summaryrefslogtreecommitdiff
path: root/Strength_Of_Materials_by_B_K_Sarkar/Chapter08.ipynb
blob: 08e71ab571fe44c598a5ac45d8909d6f427fd162 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
{
 "metadata": {
  "name": "chapter 8 som.ipynb"
 },
 "nbformat": 3,
 "nbformat_minor": 0,
 "worksheets": [
  {
   "cells": [
    {
     "cell_type": "heading",
     "level": 1,
     "metadata": {},
     "source": [
      "Chapter 8:Springs"
     ]
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Problem 8.1,Page no.206"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Initilization of variables\n",
      "\n",
      "k=1 #KN/m #stiffness of spring\n",
      "P=45 #N #Maximum Load\n",
      "sigma_s=126 #MPa #Max shear stress\n",
      "L=4.5 #cm #Lenght of spring\n",
      "G=42 #GPa #Modulus of rigidity\n",
      "\n",
      "#Calculations\n",
      "\n",
      "#sigma_s_max=16*P*R*(pi*d**3)**-1 #Max shear stress\n",
      "\n",
      "#After substituting values in above equation and simolifying we get\n",
      "#1000=42*10**9*d**4*(64*R**3*n)**-1   (#Equation 1)\n",
      "\n",
      "#R=0.175*10**6*pi*d**3 #Radius of spring (Equation 2)\n",
      "\n",
      "#L=n*d #solid length of spring\n",
      "#Thus simplifying above equation, n=L*d**-1\n",
      "\n",
      "#substituting value of n and R in (equation 1) we get,\n",
      "\n",
      "d=(42*10**9*(1000*64*4.5*10**-2*(0.175*pi)**3*(10**6)**3)**-1)**0.25*10**2 #cm #diameter of helical spring\n",
      "\n",
      "#substituting value d in (equation 2) we get,\n",
      "R=0.175*10**6*pi*(d)**3*10**-6*100 #cm #Radius of coil\n",
      "D=2*R #cm #Mean diameter of coil\n",
      "n=0.045*0.00306**-1 #Number of turns\n",
      "\n",
      "\n",
      "#Result\n",
      "print\"The Diameter of wire is\",round(d,3),\"cm\"\n",
      "print\"The Mean Diameter of coil is\",round(D,2),\"cm\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The Diameter of coil is 0.306 cm\n",
        "The Mean Diameter of coil is 3.15 cm\n"
       ]
      }
     ],
     "prompt_number": 16
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Problem 8.2,Page no.207"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "import numpy as np\n",
      "\n",
      "#Initilization of variables\n",
      "\n",
      "L=15 #cm #Length of close coiled helical spring\n",
      "U=50 #N*m #Strain energy\n",
      "sigma_s=140 #MPa #Shear stress\n",
      "D=10 #cm #Mean coil diameter\n",
      "G=80 #GPa #Modulus of rigidity\n",
      "\n",
      "R=D*2**-1 #cm #Mean coil Radius\n",
      "\n",
      "#Calculations\n",
      "\n",
      "#Let dell be the deflection of the spring when fully compressed\n",
      "# 0.15-dell=n*d (Equation 1)\n",
      " \n",
      "#U=(sigma_s)**2*V*(4*G)**-1 #Strain energy\n",
      "\n",
      "#After substituting values in above equation and simolifying we get\n",
      "V=50*4*80*10**9*((140*10**6)**2)**-1 #m**3 #Volume of spring\n",
      "\n",
      "#But V=pi*4**-1*d**2*2*pi*R*n\n",
      "#After substituting values in above equation and simolifying we get\n",
      "#n=3.308*10**-3*(d**2)**-1 #Number of turns\n",
      "\n",
      "#We know, T=P*R \n",
      "#Now substituting values in T and simolifying we get\n",
      "#P=549.7787*10**6*d**3  #Load\n",
      "\n",
      "#U=P*dell*2**-1\n",
      "#After substituting values in above equation and simolifying we get\n",
      "#dell=0.18189*10**-6*d**3 #Deflection \n",
      "\n",
      "#After substituting values in above equation and simolifying we get\n",
      "\n",
      "#d**3-22.0533*10**-3*d**2-1.21261*10**-6=0\n",
      "\n",
      "coeff=[1,-22.0533*10**-3,0,-1.21261*10**-6]\n",
      "d=np.roots(coeff)  #Diameter of steel wire\n",
      "n=3.308*10**-3*((d[0])**2)**-1 #no.of coils\n",
      "\n",
      "#Result\n",
      "print\"Diameter of steel wire is\",d[0],\"m\"\n",
      "print\"number of coils\",n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Diameter of steel wire is (0.0241350343273+0j) m\n",
        "number of coils (5.67897110767+0j)\n"
       ]
      }
     ],
     "prompt_number": 9
