbFCQ7VOI2zVqK1B\nqh08eJCsrCzZhkMIB8jIgLZt1S4cd9GsGUyfrq7JWLpU6zTCnqxOqw0NDaWwsLApsgjhcZKSYOZM\ndeGbO5kxA9atU1sbwn1YbWF8//33hISE0L9/f1pcP7hXp9ORJpOthWiUkhL1eNM339Q6if2FhoK/\nv3qmR2Sk1mmEvVgtGNVnS9zcvyXdU0I0XkoKREVBhw5aJ3GMuDi1W0oKhvuwaZZUbm4uOTk5REZG\ncvnyZSoqKmjdunVT5Ks3GfQWrmLAAPXgodGjtU7iGMXF6vkYZjO0aqV1GmGNXbYG+fvf/86UKVN4\n7rnnAPWku0mTJtknoRAe6r//VdddREdrncRx9HoYOFBdxS7cg9WC8fbbb7Nnzx5Li6JHjx6cPXvW\n4cGEcGfJyeoCN2+rncKubcYMdasQ4R6sFowWLVpYBrsBKioqZAxDiEa4dk3t23/qKa2TON6ECeq2\n7bL9nHuwWjCGDBnCH/7wBy5fvsyOHTuYMmUK48aNa4psQrilDz+EHj3UL3d3993qGeX//KfWSYQ9\nWB30rqysZNWqVWzfvh2AESNGMHv2bKdtZcigt3B2Eyaox5nOnKl1kqbx2WfqhoRHj7rfehN3Yre9\npBzh6tWrDBkyhJ9++ony8nImTJhAQkIC58+fZ+rUqZw+fRqTycTGjRtp27YtAAkJCSQlJdGsWTOW\nL19OdA0jhlIwhDMrKoLgYMjLA19frdM0jertT7ZuhbAwrdOI2thlltS2bdsIDw+nXbt2+Pn54efn\nZ5cptXfddRe7du3iyJEjHD16lF27drFnzx4SExOJiooiOzub4cOHk5iYCEBWVhYpKSlkZWWRnp7O\nnDlzqKqqanQOIZrSe++pW4B7SrEA8PKCJ5+U41vdgdWC8cILL7BmzRrOnTtHaWkppaWlXLx40S4v\n3rJlSwDKy8uprKykXbt2pKWlEX/92LH4+Hi2bt0KQGpqKtOmTcPHxweTyURgYCCZmZl2ySFEU1AU\ndSuQWbO0TtL0ZsxQxzFu2vBauCCrBcNoNNKrVy+8vKw+tN6qqqoICwtDr9czdOhQevXqRXFxMfrr\nJ6/o9XqKi4sBKCgowGg03pJLTv4TruSrr9QPzIEDtU7S9Hr2hC5d1K3PheuyOgt86dKljBo1iqFD\nh9K8eXNA7et66aWXGv3iXl5eHDlyhB9//JERI0awa9euW+7X6XR1Dq7Xdl/1diYAERERRERENDqr\nEI2VnOyeGw3aqvr41pEjtU4iADIyMsjIyKjXNVYLxm9+8xv8/Py4evUq5eXlDc1WpzZt2jBmzBgO\nHjyIXq+nqKiIgIAACgsL8ff3B8BgMJCXl2e5Jj8/H4PBUOPz3VwwhHAGly/Dpk1w7JjWSbQzdSq8\n8gpcvAhOurOQR7n9j+nFixdbvcbqLKnQ0FC+/vrrRoe73Q8//IC3tzdt27blypUrjBgxgtdee42P\nP/6Y9u3bs2DBAhITEykpKSExMZGsrCxiY2PJzMzEbDYTGRlJTk7OHa0MmSUlnNG778L69eoaDE82\ncaI6rdhTphS7ErscoDR69Gg+/vhjRowYYbdgAIWFhcTHx1NVVUVVVRUzZsxg+PDhhIeHExMTw6pV\nqyzTagFCQkKIiYkhJCQEb29vVqxY4bRrQYS4XXIyzJmjdQrtzZgBb78tBcNVWW1h+Pr6cvnyZZo3\nb46Pj496kU5nt5lS9iYtDOFsvvtO3Zk2Px9u2mXHI/30E3TqpJ73fd99WqcRN7PLOoyysjKqqqq4\nevWq3afVCuEJVq+G2FgpFqC+B1OmqKfxCddj00rv1NRUPv/8c3Q6HUOGDHHqvaSkhSGcSWUldO0K\n27bBAw9oncY5fPEFPP00ZGV57owxZ2SXFsbChQtZvnw5vXr1Ijg4mOXLl/Pyyy/bLaQQ7uzTT6Fj\nRykWN3v4YXXH3gMHtE4i6stqC6N3794cOXKEZs2aAepmhGFhYRxz0vmB0sIQzmTaNHWh3ty5Widx\nLosXw7lzsHy51klENbu0MHQ6HSUlJZafS0pKZHaSEDa4cAE++kgdvxC3evJJ2LBBbWkI12F1Wu3L\nL79Mnz59LAs8PvvsM8uGgEKI2q1fr65qvucerZM4n27d1PNA0tPBiYdExW1sGvQuKChg//796HQ6\n+vfvT0BAQFNkaxDpkhLOol8/+MMfwM5LmNzG3/6m7i21aZPWSQQ08jyMQ4cO3fJz9cOqu6P69Olj\nj4x2JwVDOIOjR2HMGMjNhevDf+I2Fy6AyaS+R+3aaZ1GNKpgeHl5ERoaSvv27Wu88PaNAp2FFAzh\nDF58UT3z4ne/0zqJc5s8GaKj4dlntU4iGlUw3nzzTTZt2kTbtm2ZOnUqkyZNws/PzyFB7UkKhtBa\neTkYjbBvn9pXL2qXlgavvw67d2udRNjliNaTJ0+SkpLC1q1bue+++3jllVcIc+JzFqVgCK3961/q\ndNF67hztkcrLwWBQzwr52c+0TuPZ7DKttlu3bkyYMIHo6Gj279/Pt99+a7eAQrgjTz1VryGaN4cn\nnlCPrhXOr9YWxsmTJ9mwYQOpqal06dKFqVOnMnbsWO6+++6mzlgv0sIQWioogNBQyMuDVq20TuMa\n9u9XFzieOCFbhWip0YPevXv3ZuLEibS+ftpJ9RPa68Q9R5CCIbS0dCnk5MDKlVoncR2KAsHB6hbw\nDz+sdRrP1ajzMF599VXLFNqysjL7JhPCDSmK2h2VnKx1Etei0904vlUKhnOzaeGeK5EWhtDKF1+o\nYxfHj0vXSn2dPg19+4LZLNvAa8Uug95CCNtUD3ZLsai/++6D3r3h3//WOomoi7QwhLCDS5fUtRdZ\nWXDvvVqncU1JSeq5IVu2aJ3EM0kLQ4gm8v778OijUiwaY/Jk2LVL3fZcOCeru9X+6U9/uqXy6HQ6\n2rRpQ9++fRu1gC8vL4+4uDjOnj2LTqfj2Wef5fnnn+f8+fNMnTqV06dPYzKZ2LhxI23btgUgISGB\npKQkmjVrxvLly4mOjm7w6wthT0lJ8MILWqdwba1bw6hRkJICc+ZonUbUxGqXVGxsLAcOHGDcuHEo\nisK///1vevfuzenTp5k8eTILFixo0AsXFRVRVFREWFgYZWVl9O3bl61bt5KcnEyHDh2YP38+S5cu\n5cKFCyQmJpKVlUVsbCz79+/HbDYTGRlJdnY2Xl63NpKkS0o0tZwceOQRyM9XF6KJhvvoI/VwpS+/\n1DqJ57Hps1Ox4tFHH1VKS0stP5eWliqDBg1SLl26pAQFBVm73GYTJkxQduzYofTs2VMpKipSFEVR\nCgsLlZ49eyqKoihLlixREhMTLY8fMWKEsm/fvjuex4ZfSQi7euUVRXnxRa1TuIdr1xRFr1eUb77R\nOonnseWz0+oYxvfff0/zm/5s8vHxobi4mJYtW3LXXXc1sqapcnNzOXz4MAMGDKC4uBi9Xg+AXq+n\nuLgYUM/kMBqNlmuMRiNms9kury9EQ1VWwurVshWIvXh7qycUylYhzsnqGMb06dMZMGAAEydORFEU\ntm3bRmxsLJcuXSIkJKTRAcrKynj88cdZtmzZHbvh6nS6Oo+Dre2+RYsWWb6PiIiwnBYohL3t2KEO\ndIeGap3EfcyYAZMmqV1TXjItx2EyMjLIqOcOmTZNq92/fz979+5Fp9MxcOBA+vXr19CMt7h27Rpj\nx45l1KhRvHB9xDAoKIiMjAwCAgIoLCxk6NChfPPNN5ZjYRcuXAjAyJEjWbx4MQMGDLj1F