summaryrefslogtreecommitdiff
path: root/Strength_Of_Materials_by_B_K_Sarkar/Chapter15.ipynb
blob: 8ae049c0662f6d597b913f1da9bdca7026faa616 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
{
 "metadata": {
  "name": "chapter 15.ipynb"
 },
 "nbformat": 3,
 "nbformat_minor": 0,
 "worksheets": [
  {
   "cells": [
    {
     "cell_type": "heading",
     "level": 1,
     "metadata": {},
     "source": [
      "Chapter no.15:Thin Cyclindrical Shell"
     ]
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Problem no 15.1,Page no.351"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Initilization of variables\n",
      "\n",
      "D=0.8 #m #Diameter of Shell\n",
      "L=3 #m #Length of shell\n",
      "t=0.01 #m #thickness of metal\n",
      "E=200*10**9 #Pa \n",
      "p=2.5*10**6 #Pa #Internal Pressure\n",
      "m=4 #Poisson's ratio\n",
      "\n",
      "#Calculation\n",
      "\n",
      "sigma_1=p*D*(2*t)**-1 #N/m**2 #Hoop stress\n",
      "sigma_2=p*D*(4*t)**-1 #N/m**2 #Longitudinal stress\n",
      "\n",
      "e_1=1*E**-1*(sigma_1-sigma_2*m**-1) #Hoop strain\n",
      "e_2=1*E**-1*(sigma_2-sigma_1*m**-1) #Hoop strain\n",
      "\n",
      "d=e_1*D*100 #cm #Increase in Diameter\n",
      "l=e_2*L*100 #cm #Increase in Length\n",
      "\n",
      "dell_v=2*e_1+e_2 #Volumetric strain\n",
      "V=dell_v*pi*4**-1*D**2*L*10**6 #cm**3 #Increase in Volume\n",
      "\n",
      "#Result\n",
      "print\"Change in Diameter is\",round(d,3),\"cm\"\n",
      "print\"Change in Length is\",round(l,3),\"cm\"\n",
      "print\"Change in Volume is\",round(V,2),\"cm**3\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Change in Diameter is 0.035 cm\n",
        "Change in Length is 0.037 cm\n",
        "Change in Volume is 1507.96 cm**3\n"
       ]
      }
     ],
     "prompt_number": 13
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Problem no 15.2,Page no.352"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Initilization of variables\n",
      "\n",
      "D=0.8 #m #iameter of water main\n",
      "h=100 #m #Pressure head\n",
      "w=10*10**3 #N/m**3 #Weight of Water\n",
      "sigma_t=20*10**6 #MPa #Permissible stress\n",
      "\n",
      "#Calculation\n",
      "\n",
      "p=w*h #N/m**2 #Pressure of inside the main\n",
      "t=p*D*(2*sigma_t)**-1*100 #m #Thcikness of metal\n",
      "\n",
      "#Result\n",
      "print\"The Thickness of metal is\",round(t,2),\"cm\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The Thickness of metal is 2.0 cm\n"
       ]
      }
     ],
     "prompt_number": 21
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Problem no 15.3,Page no.352"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Initilization of variables\n",
      "\n",
      "p=2*10**6 #MPa #Steam Pressure\n",
      "t=0.02 #m #thickness of boiler plate\n",
      "sigma_t=120*10**6 #MPa #Tensile stress\n",
      "sigma_l=120*10**6 #MPa #Longitudinal stress\n",
      "rho=0.90 #% #Efficiency of Longitudinal joint\n",
      "rho_e=0.40 #% #Efficiency of circumferential joint\n",
      "\n",
      "#Calculations\n",
      "\n",
      "D_1=sigma_t*2*t*rho*p**-1 #Diameter of boiler \n",
      "D_2=sigma_l*4*t*rho_e*p**-1 #Diameter of boiler \n",
      "\n",
      "#Max diameter of boiler is equal to minimum value of diameter\n",
      "\n",
      "#Result\n",
      "print\"Maximum diameter of boiler is\",round(D_2,2),\"m\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Maximum diameter of boiler is 1.92 m\n"
       ]
      }
     ],
     "prompt_number": 29
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Problem no 15.4,Page no.352"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Initilization of variables\n",
      "\n",
      "L=0.9 #m #Length of cyclindrical shell\n",
      "D=0.2 #m #Internal Diameter\n",
      "t=0.008 #m #thickness of metal\n",