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Problem 8.3,Page no.208"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Initilization of variables\n",
      "\n",
      "k=10 #KN/m #stiffness\n",
      "L=40 #cm #Length of coil when adjascent coil touch each other\n",
      "G=80 #GPa #Modulus of rigidity\n",
      "#dell=0.002*n #Max compression\n",
      "\n",
      "#Calculation\n",
      "\n",
      "#k=G*d**4*(8*D**3*n)**-1 #Stiffness\n",
      "#After substituting values in above equation and simolifying we get\n",
      "#d**4=D**3*n*10**-6     (Equation 1)\n",
      "\n",
      "#L=n*d, #After substituting values we get\n",
      "#n=0.4*d**-1            (Equation 2)\n",
      "\n",
      "#Again, d*D**-1=1*10**-1\n",
      "#After solving above ratios we get,D=10*d\n",
      "\n",
      "#After substituting values in Equation 1 And Equation 2 we get\n",
      "d=(10**3*0.4*10**-6)**0.5*100 #cm\n",
      "D=10*d #cm #Mean Diameter \n",
      "R=D*2**-1 #cm #Mean Radius\n",
      "n=0.4*(d*10**-2)**-1 #Number of turns\n",
      "dell=0.002*n*100 #Deflection\n",
      "\n",
      "#k=P*dell**-1 \n",
      "#after solving above equation we get\n",
      "P=k*10**3*dell*10**-2 #N #Load\n",
      "\n",
      "sigma_s_max=16*P*R*10**-2*(pi*(d*10**-2)**3)**-1 #N/m**2 #Max shear stress\n",
      "\n",
      "#Result\n",
      "print\"The wire diameter is\",round(d,2),\"cm\"\n",
      "print\"The Mean diameter is\",round(D,2),\"cm\"\n",
      "print\"Max Load applied is\",round(P,2),\"N\"\n",
      "print\"Max shear stress is\",round(sigma_s_max,0),\"N/m**2\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The wire diameter is 2.0 cm\n",
        "The Mean diameter is 20.0 cm\n",
        "Max Load applied is 400.0 N\n",
        "Max shear stress is 25464791.0 N/m**2\n"
       ]
      }
     ],
     "prompt_number": 39
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Problem 8.4,Page no.209"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Initilization of variables\n",
      "\n",
      "G=80 #GPa #Modulus of rigidity\n",
      "P=1 #KN #Load\n",
      "dell=10 #cm #Deflection\n",
      "sigma_s=350 #MPa #Max shear stress\n",
      "rho=78000 #N/m**3 #Density of materials\n",
      "\n",
      "#Calculations\n",
      "\n",
      "U=P*1000*dell*10**-2*2**-1 #N*m #Energy stored\n",
      "\n",
      "#Again U=sigma_s**2*V*(4*G)**-1 \n",
      "#After substituting values in above equation and further simplifying we get\n",
      "V=50*4*80*10**9*((350*10**6)**2)**-1 #m**3 #Volume\n",
      "\n",
      "W=V*rho #N #Weight\n",
      "\n",
      "#Now T=P*R=pi*d**3*sigma_s*16**-1\n",
      "#After substituting values in above equation and further simplifying\n",
      "D=(10**6*16*(2*pi*350*10**6)**-1)**0.5*10**2 #cm #Mean diameter of coil\n",
      "\n",
      "k=P*10**3*(dell*10**-2)**-1 #stiffness\n",
      "\n",
      "#Also k=D*n**-1*10**6\n",
      "#After substituting values in above equation and further simplifying\n",
      "n=10**6*D*10**-2*k**-1 #number of turns\n",
      "\n",
      "#Result\n",
      "print\"The Value of weight is\",round(W,3),\"N\"\n",
      "print\"Mean coil diameter is\",round(D,2),\"cm\"\n",
      "print\"The number of Turns is\",round(n,4)"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The Value of weight is 10.188 N\n",
        "Mean coil diameter is 8.53 cm\n",
        "The number of Turns is 8.5297\n"
       ]
      }
     ],
     "prompt_number": 19
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Problem 8.5,Page no.210"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Initilization of variables\n",
      "\n",
      "d=6 #mm #Diameter of steel wire\n",
      "n=50 #number of turns\n",
      "D=5 #cm #Mean Diameter\n",
      "R=D*2**-1 #cm #Radius of coil\n",
      "G=80 #GPa #Modulus of Rigidity\n",
      "P=150 #KN #Load\n",
      "\n",
      "#Calculation\n",
      "\n",
      "#Dell=64*P*R**3*n*(G*d**4)**-1 #Deflection\n",
      "#After substituting values in above equation and simplifying we get\n",
      "#P=2073.6*dell #Gradually applied equivalent Load\n",
      "\n",
      "#loss of potential Energy of the weight=Gain of strain Energy of the spring\n",
