summaryrefslogtreecommitdiff
path: root/Strength_Of_Materials_by_B_K_Sarkar/Chapter11.ipynb
blob: e0092d45bba550bfcd6e26859274c857061ca487 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
{
 "metadata": {
  "name": "chapter 11 som.ipynb"
 },
 "nbformat": 3,
 "nbformat_minor": 0,
 "worksheets": [
  {
   "cells": [
    {
     "cell_type": "heading",
     "level": 1,
     "metadata": {},
     "source": [
      "Chapter no 11:Combined Direct And Bending Stresses"
     ]
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Problem 11.1,Page no.273"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Initilization of variables\n",
      "\n",
      "P=10 #KN #Load\n",
      "e=0.06 #m #eccentricity\n",
      "b=0.240 #m #width of column\n",
      "d=0.150 #m #depth of column\n",
      "\n",
      "#Calculations\n",
      "\n",
      "sigma_d=P*(b*d)**-1 #KN/m**2\n",
      "M=P*e #KN*m #Moment due to eccentricity\n",
      "Z=(d*(b)**2)*6**-1 #mm**3\n",
      "\n",
      "sigma_b=M*Z**-1 #KN/m**2\n",
      "\n",
      "sigma_CD=sigma_d+sigma_b\n",
      "sigma_AB=sigma_d-sigma_b\n",
      "\n",
      "#Result\n",
      "print\"Stress at face CD is\",round(sigma_CD,2),\"KN/m**2\"\n",
      "print\"Stress at face AB is\",round(sigma_AB,2),\"KN/m**2\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Stress at face CD is 694.44 KN/m**2\n",
        "Stress at face AB is -138.89 KN/m**2\n"
       ]
      }
     ],
     "prompt_number": 8
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Problem 11.2,Page no.274"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Initilization of variables\n",
      "\n",
      "d=2 #cm #Diameter of specimen\n",
      "\n",
      "#Calculations\n",
      "\n",
      "#Let P be the Load on the section\n",
      "\n",
      "A=pi*4**-1*d**2 #cm**2 #Area of section\n",
      "I=pi*64**-1*d**4 #cm**4 #M.I of the section\n",
      "y=d*2**-1 #cm\n",
      "Z=I*y**-1 #cm**3 #Section modulus\n",
      "#M=P.e #Moment\n",
      "\n",
      "#Stress due to direct load\n",
      "#sigma_d=(4*P)*(pi*d**2)**-1 #N/cm**2\n",
      "\n",
      "#stress due to moment\n",
      "#sigma_b=(32*P*e)*(pi*d**3)**-1 N/cm**2\n",
      "\n",
      "#Maximum stress\n",
      "#sigma_r_max=(((4*P)*(pi*d**2)**-1)+((32*P*e)*(pi*d**3)**-1))\n",
      "\n",
      "#Mean stress \n",
      "#sigma_r_mean=((4*P)*(pi*d**2)**-1) \n",
      "\n",
      "#Since the maximum stress is 20% greater than the mean stress \n",
      "#(((4*P)*(pi*d**2))+((32*P*e)*(pi*d**3)))=1.2*4*P*(pi*d**2)**-1\n",
      "\n",
      "#After substituing values and simplifyinf we get\n",
      "\n",
      "e=0.2*d*8**-1 #cm #distance of line of thrust from the axis\n",
      "\n",
      "#Result\n",
      "print\"The distance of line of thrust from the axis is\",round(e,2),\"cm\"\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The distance of line of thrust from the axis is 0.05 cm\n"
       ]
      }
     ],
     "prompt_number": 1
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Problem 11.3,Page no.274"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Initilization of variables\n",
      "\n",
      "A=300 #cm**2 #Area of column\n",
      "e=5 #cm #eccentricity\n",
      "\n",
      "#Calculations\n",
      "\n",
      "#sigma_d=P*A**-1  #Direct compressive stress\n",
      "#M=P*e #Bending Moment\n",
      "Z=((20**4-10**4)*(6*20)**-1) #cm**3 #Section modulus\n",
      "\n",
      "#sigma_b=M*Z**-1=P*250**-1 \n",
      "\n",
      "#Now sigma_d+sigma_b=60*10**2\n",
      "\n",
      "#P*300**-1+P*250**-1=6000\n",