      "dV=20*10**-6 #m**3 #Additional volume\n",
      "E=200*10**9 #Pa \n",
      "m=1*0.3**-1 #Poissoin's ratio\n",
      "\n",
      "#Calculations\n",
      "\n",
      "V=pi*4**-1*D**2*L #Volume of cyclinder\n",
      "\n",
      "#Let X=2*e_1+e_2\n",
      "X=dV*V**-1 #Volumetric strain   (Equation 1)\n",
      "\n",
      "#e_1=p*D*(2*E*t)**-1*(1-1*(2*m)**-1) #Circumferential strain\n",
      "#e_2=p*D*(2*E*t)**-1*(1*2**-1-1*(2*m)**-1) #Circumferential strain\n",
      "\n",
      "#substituting above values in equation 1 we get\n",
      "p=X*E*t*(D*((1-1*(2*m)**-1)+(1*4**-1-1*(2*m)**-1)))**-1*10**-3 #KN/m**2 #Pressure exerted by fluid\n",
      "sigma_t=p*D*(2*t)**-1 #KN/m**2 #hoop stress\n",
      "\n",
      "#Result\n",
      "print\"Pressure Exerted by Fluid on the cyclinder is\",round(p,2),\"KN/m**2\"\n",
      "print\"Hoop stress is\",round(sigma_t,2),\"KN/m**2\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Pressure Exerted by Fluid on the cyclinder is 5956.68 KN/m**2\n",
        "Hoop stress is 74458.45 KN/m**2\n"
       ]
      }
     ],
     "prompt_number": 41
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Problem no 15.5,Page no.353"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Initilization of variables\n",
      "\n",
      "t=0.015 #m #Thickness of plate\n",
      "sigma_t=120*10**6 #Pa #tensile stress\n",
      "sigma_l=120*10**6 #Pa #Longitudinal stress\n",
      "rho=0.7 #% #Efficiency of longitudinal joints\n",
      "rho_l=0.3 #% #Efficiency of circumferential joints\n",
      "p=2*10**6 #Pa #Internal pressure\n",
      "D=1.5 #m #shell diameter\n",
      "\n",
      "#Calculations (Part-1)\n",
      "\n",
      "D_1=sigma_t*2*t*rho*p**-1    #m \n",
      "D_2=sigma_l*4*t*rho_l*p**-1  #m \n",
      "\n",
      "#Thus max diameter of shell is min of above two cases\n",
      "\n",
      "#Calculations (Part-2)\n",
      "\n",
      "p_1=sigma_t*2*t*rho*D**-1*10**-6    #MPa\n",
      "p_2=sigma_l*4*t*rho_l*D**-1*10**-6  #MPa\n",
      "\n",
      "#Thus Internal pressure is min of above two cases\n",
      "\n",
      "#Result\n",
      "print\"Max Permissible Diameter of shell is\",round(D_2,2),\"m\"\n",
      "print\"Max Permissible Internal Pressure is\",round(p_2,2),\"MPa\"\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Max Permissible Diameter of shell is 1.08 m\n",
        "Max Permissible Internal Pressure is 1.44 MPa\n"
       ]
      }
     ],
     "prompt_number": 8
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Problem no 15.6,Page no.354"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Initilization of variables\n",
      "\n",
      "L=3 #m #Length\n",
      "D=1 #m #Internal Diameter\n",
      "t=0.015 #m #thickness\n",
      "p=1.5*10**6 #Pa #Internal pressure\n",
      "E=200*10**9 #Pa \n",
      "m=1*0.3**-1 #Poissoin's ratio\n",
      "\n",
      "#Calculations\n",
      "\n",
      "sigma_t=p*D*(2*t)**-1*10**-6 #MPa #Hoop stress\n",
      "sigma_l=p*D*(4*t)**-1*10**-6 #MPa #Longitudinal stress\n",
      "\n",
      "dD=(p*D**2*(2*t*E)**-1*(1-1*(2*m)**-1))*10**2 #cm #Change in Diameter\n",
      "dL=p*D*L*(2*t*E)**-1*(1*2**-1-1*m**-1)*10**2 #cm #Change in Length\n",
      "\n",
      "V=pi*4**-1*D**2*L #Volume \n",
      "dV=p*D*(2*t*E)**-1*(5*2**-1-2*(m)**-1)*V*10**6 #cm #Change in Volume\n",
      "\n",
      "#Result\n",
      "print\"The circumferential stresses induced is\",round(sigma_t,2),\"MPa\"\n",
      "print\"The Longitudinal stresses induced is\",round(sigma_l,2),\"MPa\"\n",
      "print\"The change in dimension are:D is\",round(dD,3),\"cm\"\n",
      "print\"                           :L is\",round(dL,4),\"cm\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "0.02125\n",
        "The circumferential stresses induced is 50.0 MPa\n",
        "The Longitudinal stresses induced is 25.0 MPa\n",