      "#150*(0.05+dell)=P*dell*2**-1\n",
      "#After substituting values in above equation we get\n",
      "\n",
      "#dell**2-0.1446*dell-0.00723=0\n",
      "#Above Equation is in the form of ax^2+bx+c=0\n",
      "\n",
      "a=1\n",
      "b=-0.1446\n",
      "c=-0.00723\n",
      "\n",
      "#First computing value of  b^2-4ac and store it in a variable say X\n",
      "X=b**2-(4*a*c)\n",
      "#now roots are given as x=(-b+X**0.5)/(2*a) and second root is negative sign before X\n",
      "\n",
      "\n",
      "dell_1=(-b+X**0.5)*(2*a)**-1*10**2\n",
      "dell_2=(-b-X**0.5)*(2*a)**-1*10**2\n",
      "\n",
      "P=2073.6*dell_1*10**-2 #N \n",
      "\n",
      "sigma=16*P*R*10**-2*(pi*(d*10**-3)**3)**-1 #N/m**2 #Max stress\n",
      "\n",
      "#Result\n",
      "print\"The Max Extension of the Spring is\",round(dell_1,2),\"cm\"\n",
      "print\"The Max stress is\",sigma,\"N/m**2\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The Max Extension of the Spring is 18.39 cm\n",
        "The Max stress is 224797751.663 N/m**2\n"
       ]
      }
     ],
     "prompt_number": 46
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Problem 8.6,Page no.209"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Initilization of variables\n",
      "\n",
      "W=200 #N #weight \n",
      "v=4 #m/s #velocity of spring\n",
      "sigma=600 #MPa #max allowable stress in spring\n",
      "G=80 #GPa #Modulus of rigidity\n",
      "rho=78000 #N/m**3 #density\n",
      "d=8 #mm #diameter of spring\n",
      "D=5 #cm #Mean Diameter of coil\n",
      "\n",
      "\n",
      "#Calculation \n",
      "\n",
      "E=W*v**2*(2*9.81)**-1 #N*m #Kinetic Energy #Notification has been changed\n",
      "\n",
      "#U=sigma_s**2*V*(4*G)**-1 #Strain Energy stored inthe spring\n",
      "\n",
      "#After substituting values in above equation and simplifying we get\n",
      "V=163.1*4*80*10**9*((600*10**6)**2)**-1  #Volume \n",
      "\n",
      "W=rho*V #N #Weight of spring\n",
      "\n",
      "#Now V=pi*4**-1*d**2*pi*D*n\n",
      "#After substituting values in above equation and simplifying we get\n",
      "n=0.000145*4*(pi**2*0.008**2*0.05)**-1 #number of turns of spring\n",
      "\n",
      "#T=P*R=pi*16**-1*d**3*sigma_s #Torsion\n",
      "#After substituting values in above equation and simplifying we get\n",
      "P=pi*0.008**3*600*10**6*(0.025*16)**-1 #N\n",
      "\n",
      "#Now U=P*dell*2**-1 \n",
      "#Again,After substituting values in above equation and simplifying we get\n",
      "dell=163.1*2*(2412.743)**-1*10**2 #cm\n",
      "\n",
      "#Result\n",
      "print\"The Max Deflection Produced is\",round(dell,2),\"cm\"\n",
      "print\"Number of coil are\",round(n,2),"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The Max Deflection Produced is 13.52 cm\n",
        "Number of coil are 18.36\n"
       ]
      }
     ],
     "prompt_number": 28
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Problem 8.7,Page no.211"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Initilization of variables\n",
      "\n",
      "n=12 #number of coils\n",
      "d=3 #cm #mean diameter\n",
      "k=720 #N/m #stiffness of spring\n",
      "sigma_s=190 #MPa #Max shear stress\n",
      "G=80 #GPa #Modulus of rigidity\n",
      "D=3 #mm #Diameter of outer spring\n",
      "\n",
      "#Calculations\n",
      "R=D*2**-1 #mm #Radius of outer spring\n",
      "\n",
      "#Dell_1=64*P*(R*10**-3**3*n*(G*10**9*(d*10**-3)**4)**-1 #m #Extension of first spring\n",
      "#After substituting values and further simplifying we get\n",
      "#Dell_1=0.0004*P #m\n",
      "\n",
      "#Dell_2=64*P*(R*10**-3**3*n*(G*10**9*(d_1)**4)**-1 #m #Extension of first spring\n",
      "#After substituting values and further simplifying we get\n",
      "#Dell_2=3.24*10**-14*P*(d_1**4)**-1 #m #where d_1 is diameter of inner spring\n",
      "\n",
      "#Dell=Dell_1+Dell_2\n",
      "#After substituting values and further simplifying we get\n",
      "#dell=0.0004*P+3.24*10**-14*P*((d)**4)**-1\n",
      "\n",
      "#But dell=P*k**-1=P*720**-1\n",
      "\n",