      "\n",
      "#After simplifying we get\n",
      "P_1=6000*300*250*550**-1 #N #Load\n",
      "\n",
      "#sigma_b-sigma_d=300 \n",
      "\n",
      "P_2=300*300*250*50**-1 #N #Load \n",
      "\n",
      "#Result\n",
      "print\"The maximum load column can carry\",round(P_2,2),\"N\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The maximum load column can carry 450000.0 N\n"
       ]
      }
     ],
     "prompt_number": 3
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Problem 11.4,Page no.275"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Initilization of variables\n",
      "\n",
      "D=40 #cm #External diameter of column\n",
      "d=30 #cm #Internal diameter of column\n",
      "e=20 #cm #Eccentricity\n",
      "P=150 #KN #Load\n",
      "\n",
      "#calculations\n",
      "\n",
      "A=pi*4**-1*(D**2-d**2) #cm**2 #Area of the column\n",
      "Z=pi*32**-1*((D**4-d**4)*D**-1) #cm**3 #Section modulus\n",
      "M=P*10**3*e #N*cm #Moment\n",
      "\n",
      "sigma_r_max=((P*10**3*A**-1)+(M*Z**-1)) #N/cm**2 #Max stress \n",
      "sigma_r_min=((P*10**3*A**-1)-(M*Z**-1)) #N/cm**2 #Min stress \n",
      "\n",
      "#Result\n",
      "print\"Max intensities of stress in the section is\",round(sigma_r_max,2),\"N/cm**2\"\n",
      "print\"Min intensities of stress in the section is\",round(sigma_r_min,2),\"N/cm**2(tension)\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Max intensities of stress in the section is 971.3 N/cm**2\n",
        "Min intensities of stress in the section is -425.63 N/cm**2(tension)\n"
       ]
      }
     ],
     "prompt_number": 9
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Problem 11.5,Page no.277"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Initilization of variables\n",
      "\n",
      "b=4 #m #width of pier\n",
      "d=3 #m #depth of pier\n",
      "e_x=1 #m #distance from y axis\n",
      "e_y=0.5 #m #distance from x axis\n",
      "P=80 #KN #Load\n",
      "\n",
      "#Calculations\n",
      "\n",
      "A=b*d #m**2 #Area of pier\n",
      "I_x_x=b*d**3*12**-1 #m**4 #M.I about x-x axis\n",
      "I_y_y=d*b**3*12**-1 #m**4 #M.I about y-y axis\n",
      "M_x=P*e_y #KN*m #Moment about x-x axis\n",
      "M_y=P*e_x #KN*m #Moment about y-y axis\n",
      "\n",
      "x=2 #m #Distance between y-y axis and corners A and B\n",
      "y=1.5 #m ##Distance between x-x axis and corners A and D\n",
      "\n",
      "#Part-1\n",
      "#Stress developed at each corner\n",
      "\n",
      "\n",
      "sigma_A=P*A**-1+M_x*y*I_x_x**-1-M_y*x*I_y_y**-1 #KN/m**2 #stress at A\n",
      "sigma_B=P*A**-1+M_x*y*I_x_x**-1+M_y*x*I_y_y**-1 #KN/m**2 #stress at B\n",
      "sigma_C=P*A**-1-M_x*y*I_x_x**-1+M_y*x*I_y_y**-1 #KN/m**2 #stress at C\n",
      "sigma_D=P*A**-1-M_x*y*I_x_x**-1-M_y*x*I_y_y**-1 #KN/m**2 #stress at D\n",
      "\n",
      "#Part-2\n",
      "#Let f be the additional load that should be placed at centre\n",
      "\n",
      "#sigma_c=F*A**-1 #KN/m**2 #compressive stress\n",
      "\n",
      "#For no tension in pier section, compressive stress is equal to tensile stress\n",
      "sigma_c=10 #KN/m**2\n",
      "F=sigma_c*A #KN\n",
      "\n",
      "#Part-3\n",
      "\n",
      "sigma=F*A**-1 #KN/m**2 #stress due to additional load of 120 KN\n",
      "\n",
      "sigma_A_1=sigma_A+10 #stress at A\n",
      "sigma_B_1=sigma_B+10 #stress at B\n",
      "sigma_C_1=sigma_C+10 #stress at C\n",
      "sigma_D_1=sigma_D+10 #stress at D\n",
      "\n",
      "#Result\n",
      "print\"Stress at each corner are as follows:stress_A\",round(sigma_A,2),\"KN/m**2\"\n",