        "The change in dimension are:D is 0.021 cm\n",
        "                           :L is 0.015 cm\n"
       ]
      }
     ],
     "prompt_number": 26
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Problem no 15.7,Page no.355"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Initilization of variables\n",
      "\n",
      "L=0.9 #m #Length of cyclinder\n",
      "D=0.4 #m #Diameter \n",
      "t=0.006 #m #thickness\n",
      "p=5*10**6 #Pa #Pressure\n",
      "E=100*10**9\n",
      "m=3 #Poissoin's ratio\n",
      "k=2.6*10**9 #Pa #Bulk modulus\n",
      "\n",
      "#Calculations\n",
      "\n",
      "#Let X=dV_1*V_1**-1\n",
      "X=p*(0.4-2*0.006)*(2*t*E)**-1*(5*2**-1-2*m**-1) #Volumetric strain\n",
      "dV_1=round(X,5)*pi*4**-1*0.388**2*L #cm**3 #Increase in volume of cyclinder\n",
      "V_1=pi*4**-1*0.388**2*L #VOlume\n",
      "dV_2=p*k**-1*V_1 #DEcrease in volume of oil due to increase in pressure\n",
      "\n",
      "dV=(dV_1+dV_2)*10**6 #Resultant additional space \n",
      "\n",
      "#Result\n",
      "print\"additional quantity of oil to be pumped is\",round(dV,2),\"cm**3\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "additional quantity of oil to be pumped is 519.62 cm**3\n"
       ]
      }
     ],
     "prompt_number": 23
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Problem no 15.8,Page no.356"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Initilization of variables\n",
      "\n",
      "A=1600*(3600)**-1 #Kg/sec #Amount of steam generated\n",
      "v=0.24 #m**3/kg #specific volume of steam\n",
      "sigma_t=4*10**6 #MPa #Tensile stress\n",
      "V_1=30 #m/s #Velocity of steam\n",
      "p=1*10**6 #Pa #Steam pressure\n",
      "\n",
      "#Calculation\n",
      "\n",
      "V=A*v #m**3/s #volume of steam \n",
      "D=(V*(pi*4**-1*V_1)**-1)**0.5*100 #Diameter of pipe\n",
      "t=p*D*(2*sigma_t)**-1 #Thicknes of pipe\n",
      "\n",
      "#Result\n",
      "print\"Diameter of boiler is\",round(D,2),\"cm\"\n",
      "print\"Thickness of steel plpe is\",round(t,2),\"cm\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Diameter of boiler is 6.73 cm\n",
        "Thickness of steel plpe is 0.84 cm\n"
       ]
      }
     ],
     "prompt_number": 43
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Problem no 15.9,Page no.359"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Initilization of variables\n",
      "\n",
      "P=14*10**3 #N #Axial pull\n",
      "dL=0.0084 #cm #Elongation\n",
      "L=0.25 #m #Length\n",
      "p=7*10**6 #Internal pressure\n",
      "dL_2=0.0034 #cm #Longation\n",
      "d=0.0475 #m #Internal diameter \n",
      "D=0.05 #m #External Diameter\n",
      "m=0.25\n",
      "\n",
      "#Calculation\n",
      "\n",
      "t=(D-d)*2**-1 #thickness  od tube\n",
      "A=pi*4**-1*(D**2-d**2) #Area of tube\n",
      "sigma=P*A**-1 #stress\n",
      "e=dL*(L)**-1 #strain\n",
      "E=sigma*e**-1 #Modulus of Elasticity\n",
      "sigma_1=p*d*(2*t)**-1 #Hoop stress\n",
      "sigma_2=p*d*(4*t)**-1 #Longitudinal stress\n",
      "\n",
      "m=-(sigma_1*(dL_2*L**-1*E-sigma_2)**-1) #POissoin's ratio\\\n",
      "\n",
      "#Let X=1*m**-1\n",
      "X=1*m**-1 #Poissoin's ratio\n",
      "\n",
      "#Result\n",
      "print\"The value of Poissoin's ratio is\",round(X,3)\n",
      "                                            "
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The value of Poissoin's ratio is 0.277\n"
       ]
      }
     ],
     "prompt_number": 28
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Problem no 15.10,Page no.357"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Initilization of variables\n",
      "\n",
      "D=0.8 #m #Diameter\n",
      "t=0.01 #m #Thickness \n",
      "p=5*10**6 #Pa #Pressure\n",
      "m=1*0.25**-1\n",
      "E=200*10**9 #Pa\n",
      "\n",