      "#Now substituting value of dell in above equation we get\n",
      "d_1=(3.24*10**-14*(1*720**-1-0.0004)**-1)**0.25 #cm #diameter of inner spring\n",
      "\n",
      "#Now T=P*R=pi*d_1**3*dell_s*sigma_s*16**-1\n",
      "#simplifying above equation further \n",
      "#P=pi*d**3*sigma_s*(16*R)**-1 \n",
      "#Now substituting values and further simplifying we get\n",
      "P=pi*d_1**3*sigma_s*10**6*(16*R*10**-2)**-1 #N #Limiting Load\n",
      "\n",
      "dell=P*k**-1*10**2 #cm #Total Elongation\n",
      "\n",
      "#Result\n",
      "print\"Greatest Load that can be carried by composite spring is\",round(P,0),\"N\"\n",
      "print\"Extension in spring is\",round(dell,2),\"cm\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Greatest Load that can be carried by composite spring is 34.0 N\n",
        "Extension in spring is 4.73 cm\n"
       ]
      }
     ],
     "prompt_number": 20
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Problem 8.8,Page no.212"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Initilization of variables\n",
      "\n",
      "#Outer spring\n",
      "n_1=10 #number of coils\n",
      "D_1=3 #cm #Diameter of coil\n",
      "d_1=3 #mm #diameter of wire\n",
      "dell_1=2 #cm #deflection of spring\n",
      "\n",
      "#Inner spring\n",
      "n_2=8 #number of coils\n",
      "\n",
      "G=80 #GPa #Modulus of rigidity\n",
      "\n",
      "#Calculation\n",
      "\n",
      "R_1=D_1*2**-1\n",
      "P_1=G*10**9*dell_1*10**-2*(d_1*10**-3)**4*(64*(R_1*10**-2)**3*n_1)**-1 #Load carried outer spring for compression of 2 cm\n",
      "\n",
      "P_2=100-P_1 #N #Load carried by inner spring\n",
      "k_2=P_2*0.01**-1 #N/m #stiffness of inner spring\n",
      "\n",
      "#D_2=D_1*10**-2-d_1*10**-3-2*dell_1*10**-2-d_2 #Diameter of inner spring\n",
      "#Further simplifying above equation we get\n",
      "#D_2=0.023-d_2\n",
      "\n",
      "#Now from stiffness equation of inner spring\n",
      "#k=G*d_2**4*(8*D_2**3*n_2)**-1\n",
      "#Now substituting values and further simplifying we get\n",
      "#d**4=(0.023-d)**3*312500**-1\n",
      "\n",
      "#As d is small compared with 0.023,as a first appromixation\n",
      "d_2_1=(0.023**3*312500**-1)**0.25 #m\n",
      "\n",
      "#Second Approximation\n",
      "d_2_2=((0.023-d_2_1)**3*312500**-1)**0.25 #m\n",
      "\n",
      "#Final approximation\n",
      "d_2_3=((0.023-d_2_2)**3*312500**-1)**0.25*100 #cm\n",
      "\n",
      "#Result\n",
      "print P_1\n",
      "print\"Stiffness of inner spring is\",round(k_2,2),\"N/m\"\n",
      "print\"Wire Diameter of inner spring is\",round(d_2_3,3),\"cm\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "60.0\n",
        "Stiffness of inner spring is 4000.0 N/m\n",
        "Wire Diameter of inner spring is 0.231 cm\n"
       ]
      }
     ],
     "prompt_number": 12
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Problem 8.9,Page no.212"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Initilization of variables\n",
      "\n",
      "L= 3 #m #Length of rod\n",
      "d_1=25*10**-3 #m #Diameter of rod\n",
      "n= 5 #no. of coils\n",
      "sigma=70*10**6 #MPa  #instantaneous stress\n",
      "E=70*10**9 #Pa \n",
      "G=80*10**9 #Pa\n",
      "D=24*10**-2 #Spring diameter\n",
      "R=d_2*2**-1 #spring radius\n",
      "d=4*10**-2 #diameter of steel\n",
      "\n",
      "#Calculations\n",
      "\n",
      "dell_1=sigma*L*(E)**-1\n",
      "\n",
      "#Let P be the equivalent applied Load which will produce same stress of 70 MPa\n",
      "P=pi*4**-1*(d_1)**2*E*10**-3 #KN\n",
      "\n",
      "#deflection of the spring is given by\n",
      "dell_2=P*64*R**3*n*(G*d**4)**-1 \n",
      "\n",
      "#Now Loss of Potential Energy of the weight=strain energy stored in the rod and the spring\n",
      "#Height measured from top of uncompressed  spring\n",
      "h=((P*dell_1*2**-1+P*dell_2*2**-1)*(5.5*10**3)**-1-(dell_1+dell_2))*10**2\n",
      "\n",
      "#Shear stress in the spring is given by\n",
      "sigma_s=16*P*R*(pi*d**3)**-1*10**-6 #MPa \n",
      "\n",
      "#Result\n",
