1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
|
{
"metadata": {
"name": "chapter 17 som.ipynb"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Chapter 17:Welded Joints"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Problem no.17.1,Page no.379"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"\n",
"#Initilization of Variables\n",
"\n",
"b=12 #cm #width of steel plates\n",
"t=1 #cm #thickness of steel plates\n",
"sigma=75 #MPa #stress\n",
"\n",
"#Calculations\n",
"\n",
"#The maximum Load which the plate can carry\n",
"P=b*t*10**-6*sigma*10**6 #N \n",
"\n",
"#Length of weld for static loading\n",
"\n",
"#size of weld is equal to thickness of plate\n",
"S=t #cm\n",
"\n",
"#P=2**0.5*l*S*sigma\n",
"\n",
"#After substituting values and simplifying above equation, we get, \n",
"l=((P)*(2**0.5*S*sigma)**-1) #cm\n",
"\n",
"#add 1.25 to allow start and stop of weld run\n",
"L=l+1.25 #cm \n",
"\n",
"#Length of weld for Dynamic loading\n",
"\n",
"#The stress concentration factor for transverse fillet weld is 1.5\n",
"\n",
"sigma_2=sigma*1.5**-1 #MPa #Permissible tensile stress\n",
"\n",
"#P=2**0.5*l_2*S*sigma_2 \n",
"\n",
"#After substituting values and simplifying above equation, we get,\n",
"l_2=((P)*(2**0.5*S*sigma_2)**-1) #cm\n",
"\n",
"#add 1.25 cm\n",
"l_3=l_2+1.25 #cm \n",
"\n",
"#Result\n",
"print\"Length of weld for static loading\",round(L,2),\"cm\"\n",
"print\"Length of weld for Dynamic loading\",round(l_3,2),\"cm\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Length of weld for static loading 9.74 cm\n",
"Length of weld for Dynamic loading 13.98 cm\n"
]
}
],
"prompt_number": 3
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Problem no.17.2,Page no.380"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"\n",
"#Initilization of Variables\n",
"\n",
"d=6 #cm #diameter of rod\n",
"L=40 #cm #Length of steel plate\n",
"P=12 #KN #Load\n",
"sigma=180 #MPa #Allowable stress\n",
"\n",
"#Calculations\n",
"\n",
"A=pi*4**-1*d**2 #cm**2 #Area of rod\n",
"M=P*10**3*L #Ncm\n",
"\n",
"F=M*A**-1 #N/cm #Force per unit cm of weld at top and bottom\n",
"\n",
"V_s=P*10**3*(pi*d)**-1 #N/cm #vertical shear\n",
"\n",
"R=(F**2+V_s**2)**0.5 #N/cm #resultant Load\n",
"\n",
"S=R*(sigma)**-1*10**-2 #cm #size of weld\n",
"\n",
"#Result\n",
"print\"size of weld is\",round(S,2),\"cm\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"size of weld is 0.94 cm\n"
]
}
],
"prompt_number": 13
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Problem no.17.3,Page no.380"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"\n",
"#Initilization of Variables\n",
"\n",
"b=12 #cm #width of plate\n",
"S=t=1 #cm #thickness of plate\n",
"P=50 #KN #load\n",
"sigma_s=60 #MPa #shear stress\n",
"\n",
"#Calculations (part-1)\n",
"\n",
"#Under static Loading\n",
"\n",
"#P=2**0.5*l*S*sigma_s\n",
"\n",
"l=((P*10**3)*(2**0.5*S*sigma_s*10**-4*10**6)**-1) #cm \n",
"\n",
"#add 1.25 cm to start and stop weld run\n",
"\n",
"L=l+1.25 #cm #length of weld\n",
"\n",
"#Calculations (part-2)\n",
"\n",
"#Under Fatigue load\n",
"\n",
"#stress concentration factor for parallel fillet weld is 2.7\n",
"\n",
"sigma_s_2=sigma_s*2.7**-1 #MPa #permissible shear stress\n",
"\n",
"#P=2**0.5*l_2*S*sigma_s_2\n",
"\n",
"l_2=((P*10**3)*(2**0.5*S*sigma_s_2*10**-4*10**6)**-1) #cm\n",
"\n",
"#add 1.25 cm \n",
"\n",
"l_3=l_2+1.25 #cm #length of weld\n",
"\n",
"#Result\n",
"print\"Length of weld Under static Loading is\",round(L,3),\"cm\"\n",
"print\"Length of weld Under Ftigue Loading is\",round(l_3,3),\"cm\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Length of weld Under static Loading is 7.143 cm\n",
"Length of weld Under Ftigue Loading is 17.16 cm\n"
]
}
],
"prompt_number": 11
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Problem no.17.4,Page no.381"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"\n",
"#Initilization of Variables\n",
"\n",
"sigma_t=100 #MPa #tensile stress\n",
"P=170 #KN #Load\n",
"\n",
"#Calculations\n",
"\n",
"#For equal stress in the welds A and B, the load shared by the fillet welds will be proportional to size of weld\n",
"\n",
"#t_a=0.7*s #Effective throat thickness of weld A in upper plate\n",
"#s=size of weld \n",
"\n",