5IxDNGE\npk6FiAj4+c+1TuI+FAXuvx/efhsGD9Y6jeewy/bmAJWVlRQVFVFRUWH5q75Lly6NCqcoCvHx8bRv\n356//OUvltvnz59P+/btWbBgAYmJiZSUlNwy6J2ZmWkZ9M7JybmjlSEFQzSVc+fU8y5yc+H6RD5h\nJ3/8I2Rnwz/+oXUSz2GXgvHWW2+xePFi/P39aXbTWZPHjh1rVLg9e/YwePBg7r//fsuHfkJCAv37\n9ycmJoYzZ87cMa12yZIlJCUl4e3tzbJlyxhRw2HJUjBEU3nrLfWQpH/+U+sk7sdsVld+m83g5Btk\nuw27FIxu3bqRmZlZ61GtzkYKhmgqffqofwlHRmqdxD1FRcHs2Wq3n3A8u6z07tKli2V7cyGE6vBh\ntUtq2DCtk7ivuDh4912tU4ibWW1hzJo1i+zsbMaMGWOZXivnYQhP9/zz0K6dOpNHOEZZmbo/17ff\nwvWZ9sKBGnUeRrUuXbrQpUsXysvLKS8vtxygJISn+uknWL8eMjO1TuLefH1h/HjYsAHmzdM6jQDZ\nrVaIetu0Cd55Bz75ROsk7m/HDli4EA4e1DqJ+2tUC2PevHksW7aMcePG1fjEaWlpjU8ohAtKSoKZ\nM7VO4RmGDYOiIvjvf6FXL63TiFpbGAcOHKBfv361rgR01tXT0sIQjpSfry4qy8+Hli21TuMZ5s9X\nV3xfX7srHMRuC/dciRQM4UhLlsCZM2qXlGgaX3+tbnuemws3LQUTdtaoLqnevXvX+cRHjx5teDIh\nXJCiQHKybIzX1EJDoWNHyMiA4cO1TuPZai0Y27ZtA2DFihUAzJgxA0VRWLduXdMkE8LJ7NmjnnfR\nv7/WSTwfqZjLAAASz0lEQVTPjBnqmgwpGNqy2iUVFhbGkSNHbrktPDycw4cPOzRYQ0mXlHCUmTPV\nv3b/7/+0TuJ5ioogOFgdO2rVSus07skuK70VRWHPnj2Wn/fu3SsfyMLjlJbC1q3w5JNaJ/FMAQHw\n8MPq/wZCO1YX7iUlJTFz5kx+/PFHANq2bUtycrLDgwnhTDZtgiFDZMWxluLi1DGk6dO1TuK5bJ4l\nVV0w2rRp49BAjSVdUsIRHn1Und45frzWSTzXlSvQqZO6JqNTJ63TuB+7TKu9evUqmzdvJjc3l4qK\nCssTv/rqq/ZLakdSMIS9ZWerB/nk5YGPj9ZpPNvTT6tjGb/4hdZJ3I9dxjAmTJhAWloaPj4++Pr6\n4uvrSysZdRIeJDlZnaUjxUJ71bOlhDastjBCQ0P5+uuvmypPo0kLQ9hTRQXcd5+6p5EdjrAXjVRV\nBV27QloaPPCA1mnci11aGI888ogs0hMea/t26NxZioWz8PJSZ6qtXat1Es9ktYURHBxMTk4OXbt2\npUWLFupFTrzSW1oYwp4mT4boaHj2Wa2TiGrffANDh6pjSt5W53kKW9ll0Ds3N7fG200mU0NzOZQU\nDGEvP/wAgYFw+jQ4+eRAj9O/P/z2tzBypNZJ3IdduqRMJhN5eXns2rULk8lEq1at7PaBPGvWLPR6\n/S37Vp0/f56oqCh69OhBdHQ0JSUllvsSEhLo3r07QUFBbN++3S4ZhKjNunUwbpwUC2ckx7dqw2rB\nWLRoEX/84x9JSEgAoLy8nCfttNx15syZpKen33JbYmIiUVFRZGdnM3z4cBKv72mclZVFSkoKWVlZ\npKenM2fOHKqqquySQ4jbKQqsWgWzZmmdRNTkiSfggw/UFfii6VgtGFu2bCE1NdUyldZgMFBqp/+V\nBg0aRLt27W65LS0tjfj4eADi4+PZen0vgNTUVKZNm4aPjw8mk4nAwEAy5YxM4SCHDqkfRkOGaJ1E\n1KRDB4iIgM2btU7iWawWjBYtWuDldeNhly5