      "print\"Height measured from top of uncompressed  spring\",round(h,2),\"cm\"\n",
      "print\"max shearing stress is\",round(sigma_s,2),\"MPa\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Height measured from top of uncompressed  spring 20.34 cm\n",
        "max shearing stress is 328.13 MPa\n"
       ]
      }
     ],
     "prompt_number": 18
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Problem 8.10,Page no.213"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Initilization of variables\n",
      "\n",
      "L=75 #cm #Legth of Leaf spring\n",
      "P=8 #KN #Load\n",
      "y_c=20 #mm #Deflection\n",
      "sigma=200 #MPa #Bending stress \n",
      "E=200 #GPa #modulus of Elasticity\n",
      "#b=12*t\n",
      "\n",
      "#Calculation\n",
      "\n",
      "#y_c=sigma*L**2*(4*E*t)**-1 \n",
      "#After substituting values and further simplifying we get\n",
      "t=200*10**6*(75*10**-2)**2*(4*200*10**9*0.02)**-1*10**2 #Thickness of plate\n",
      "\n",
      "b=12*t #width of plate\n",
      "\n",
      "#Now using relation we get\n",
      "#sigma=3*P*L*(2*n*b*t**2)**-1 \n",
      "#After substituting values and further simplifying we get\n",
      "n=3*8*10**3*0.75*(2*200*10**6*0.084*0.007**2)**-1\n",
      "\n",
      "#Y_c=L**2*(8*R)**-1\n",
      "R=(L*10**-2)**2*(8*y_c*10**-3)**-1 #m #Radius of spring\n",
      "\n",
      "#Result\n",
      "print\"The thickness of plate is\",round(t,2),\"cm\"\n",
      "print\"The width of plate is\",round(b,2),\"cm\"\n",
      "print\"The number of plate is\",round(n,2)\n",
      "print\"The Radius of plate is\",round(R,2)"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The thickness of plate is 0.7 cm\n",
        "The width of plate is 8.44 cm\n",
        "The number of plate is 10.93\n",
        "The Radius of plate is 3.52\n"
       ]
      }
     ],
     "prompt_number": 4
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Problem 8.11,Page no.214"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Initilization of variables\n",
      "\n",
      "L=75 #cm #span of laminated steel spring\n",
      "P=7.5 #KN #Load\n",
      "y_c=5 #cm #Central Deflection\n",
      "sigma=400 #MPa #Bending stress\n",
      "E=200 #GPa #Modulus of Elasticity\n",
      "#b=12*t\n",
      "\n",
      "#Calculations\n",
      "\n",
      "#y_c=3*P*L**3*(8*E*n*b*t**3)**-1 #Deflection\n",
      "#After substituting values and further simplifying we get\n",
      "#nt**4=9.887*10**-9   (Equation 1)\n",
      "\n",
      "#We Know sigma=3*P*L*(2*n*b*t**3)**-1 #bending stress\n",
      "#Again after substituting values and further simplifying we get\n",
      "#nt**3=1.757*10**-6   (Equation 2)\n",
      "\n",
      "#After Divviding (Equation 1) by (Equation 2) we have\n",
      "t=9.887*10**-9*(1.757*10**-6)**-1*10**2 #cm \n",
      "\n",
      "#substituting value of t in Equation 2) we get\n",
      "n=1.757*10**-6*((t*10**-2)**3)**-1 #Number of plates\n",
      "R=(L*10**-2)**2*(8*y_c*10**-2)**-1 #Radius of curvature\n",
      "\n",
      "#Result\n",
      "print\"The thickness of Plates is\",round(t,2),\"cm\"\n",
      "print\"The Number of Plates is\",round(n,2)\n",
      "print\"The Radius of Curvature of Plates is\",round(R,2),\"m\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The thickness of Plates is 0.56 cm\n",
        "The Number of Plates is 9.86\n",
        "The Radius of Curvature of Plates is 1.41 m\n"
       ]
      }
     ],
     "prompt_number": 2
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Problem 8.12,Page no.214"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Initilization of variables\n",
      "\n",
      "L=1.3 #m #Length of carriage spring\n",
      "b=10 #cm #width of spring\n",
      "t=12 #mm #thickness of spring\n",
      "sigma=150 #MPa #Bending stresses\n",
      "E=200 #GPa #Modulus of Elasticity\n",
      "U=120 #N*m #Strain Energy\n",
      "\n",
      "#Calculation\n",
      "\n",
      "#V=n*b*t*L #Volume of carriage spring\n",
      "#U=sigma**2*(6*E)**-1*V\n",
      "#After substituting values in above equation and further simplifying we get\n",
      "n=120*6*200*10**9*2*((150*10**6)**2*10*10**-2*12*10**-3*1.3)**-1\n",