      "#Calculations\n",
      "\n",
      "sigma_1=5*10**6*0.8*(4*0.01)**-1 #stress\n",
      "sigma_2=sigma_1\n",
      "e_1=sigma_1*E**-1-sigma_2*(m*E)**-1 #strain\n",
      "e_v=3*e_1\n",
      "V=4*3**-1*pi*(D*2**-1)**3 #m**3  tress\n",
      "dell_v=e_v*V*10**6 #cm**3\n",
      "\n",
      "#Result\n",
      "print\"Volume of additional Fluid\",round(dell_v,3),\"cm**3\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Volume of additional Fluid 301.593 cm**3\n"
       ]
      }
     ],
     "prompt_number": 37
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Problem no 15.11,Page no.358"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "d=0.3 #m #Diameter\n",
      "D=0.003 #m #Diameter of steel wire\n",
      "t=0.006 #m #thickness\n",
      "sigma_w=8*10**6 #Pa #Stress\n",
      "p=1*10**6 #Pa #Internal pressure\n",
      "E_s=200*10**9 #Pa #Modulus of Elasticity for steel\n",
      "E_c=100*10**9 #Pa #Modulus of Elasticity for cast iron\n",
      "m=1*0.3**-1\n",
      "\n",
      "#Calculations\n",
      "\n",
      "sigma_p=(sigma_w*pi*2**-1*d)*(2*t)**-1 #compressive hoop stress\n",
      "sigma_l=p*d*(4*t)**-1 #Longitudinal stress\n",
      "\n",
      "#when internal presure is apllied Let sigma_w_1=Tensile in wire and sigma_p_1=tensile hoop in wire\n",
      "#sigma_p_1*2*t+sigma_w_1*2*d**-1*pi*4**-1*d**2=p*D\n",
      "\n",
      "#After substituting values and further simplifying we get\n",
      "#1.2*sigma_p_1+0.471*sigma_w_1=3000    Equation 1\n",
      "\n",
      "#1*E_c**-1(sigma_p_1-sigma_1*m**-1+sigma_p)=1*E_s**-1(sigma_w_1-sigma_w)\n",
      "\n",
      "#After substituting values and further simplifying we get\n",
      "#sigma_p_1-0.5*sigma_w_1=1.36*10**6    \n",
      "#sigma_p_1=0.5*sigma_w_1-3.39*10**6   Equation 2\n",
      "\n",
      "#From Equation 2 substituting value of sigma_p_1 in Equation 1\n",
      "\n",
      "\n",
      "sigma_w_1=(40.68*10**3+0.3*10**6)*(10.71238*10**-3)**-1\n",
      "sigma_p_1=0.5*sigma_w_1-3.39*10**6\n",
      "\n",
      "#Let X=sigma_p_1 and Y=sigma_w_1\n",
      "X=sigma_p_1*10**-6 #MPa #Stresses in pipe\n",
      "Y=sigma_w_1*10**-6 #MPa #Stresses in wire\n",
      "\n",
      "#Result\n",
      "print\"Stress in the pipe is\",round(X,2),\"MN/m**2\"\n",
      "print\"Stress in the wire is\",round(Y,2),\"MN/m**2\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Stress in the pipe is 12.51 MN/m**2\n",
        "Stress in the wire is 31.8 MN/m**2\n"
       ]
      }
     ],
     "prompt_number": 29
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Problem no 15.12,Page no.359"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Initilization of variables\n",
      "\n",
      "D=0.038 #m #External Diameter\n",
      "d=0.035 #m #Internal Diameter\n",
      "d_1=0.0008 #m #Steel wire diameter\n",
      "p=2*10**6 #pa #Pa #Internal Pressure\n",
      "sigma_t_1=7*10**6 #Pa #Circumferential stress\n",
      "#E_s=1.6*E_s\n",
      "m=0.3\n",
      "\n",
      "#Calculation\n",
      "\n",
      "t=(D-d)*2**-1 #m Thickness \n",
      "\n",
      "#sigma_t*2*t=pi*d*2**-1*sigma_w\n",
      "#From Above equation we get\n",
      "\n",
      "#sigma_t=0.419*sigma_w   (Equation 1)\n",
      "\n",
      "sigma_w_1=(p*d-sigma_t_1*2*t)*(2*d_1**-1*pi*4**-1*d_1**2)**-1 #stress in wire\n",
      "sigma_l=p*d*(4*t)**-1 #Longitudinal stress in tube\n",
      "\n",
      "#Now Equating equations of strain in tube and wire we get\n",
      "sigma_w=-(1.6*(sigma_t_1-sigma_l*m)-sigma_w_1)*1.67**-1*10**-6\n",
      "\n",
      "#Result\n",
      "print\"The Tension at which wire must have been wound is\",round(sigma_w,2),\"MPa\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The Tension at which wire must have been wound is 20.0 MPa\n"
       ]
      }
     ],
     "prompt_number": 30
    }
   ],
   "metadata": {}
  }
 ]
}