"#t_b=1.05*s #Effective throat thickness of weld B in lower plate\n",
"\n",
"#For weld A\n",
"#P_1=l*t*sigma_t \n",
"\n",
"#After substituting values and simplifying above equation, we get,\n",
"#P_1=84000*s #N (equation 1)\n",
"\n",
"#P_2=l*t_2*sigma_t\n",
"\n",
"#After substituting values and simplifying above equation, we get,\n",
"#P_2=126000*s #N (equation 2)\n",
"\n",
"#After adding equation 1 and 2, we get,\n",
"#P=210000*s (equation 3)\n",
"\n",
"#Now equating total forces of the fillets to load on the plates\n",
"s=P*10**3*210000**-1 #cm\n",
"\n",
"#Result\n",
"print\"size of end fillet is\",round(s,2),\"cm\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"size of end fillet is 0.81 cm\n"
]
}
],
"prompt_number": 12
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Problem no.17.5,Page no.381"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"\n",
"#Initilization of Variables\n",
"\n",
"L_1=30 #cm #length of longitudinal weld\n",
"L_2=16 #cm #length of transverse weld\n",
"#t=0.7*s #Effective thickness of weld \n",
"sigma_t_1=100 #MPa #working stress for transverse welds\n",
"sigma_t_2=85 #MPa #working stress for longitudinal welds\n",
"P=150 #KN #load\n",
"\n",
"#Calculations\n",
"\n",
"#For transverse weld\n",
"#P_1=L_1*t*10**-4*sigma_t_1*10**6 \n",
"\n",
"#After substituting values and simplifying above equation, we get,\n",
"#P_1=112000*s #N\n",
"\n",
"#For longitudinal weld\n",
"#P_2=L_2*t*10**-4*sigma_t_2*10**6\n",
"\n",
"#Total force of resistance of weld\n",
"#P=P_1+P_2 #N\n",
"\n",
"#after adding we get,\n",
"#P=290500*s #N\n",
"\n",
"#Now equating total forces of resistance to pull of the joint\n",
"s=P*10**3*290500**-1 #cm\n",
"\n",
"#Result \n",
"print\"size of weld is\",round(s,3),\"cm\"\n",
"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"size of weld is 0.516 cm\n"
]
}
],
"prompt_number": 16
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Problem no.17.6,Page no.382"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"\n",
"#Initilization of Variables\n",
"\n",
"P=200 #KN #Load carried by the angle \n",
"S=0.6 #mm #size of weld\n",
"b=4.46 #cm #Distance of centre of gravity of the angle from the top shorter leg\n",
"a=10.54 #cm #Distance of centre of gravity of the angle from the top edge of the angle\n",
"sigma_s=102.5 #MPa #shear stress\n",
"#l_1=Length of the top weld\n",
"#l_2=length of the bottom weld\n",
"#L=l_1+l_2 #cm #total length weld\n",
"\n",
"#Using the relation\n",
"#P=L*0.7*S*sigma_s\n",
"\n",
"#After substituting values and simplifying we get\n",
"L=(P*10**3)*(0.7*S*sigma_s*10**-4*10**6)**-1 #cm (equation 1)\n",
"\n",
"#Using the relation\n",
"l_1=(L*b)*(a+b)**-1 #cm\n",
"\n",
"#substituting this value in equation 1 we have,\n",
"l_2=L-l_1 #cm \n",
"\n",
"#Result\n",
"print\"Distance of centre of gravity of the angle from the top edge of the angle\",round(l_2,2),\"cm\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Distance of centre of gravity of the angle from the top edge of the angle 32.64 cm\n"
]
}
],
"prompt_number": 12
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Problem no.17.7,Page no.383"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"\n",
"#Initilization of Variables\n",
"\n",
"P=12 #KN #Load\n",
"sigma_s=75 #N/mm**2 #shear stress\n",
"e=12 #cm\n",
"r_1=2.5 #cm\n",
"\n",
"#Calculations\n",
"\n",
"#A=(2*S*l)*(2)**0.5\n",
"#sigma_s=P*A**-1 #MPa #shear stress\n",
"\n",
"#After substituting values and simplifying we get\n",
"#sigma_s=16.97*S**-1 #MPa\n",
"\n",
"#I_g=S*l*(3*b**2+l**2)*(6)**-1 #cm**4 #Polar moment of Inertia of weld\n",
"\n",
"#After substituting values and simplifying we get\n",
"#I_g=180.833*S #cm**4\n",
"r_2=((8*2**-1)**2)+((5*2**-1)**2)**0.5 #cm #max radius of weld\n",
"\n",
"#sigma_s_2=P*e*r_2*I_g**-1 #MPa #shear stress due to bending moment\n",
"\n",
"cos_theta=r_1*r_2**-1\n",
"\n",
"#Now using the relation\n",
"#sigma_s=(sigma_s_1**2+sigma_s_2**2+2sigma_s_1*sigma_s_2*cos_theta\n",
"\n",
"S=(2363.8958*5625**-1)**0.5 #cm #size of the weld\n",
"\n",
"#Result\n",
"print\"size of the weld\",round(S,3),\"cm\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"size of the weld 0.648 cm\n"
]
}
],
"prompt_number": 11
}
],
"metadata": {}
}
]
}
|