      "\n",
      "sigma_1=(120*6*200*10**9*2*(9*0.1*0.012*1.3)**-1)**0.5*10**-6 #MPa #Actual Bending stress\n",
      "\n",
      "R=E*t*(2*sigma_1)**-1 #m \n",
      "\n",
      "#Result\n",
      "print\"The number of plates is\",round(n,2)\n",
      "print\"Radius of curvature is\",round(R,3)"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The number of plates is 8.21\n",
        "Radius of curvature is 8.379\n"
       ]
      }
     ],
     "prompt_number": 10
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Problem 8.13,Page no.215"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Initilization of variables\n",
      "\n",
      "P=200 #N #Load\n",
      "h=10 #cm #Height of Load dropped\n",
      "n=10 #Number of turns\n",
      "b_1=5 #cm #width of plates\n",
      "t=6 #mm #thickness of plates\n",
      "L=75 #cm #Length of plates\n",
      "E=200 #GPa #Modulus of Elasticity\n",
      "\n",
      "#Calculaion\n",
      "\n",
      "#Let P be the equivalent gradually applied load whuch would cause the same stress as is caused by the impact Load\n",
      "#200(0.1+dell)=P*dell*2**-1 (Equation 1)\n",
      "\n",
      "#dell=3*P*L**3*(8*E*n*b*t**3)**-1 #Deflection\n",
      "#After substituting values in above equation and further simplifying we get\n",
      "#P=136533.33*dell\n",
      "\n",
      "#After substituting values of P in (equation 1) and further simplifying we get\n",
      "#200(0.1+dell)=136533.33*dell**2*2**-1\n",
      "\n",
      "#simplifying above equation we get\n",
      "#dell**2-2.93*10**-3*dell-2.93*10**-4=0\n",
      "#The Above Equation is in the form of ax**2+bx+c=0\n",
      "a=1\n",
      "b=-2.93*10**-3\n",
      "c=-2.93*10**-4\n",
      "\n",
      "#First computing value of  b^2-4ac and store it in a variable say X\n",
      "X=b**2-(4*a*c)\n",
      "#now roots are given as x=(-b+X**0.5)/(2*a) and second root is negative sign before X\n",
      "\n",
      "dell_1=(-b+X**0.5)*(2*a)**-1\n",
      "dell_2=(-b-X**0.5)*(2*a)**-1\n",
      "\n",
      "#Now deflection cannot be negative so consider value of dell_1\n",
      "\n",
      "P=136533.33*dell_1\n",
      "sigma=3*P*L*10**-2*(2*n*b_1*10**-2*(t*10**-3)**2)**-1*10**-6 #MPa #Max instantaneous stress\n",
      "R=(L*10**-2)**2*(8*dell_1)**-1 #Radius of curvature\n",
      " \n",
      "#Result\n",
      "print\"Max instantaneous stress in plates is\",round(sigma,2),\"MPa\"\n",
      "print\"Radius of curvature of spring is\",round(R,2),\"m\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Max instantaneous stress in plates is 159.1 MPa\n",
        "Radius of curvature of spring is 3.77 m\n"
       ]
      }
     ],
     "prompt_number": 5
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Problem 8.14,Page no.215"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Initilization of variables\n",
      "\n",
      "L=70 #cm #Length of Longest plate\n",
      "P=3.5 #KN #central Load\n",
      "y_c=1.8 #cm #central deflection\n",
      "sigma=190 #MPa #allowable bending stress\n",
      "#b=12*t\n",
      "E=200 #GPa #Modulus of Elasticity\n",
      "\n",
      "#Calculation\n",
      "\n",
      "y_c=3*P*L**3*(8*n*E*b*t**3)**-1 #Deflection (#Equation 1)\n",
      "sigma=3*P*L*(2*n*b*t**2)**-1 #stress\n",
      "#Dividing Equation 1 by Equation 2 we get\n",
      "#y_c*sigma**-1=L**2*(4*E*t)**-1\n",
      "#After substituting values in above equation and further simplifying we get\n",
      "t=190*10**6*0.7**2*(1.8*10**-2*4*200*10**9)**-1*10**3 #thickness of plate\n",
      "b=12*t #Width of plates\n",
      "\n",
      "#sigma=3*2**-1*P*L*(n*b*t**2)**-1 #stress\n",
      "#After substituting values in above equation and further simplifying we get\n",
      "n=3*3.5*10**3*0.7*(2*190*10**6*0.077583*(6.465*10**-3)**2)**-1\n",
      "\n",
      "#Now sigma*y**-1=E*R**-1 \n",
      "#simplifying above equationwe get\n",
      "R=200*10**9*6.465*10**-3*(2*190*10**6)**-1 #Radius of Curvature\n",
      "a=L*10**-2*(2*n)**-1*10**3 #Overlap\n",
      "\n",
      "#Result\n",
      "print\"size of the plate is:\",round(b,2),\"mm\"\n",