dcmig4uJi9Nf3X9Dr9RQXFwNQUFCA0Wi0PM5oNGI2\nmx2aRXiu5GR1s0Evq/8PEVqZMUNmSzU1q3MMpkyZwnPPPUdJSQl///vfSUpKYvbs2U2RDZ1Oh06n\nq/P+mixatMjyfUREhNOeDiic09WrsGGDnCPt7MaOheeeUw+06tJF6zSuJyMjo9YTVWtjtWD88pe/\nZPv27fj5+ZGdnc3vfvc7oqKiGprRKr1eT1FREQEBARQWFuLv7w+oXWF5eXmWx+Xn52MwGGp8jpsL\nhhD1tXUrhIerC/aE87rrLnXa87p18PLLWqdxPbf/Mb148WKr19jU4I6OjuaNN95gwYIFREZGNjig\nLcaPH8+aNWsAWLNmDRMnTrTcvmHDBsrLyzl16hQnTpygv5xkIxwgOVkGu11F9WwpmUnfNGotGPv2\n7SMiIoLHHnuMw4cPExoaSu/evdHr9Xz00Ud2efFp06bxyCOP8O2339K5c2eSk5NZuHAhO3bsoEeP\nHnz66acsXLgQgJCQEGJiYggJCWHUqFGsWLGizu4qIRrizBk4cACu/50inNwjj8BPP0n3YVOpdeFe\n3759SUhI4Mcff+SZZ54hPT2dhx56iG+++YYnnnjijlP4nIUs3BON8bvfQWEhXD+ZWLiARYvgwgVY\ntkzrJK6tUSu9bz6aNTg4mOPHj1vukyNahTuqqoLu3SElBfr10zqNsNXJk+ppfGaz7CjcGI1a6X1z\nd89dd91lv1RCOKnPP1fPi+7bV+skoj66dVML/ccfa53E/dXawmjWrBktW7YE4MqVK9x9992W+65c\nuWI5TMnZSAtDNFRcnDo76sUXtU4i6utvf4NPPoGNG7VO4rrssvmgq5GCIRri4kV1Lv+JE9Cxo9Zp\nRH1duAAmk7pRZNu2WqdxTXbZfFAIT5CSAsOHS7FwVe3aQVQUbNqkdRL3JgVDCCApSd0KRLguOb7V\n8aRLSni848fV1sWZM3IgjysrLweDATIz1WNcRf1Il5QQNkhOVge8pVi4tubNYepUeO89rZO4L2lh\nCI927Zo62J2RAT17ap1GNFZmJkyfDtnZIBtB1I+0MISwIj0dfvYzKRbu4sEH1S3pv/xS6yTuSQqG\n8GhJSbLRoDvR6eT4VkeSLinhsc6eVVsWZ86An5/WaYS95OaqW7uYzdCihdZpXId0SQlRh/fegwkT\npFi4G5MJQkPhww+1TuJ+pGAIj6Qo0h3lzuT4VseQLinhkfbvh2nT1K1AZDaN+/nxR3X223ffQfv2\nWqdxDdIlJUQtqld2S7FwT23awKhR6pYvwn6khSE8zpUrYDTCf/6j/le4pw8/VA/E2rdP6ySuQVoY\nQtRgyxZ1vr4UC/cWHa12SWVna53EfUjBEB5HBrs9g7c3xMbKViH25HIFIz09naCgILp3787SpUu1\njiNcTG4uHDmiTqcV7q96B9uqKq2TuAeXKhiVlZXMnTuX9PR0srKyWL9+/S1njQthzZo16uwoWdDl\nGcLD1WN39+7VOol7cKn9OTMzMwkMDMRkMgHwxBNPkJqaSnBwsLbBbKAoUFmpflVVOf77qir15DGD\nAe69Vz4gQX1PkpPVMQzhGXS6G2syBg3SOo3rc6mCYTab6dy5s+Vno9HIV199dcfjZs5smg/l+nwP\n6qZozZqpX47+XqdTj60sKICiImjdGjp1Ur8Mhpq/9/dXr3VXu3apRTQ8XOskoilNnw733w/Ll8Pd\nd2udxjm98optj3OpgqGzcdL86lM3Pc4EOMlhKlXXv65p8No/XP86evONxde/DmkQSCuTQLdY6xCi\nyc2Dln/UOoSTOQXk1u8SlyoYBoOBvLw8y895eXkYa5gbqWTIOoyGKC9XWyMFBeqX2Xzn92azeoZE\ndavk5lbKza2VTp2gZUutf6MbSkrUPYZOnpSVv55o7Vr1vO9t27RO4pwCA+Ek1v8gd6mFexUVFfTs\n2ZNPPvmETp060b9/f9avX3/LGIYs3HO8sjIoLKy9oFTfdvfddXeBGQyg14OPj+Mzv/MOfPKJ+qEh\nPE9ZmbruJjtb7XoVtwoMhJMnrX92ulQLw9vbm7/+9a+MGDGCyspKnn76aZcY8HY3vr7Qvbv6VRtF\ngfPn7ywo//0vbN9+47bvv4cOHayPr3To0LhtPJKTYdGihl8vXJuvL4wbBxs2wPPPa53GdblUC8MW\n0sJwLRUV6rkU1lorZWXqbK+6WiudOtW8VfnXX8PIkXD6tHsP6ou67dgBL78MBw5oncT5uGULQ7gf\nb+8bH/p1uXJF7Qa7vZAcOXLjNrNZLQi3F5Jjx9RT2KRYeLZhw9R/Q1lZEBKidRrXJC0M4TYUBS5e\nvLO1UlwMv/iF7B0lYP589Q+HhAStkzgXW1sYUjCEEB7j2DEYPVrtnvRyqX0uHMvWgiFvmRDCY/Tu\nrU6gyMjQOolrkoIhhPAocnxrw0nBEEJ4lNhYSE2FS5e0TuJ6pGAIITxKQAA89BBs3ap1EtcjBUMI\n4XHi4tRzMkT9yCwpIYTHuXxZXaMzcmTjdhBwF2lpcOmSTKsVQogaHTgg531Xa94cpkyRgiGEEMIG\ntnx2yhiGEEIIm0jBEEIIYRMpGEIIIWwiBUMIIYRNpGAIIYSwiRQMIYQQNpGCIYQQwiaaFIxNmzbR\nq1cvmjVrxqFDh265LyEhge7duxMUFMT27dsttx88eJDevXvTvXt35s2b19SRhRDC42lSMHr37s2W\nLVsYPHjwLbdnZWWRkpJCVlYW6enpzJkzx7KQ5Oc//zmrVq3ixIkTnDhxgvT0dC2iu5QM2fTfQt6L\nG+S9uEHei/rRpGAEBQXRo0ePO25PTU1l2rRp+Pj4YDKZCAwM5KuvvqKwsJDS0lL69+8PQFxcHFtl\nq0mr5P8MN8h7cYO8FzfIe1E/TjWGUVBQgPGmg5eNRiNms/mO2w0GA2azWYuIQgjhsbwd9cRRUVEU\nFRXdcfuSJUsYN26co15WCCGEgzisYOzYsaPe1xgMBvLy8iw/5+fnYzQaMRgM5Ofn33K7wWCo8Tm6\ndeuGTvYrtli8eLHWEZyGvBc3yHtxg7wXqm7dull9jMMKhq1u3h1x/PjxxMbG8tJLL2E2mzlx4gT9\n+/dHp9PRunVrvvrqK/r378+7777L888/X+Pz5eTkNFV0IYTwKJqMYWzZsoXOnTvz5ZdfMmbMGEaN\nGgVASEgIMTExhISEMGrUKFasWGFpLaxYsYLZs2fTvXt3AgMDGTlypBbRhRDCY7ndeRhCCCEcw6lm\nSTVGeno6QUFBdO/enaVLl2odR1OzZs1Cr9fTu3dvraNoKi8vj6FDh9KrVy9CQ0NZvny51pE0c/Xq\nVQYMGEBYWBghISG8/PLLWkfSXGVlJeHh4R4/CcdkMnH//fcTHh5uWbpQG7doYVRWVtKzZ0927tyJ\nwWDgwQcfZP369QQHB2sdTRO7d+/G19eXuLg4jh07pnUczRQVFVFUVERYWBhlZWX07duXrVu3euy/\ni8uXL9OyZUsqKip49NFHeeONN3j00Ue1jqWZP//5zxw8eJDS0lLS0tK0jqOZrl27cvDgQe655x6r\nj3WLFkZmZiaBgYGYTCZ8fHx44oknSE1N1TqWZgYNGkS7du20jqG5gIAAwsLCAPD19SU4OJiCggKN\nU2mnZcuWAJSXl1NZWWnTB4S7ys/P58MPP2T27NlypDPY/B64RcEwm8107tzZ8nP1gj8hquXm5nL4\n8GEGDBigdRTNVFVVERYWhl6vZ+jQoYSEhGgdSTMvvvgir7/+Ol5ebvER2Cg6nY7IyEj69evHypUr\n63ysW7xbsu5C1KWsrIzJkyezbNkyfH19tY6jGS8vL44cOUJ+fj6ff/65x26L8cEHH+Dv7094eLi0\nLoC9e/dy+PBhPvroI95++212795d62PdomDcvuAvLy/vlq1EhOe6du0ajz/+OE8++SQTJ07UOo5T\naNOmDWPGjOHAgQNaR9HEF198QVpaGl27dmXatGl8+umnxMXFaR1LM/feey8AHTt2ZNKkSWRmZtb6\nWLcoGP369ePEiRPk5uZSXl5OSkoK48eP1zqW0JiiKDz99NOEhITwwgsvaB1HUz/88AMlJSUAXLly\nhR07dhAeHq5xKm0sWbKEvLw8Tp06xYYNGxg2bBhr167VOpYmLl++TGlpKQCXLl1i+/btdc6udIuC\n4e3tzV//+ldGjBhBSEgIU6dO9diZMADTpk3jkUceITs7m86dO5OcnKx1JE3s3buX9957j127dhEe\nHk54eLjHbotfWFjIsGHDCAsLY8CAAYwbN47hw4drHcspeHKXdnFxMYMGDbL8uxg7dizR0dG1Pt4t\nptUKIYRwPLdoYQghhHA8KRhCCCFsIgVDCCGETaRgCCGEsIkUDCGEEDaRgiGEEMImUjCEx3L0NiFv\nvvkmV65cqdfrbdu2zeO35xfOS9ZhCI/l5+dnWeXqCF27duXAgQO0b9++SV5PCEeTFoYQNzl58iSj\nRo2iX79+DB48mG+//RaAp556innz5jFw4EC6devG5s2bAXUH2Dlz5hAcHEx0dDRjxoxh8+bNvPXW\nWxQUFDB06NBbVlT/+te/JiwsjIcffpizZ8/e8fqrV6/mf//3f+t8zZvl5uYSFBTEzJkz6dmzJ9On\nT2f79u0MHDiQHj16sH//fke8TcJTKUJ4KF9f3ztuGzZsmHLixAlFURTlyy+/VIYNG6YoiqLEx8cr\nMTExiqIoSlZWlhIYGKgoiqJs2rRJGT16tKIoilJUVKS0a9dO2bx5s6IoimIymZRz585Znlun0ykf\nfPCBoiiKMn/+fOX3v//9Ha+/evVqZe7cuXW+5s1OnTqleHt7K19//bVSVVWl9O3bV5k1a5aiKIqS\nmpqqTJw4sb5vixC18ta6YAnhLMrKyti3bx9Tpkyx3FZeXg6o+w1V73YbHBxMcXExAHv27CEmJgbA\ncs5EbZo3b86YMWMA6Nu3Lzt27KgzT22vebuuXbvSq1cvAHr16kVkZCQAoaGh5Obm1vkaQtSHFAwh\nrquqqqJt27YcPny4xvubN29u+V65PvSn0+luOVNBqWNI0MfHx/K9l5cXFRUVVjPV9Jq3a9GixS3P\nW32Nra8hhK1kDEOI61q3bk3Xrl15//33AfUD+ujRo3VeM3DgQDZv3oyiKBQXF/PZZ59Z7vPz8+Pi\nxYv1ylBXwRFCa1IwhMe6fPkynTt3tny9+eabrFu3jlWrVhEWFkZoaChpaWmWx9+8DXb1948//jhG\no5GQkBBmzJhBnz59aNOmDQDPPvssI0eOtAx63359Tdtq3357bd/ffk1tP3vy1t3C/mRarRCNdOnS\nJVq1asW5c+cYMGAAX3zxBf7+/lrHEsLuZAxDiEYaO3YsJSUllJeX8+qrr0qxEG5LWhhCCCFsImMY\nQgghbCIFQwghhE2kYAghhLCJFAwhhBA2kYIhhBDCJlIwhBBC2OT/Afgh7irtHHa4AAAAAElFTkSu\nQmCC\n",
       "text": [
        "<matplotlib.figure.Figure at 0x5f0c690>"
       ]
      }
     ],
     "prompt_number": 15
    }
   ],
   "metadata": {}
  }
 ]
}