      "print\"                                    :stress_B\",round(sigma_B,2),\"KN/m**2\"\n",
      "print\"                                    :stress_C\",round(sigma_C,2),\"KN/m**2\"\n",
      "print\"                                    :stress_D\",round(sigma_D,2),\"KN/m**2(tensile)\"\n",
      "\n",
      "print\"Additional load that should be placed at centre is\",round(F,2),\"KN\"\n",
      "\n",
      "print\"Stresses at the corners with the  additional load in centre are as follows:Stress_A_1\",round(sigma_A_1,2),\"KN/m**2\"\n",
      "print\"                                                                          :Stress_B_1\",round(sigma_B_1,2),\"KN/m**2\"\n",
      "print\"                                                                          :Stress_C_1\",round(sigma_C_1,2),\"KN/m**2\"\n",
      "print\"                                                                          :Stress_D_1\",round(sigma_D_1,2),\"KN/m**2\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Stress at each corner are as follows:stress_A 3.33 KN/m**2\n",
        "                                    :stress_B 23.33 KN/m**2\n",
        "                                    :stress_C 10.0 KN/m**2\n",
        "                                    :stress_D -10.0 KN/m**2(tensile)\n",
        "Additional load that should be placed at centre is 120.0 KN\n",
        "Stresses at the corners with the  additional load in centre are as follows:Stress_A_1 13.33 KN/m**2\n",
        "                                                                          :Stress_B_1 33.33 KN/m**2\n",
        "                                                                          :Stress_C_1 20.0 KN/m**2\n",
        "                                                                          :Stress_D_1 0.0 KN/m**2\n"
       ]
      }
     ],
     "prompt_number": 27
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Problem 11.6,Page no.278"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Initilization of variables\n",
      "\n",
      "#d=Diameter of rod\n",
      "P=500 #KN\n",
      "e=0.75 #cm #eccentricity\n",
      "\n",
      "#calculation\n",
      "\n",
      "#A=pi*d**2*4**-1 #cm**2 #Area of rod\n",
      "#sigma_d=P*A**-1 #KN/cm**2 #stress due to direct load\n",
      "\n",
      "#After substituting value and simplifying we get,\n",
      "#sigma_d=2000*(pi*d**2)**-1 #KN/cm**2 \n",
      "\n",
      "M=P*e #Kn*cm #Moment\n",
      "\n",
      "#Z=pi*d**3*32**-1 #cm**3 #section modulus\n",
      "#sigma_b=M*Z**-1 #KN/cm**2 #Stress due to moment\n",
      "\n",
      "#After substituting value and simplifying we get,\n",
      "#sigma_b=12000*(pi*d**3)**-1 #KN/cm**2\n",
      "\n",
      "#Max stress \n",
      "#sigma=sigma_d+sigma_b \n",
      "\n",
      "#After substituting value and simplifying we get,\n",
      "#2000*(pi*d**2)**-1+12000*(pi*d**3)**-1=12.5\n",
      "\n",
      "#After simplifying we get,\n",
      "#d**3-53.05*d-318.3=0\n",
      "\n",
      "#From Synthetic Division we get d**2+4.73*d-42.918\n",
      "a=1\n",
      "b=-4.73\n",
      "c=-42.918\n",
      "\n",
      "X=b**2-(4*a*c)\n",
      "\n",
      "d_1=(-b+X**0.5)*(2*a)**-1\n",
      "d_2=(-b-X**0.5)*(2*a)**-1\n",
      "\n",
      "#Result\n",
      "print\"The minimum diameter of tie rod is\",round(d_1,2),\"cm\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The minimum diameter of tie rod is 9.33 cm\n"
       ]
      }
     ],
     "prompt_number": 5
    }
   ],
   "metadata": {}
  }
 ]
}