      "print\"                    :\",round(t,2),\"mm\"\n",
      "print\"Overlap of plates is\",round(a,2),\"mm\"\n",
      "print\"Number of plates is\",round(n,2)\n",
      "print\"The Radius of curvature is\",round(R,3),\"m\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "size of the plate is: 77.58 mm\n",
        "                    : 6.47 mm\n",
        "Overlap of plates is 58.68 mm\n",
        "Number of plates is 5.96\n",
        "The Radius of curvature is 3.403 m\n"
       ]
      }
     ],
     "prompt_number": 39
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Problem 8.15,Page no.216"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Initilization of variables\n",
      "\n",
      "alpha=30 #degree #helix angle\n",
      "dell=2.3*10**-2 #m #Vertical displacement\n",
      "W=40 #N #Axial Load\n",
      "d=6*10**-3 #steel rod diameter\n",
      "E=200*10**9 #Pa \n",
      "G=80*10**9 #Pa \n",
      "\n",
      "#Calculations\n",
      "\n",
      "#from equation of deflection of the spring under the Load we get\n",
      "#R**3*n=8.49*10**-4 \n",
      "\n",
      "#Let R**3*n=X\n",
      "X=8.49*10**-4  #Equation 1\n",
      "\n",
      "#from equation of angular rotation\n",
      "#R**2*n=8.1*10**-3\n",
      "\n",
      "#Let R**2*n=Y\n",
      "Y=8.1*10**-3   #Equation 2\n",
      "\n",
      "#After dividing equation 1 by equation 2 we get R \n",
      "#Let Z=R\n",
      "\n",
      "Z=X*Y**-1\n",
      "R=Z*10**2 #cm #Mean Radius\n",
      "\n",
      "#Result\n",
      "print\"Mean Radius of Open coiled spring of helix angle is\",round(R,2),\"cm\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Mean Radius of Open coiled spring of helix angle is 10.48 cm\n"
       ]
      }
     ],
     "prompt_number": 4
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Problem 8.16,Page no.217"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Initilization of variables\n",
      "\n",
      "n=10 #Number of coils\n",
      "sigma=100 #MPa #Bending stress\n",
      "sigma_s=110 #MPa #Twisting stress\n",
      "#D=8*d\n",
      "dell=1.8 #cm #Max extension of of wire\n",
      "E=200 #GPa #Modulus of Elasticity\n",
      "G=80 #GPa #Modulus od Rigidity\n",
      "\n",
      "#Calculation\n",
      "\n",
      "#M=W*R*sin_alpha=pi*d**3*sigma_1*32**-1 #(Equation 1) #Bending moment\n",
      "#As D=8*d \n",
      "#then R=D*2**-1\n",
      "#Therefore, R=4*d\n",
      "\n",
      "#Now substituting values in equation 1 we get\n",
      "#W*sin_alpha=2454369.3*d**2  (Equation 2)\n",
      "\n",
      "#T=W*R*cos_alpha=pi*d**3*sigma_s #Torque  (Equation 3)  \n",
      "#Now substituting values in equation 3 we get\n",
      "#W*cos_alpha=5399612.4*d**2    (Equation 4)\n",
      "\n",
      "#Dividing Equation 2 by Equation 4 we get,\n",
      "#tan_alpha=0.4545\n",
      "alpha=arctan(0.4545)*180*pi**-1\n",
      "\n",
      "#From Equation 2 we get\n",
      "#W=2454369.3*d**2*(sin24.443)**-1\n",
      "#W=5931241.1*d**2   (Equation 5)\n",
      "\n",
      "#dell=64*W*R**3*n*sec_alpha*(d**4)**-1*((cos_alpha)**2*G**-1+2*sin_alpha**2*E**-1)\n",
      "#Now substituting values in above equation  we get\n",
      "#W=33140.016*d  (Equation 6)\n",
      "\n",
      "#From Equation 5 and Equation 6 we get\n",
      "#5931241.1*d**2=33140.016*d\n",
      "#After simplifying above equation we get\n",
      "d=33140.016*5931241.1**-1 #m #Diameter of wire\n",
      "W=33140.016*d #N #MAx Permissible Load\n",
      "\n",
      "#Result\n",
      "print\"The Max Permissible Load is\",round(W,2),\"N\"\n",
      "print\"Thw Wire Diameter is\",round(d,6),\"m\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The Max Permissible Load is 185.17 N\n",
        "Thw Wire Diameter is 0.005587 m\n"
       ]
      }
     ],
     "prompt_number": 1
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Problem 8.18,Page no.218"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Initilization of variables\n",
      "\n",
      "#Calculation\n",
      "\n",
      "n=10 #number of coils\n",
      "d=2*10**-2 #m #Diameter of wire\n",
      "D=12*10**-2 #m #Diameter of coiled spring\n",
      "R=0.06 #m #Radius of coiled spring\n",
      "dell=0.5*10**-2 #Deflection\n",
      "E=200*10**9 #Pa \n",
      "G=80*10**9 #Pa \n",
      "alpha=30 #degree\n",
      "\n",
      "#Calculations\n",
      "\n",
      "#beta=64*W*R**2*n*sinalpha*(d**4)**-1*(1*G**-1-2*E**-1)+64*T*R*n*secalpha*(d**4)**-1*(sin**2alpha*G**-1+2*cos**2alpha*E**-1)=0\n",
      "#From above equation anf simplifying we get\n",
      "\n",
      "#T=-6.11*10**-3*W\n",
      "\n",
      "#dell=64*W*R**3*n*sec(alpha)*(d**4)**-1*[(cos(alpha))**2*G**-1+2*(sin(alpha))**2*E**-1]+64*T*R**2*n*sin(alpha)*(d**4)**-1*[1*G**-1+2*E**-1]\n",
      "\n",
      "#After substituting Values and further simplifying we get\n",
      "#1.1847*10**-5*W+1.62*10**-4*T=0.005\n",
      "\n",
      "#Now substituting value of T in above equation we get\n",
      "#1.1847*10**-5*W-9.8982*10**-7*W=0.005\n",
      "W=0.005*(1.1847*10**-5-9.8982*10**-7)**-1 #N\n",
      "T=-6.11*10**-3*W #N*m\n",
      "\n",
      "#Result\n",
      "print\"The axial Load is\",round(W,2),\"N\"\n",
      "print\"Necesscary torque is\",round(T,2),\"N*m\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The axial Load is 460.52 N\n",
        "Necesscary torque is -2.81 N*m\n"
       ]
      }
     ],
     "prompt_number": 22
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Problem 8.19,Page no.219"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Initilization of variables\n",
      "\n",
      "d=6 #mm #Diameter of steel wire\n",
      "n=1 #number of turns\n",
      "D=6.5 #cm #Mean of diameter\n",
      "G=80 #GPa #modulus of rigidity\n",
      "P_1=150 #Load\n",
      "p=1.5 #cm #Pitch of coil\n",
      "\n",
      "#Calculation \n",
      "\n",
      "R=D*2**-1\n",
      "#For one turn deflection is\n",
      "dell=p-d*10**-1 #cm \n",
      "\n",
      "#dell=64*P*R**3*n*(G*d**4)**-1 \n",
      "#Now, after simplifying further we get,\n",
      "P=dell*10**-2*G*10**9*(d*10**-3)**4*(64*(R*10**-2)**3*n)**-1 #N #Axial Load\n",
      "\n",
      "dell_2=dell*8 #cm #Total Displacement #Notification has been changed\n",
      "U=P*dell_2*10**-2*2**-1 #N-m #Strain Energy\n",
      "\n",
      "#Potential Energy given by 150N Load is\n",
      "#U=150*(h+0.072)\n",
      "\n",
      "#After simplifying above equation we get\n",
      "h=(U*P_1**-1-0.072)*10**2 #cm #Height from which 150 N load falls\n",
      "\n",
      "#Result\n",
      "print\"Axial Load is\",round(P,2),\"N\"\n",
      "print\"Height from which 150 N load falls is\",round(h,2),\"cm\" "
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Axial Load is 424.72 N\n",
        "Height from which 150 N load falls is 2.99 cm\n"
       ]
      }
     ],
     "prompt_number": 25
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Problem 8.20,Page no.219"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Initilization of variables\n",
      "\n",
      "alpha=30 #degree \n",
      "E=200*10**9 #Pa\n",
      "G=80*10**9 #pa \n",
      "\n",
      "#Calculations\n",
      "\n",
      "#For alpha=30 #Degree\n",
      "#dell=64*W*R**3*n*sec(alpha)*(d**4)**-1*(cos(alpha)**2*G**-1+2*sin(alpha)**2*E**-1)\n",
      "#Now substituting values in above equation we get\n",
      "\n",
      "#dell_1=64*W*R**3*n*(d**4)**-1*1330*(10**9)**-1  (equation 1)\n",
      "\n",
      "#For alpha=0 #Degree\n",
      "#dell=64*W*R**3*n*sec(alpha)*(d**4)**-1*(cos(alpha)**2*G**-1+2*sin(alpha)**2*E**-1)\n",
      "#Now substituting values in above equation we get\n",
      "\n",
      "#dell_2=64*W*R**3*n*(d**4)**-1*1250*(10**9)**-1  (equation 2)\n",
      "\n",
      "#subtracting equation 1 and equation 2 we get\n",
      "#Let dell_1-dell_2=X\n",
      "#X=64*W*R**3*n*(d**4)**-1*80*(10**9)\n",
      "\n",
      "#Let Y=X*dell_1**-1*100\n",
      "Y=80*1330**-1*100 #% under estimation of axial extension\n",
      "\n",
      "#Result\n",
      "print\"% under estimation of axial extension is\",round(Y,2)"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "% under estimation of axial extension is 6.02\n"
       ]
      }
     ],
     "prompt_number": 12
    }
   ],
   "metadata": {}
  }
 ]
}