summaryrefslogtreecommitdiff
path: root/Strength_Of_Materials_by_B_K_Sarkar/Chapter05.ipynb
blob: f706786e21740ac69da91aff93933945f166692c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
{
 "metadata": {
  "name": "chapter 5 som.ipynb"
 },
 "nbformat": 3,
 "nbformat_minor": 0,
 "worksheets": [
  {
   "cells": [
    {
     "cell_type": "heading",
     "level": 1,
     "metadata": {},
     "source": [
      "Chapter 5:Bending Stresses in Beams"
     ]
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Problem 5.1,Page no.121"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Initilization of variables\n",
      "\n",
      "b=100 #mm #width of timber joist\n",
      "d=200 #mm #depth of joist\n",
      "L=3 #m #Length of beam\n",
      "sigma=7 #KN/mm**2 #bending stress\n",
      "w_1=5 #KN/mm**2 #unit weight of timber\n",
      "\n",
      "#Calculations\n",
      "w=0.1*0.2*1*5*100 #N/m #self weight of the joist\n",
      "I_xx=1*12**-1*100*200**3 #mm**4 #M.I of section about N.A\n",
      "\n",
      "#M=W*L+w*L**2*2**-1 #Max Bending moment\n",
      "#Therefore,M=(3*W+450)\n",
      "\n",
      "#using the relation M*I**-1=sigma*y**-1,we get\n",
      "W=(((7*2*10**8)*(100*10**3*3)**-1)-450)*3**-1 #N #Max Load applied\n",
      "\n",
      "#Result\n",
      "print\"The Max value of Load applied is\",round(W,2)\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The Max value of Load applied is 1405.56\n"
       ]
      }
     ],
     "prompt_number": 1
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Problem 5.2,Page no.122"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Initilization of variables\n",
      "\n",
      "D=160 #mm #Overall Depth\n",
      "B=150 #mm #Width of Flange\n",
      "f_t=40 #mm #Flange thickness\n",
      "W_t=50 #mm #Web thickness\n",
      "sigma_t=20 #N/mm**2 #tension stress\n",
      "sigma_c=75 #N/mm**2 #compression stress\n",
      "\n",
      "#Calculations\n",
      "\n",
      "#Rectangle-1\n",
      "a_1=150*40 #mm**2 #Area of Rectangle-1\n",
      "y_1=40*2**-1 #mm #C.G of Rectangle-1\n",
      "\n",
      "#Rectangle-2\n",
      "a_2=120*50 #mm**2 #Area of Rectangle-2\n",
      "y_2=40+120*2**-1 #mm #C.G of Rectangle-2\n",
      "\n",
      "Y_bar=(a_1*y_1+a_2*y_2)*(a_1+a_2)**-1 #mm #Distance of C.G from the bottom flange\n",
      "I=1*12**-1*150*40**3+150*40*(60-40)**2+1*12**-1*50*120**3+50*120*(100-60)**2 #mm**4 #M.I of section about N.A\n",
      "y_t=60 #mm #Permissible tensile stress at the bottom face of flange from N.A\n",
      "y_c=100 #mm #Permissible tensile stress at the top face of flange from N.A\n",
      "\n",
      "#M=W*L*4**-1 #Max bending mooment at the centre\n",
      "\n",
      "#Using the relation M*I**-1=sigma_t*y_t**-1 we get\n",
      "W=(0.333*4*272*10**5)*(2.5*1000)**-1 #N #MAx central load\n",
      "\n",
      "#Result\n",
      "print\"The Max Bending Moment at the centre is\",round(W,2),\"N\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The Max Bending Moment at the centre is 14492.16 N\n"
       ]
      }
     ],
     "prompt_number": 4
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Problem 5.3,Page no.123"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Initilization of variables\n",
      "\n",
      "b=10 #cm #width of beam\n",
      "d=20 #cm depth of beam\n",
      "\n",
      "#Calculations\n",
      "\n",
      "#R_a and R_b are the reactions at A and B respectively.\n",
      "#Moment of all forces about A\n",
      "\n",
      "R_b=(4*4*4*2**-1-2*1.5)*(2)**-1 #KN \n",
      "#R_a+R_b=18 \n",
      "R_a=18-R_b\n",
      "\n",
      "#Consider a section at a distance x from A\n",
      "#M_x=9.25*x-2(x-1.5)-4*x*x*2**-1=7.25*x+3-2*x**2 \n",
      "\n",
      "#Taking derivative of above equation to find max value of M_x we get\n",
      "x=1.81 #m\n",
      "\n",
      "M=7.25*x+3-2*x**2 #kN*m \n",
      "I=b*d**3*12**-1 #cm**4 #M.I of the section\n",
      "y=10 \n",
      "sigma=M*I**-1*y*10**8*(10**2)**-1 #Max bending stress\n",
      "\n",
      "#Result\n",
      "print\"The Max Bending stress is\",round(sigma,2),\"KN/m**2\"\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The Max Bending stress is 14355.45 KN/m**2\n"
       ]
      }
     ],
     "prompt_number": 7
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Problem 5.4,Page no.124"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Initilization of variables\n",
      "\n",
      "sigma=8 #N/mm**2 #Max bending stress\n",
      "W=5000 #N/m**2 #Load of floor\n",
      "A=450 #cm**2 #Area of joist\n",
      "L=5 #m #span of floor\n",
      "\n",
      "#Calculations\n",
      "#Let x be the centre to centre spacingof the joists\n",
      "\n",
      "#A_1=5*x**2 #m**2 #Area  of floor between any two joists\n",
      "#W_1=5*x*W #N #total load supported by one interior joist\n",
      "#M=W_1*L*8**-1 #Max bending moment \n",
      "I=1*12**-1*b*(d*10**-2)**3*10**-2 #m**4 #M.I of joist\n",
      "y=0.15 #cm #Distance of of farthest fibre\n",
      "M=I*y**-1*sigma #N*m\n",
      "\n",
      "#Now equating to max bending moment we get\n",
      "x=(18000*8)*(25000*5)**-1\n",
      "\n",
      "#Result\n",
      "print\"The Max Bending Moment is\",round(x,2),\"m\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The Max Bending Moment is 1.15 m\n"
       ]
      }
     ],
     "prompt_number": 9
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Problem 5.7,Page no.126"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Initilization of variables\n",
      "\n",
      "d=12 #m #depth of mast\n",
      "D_1=20 #cm #diameter at the base \n",
      "D_2=10 #cm #diameter at the top\n",
      "\n",
      "#Calculations\n",
      "\n",
      "#Consider section at a distance x cm below top of mast and y be the diameter at this section\n",
      "\n",
      "#triangle OAB and ODC are similar,we get\n",
      "#2*AB=x*120**-1\n",
      "#EB=y=10+x*120**-1\n",
      "#after simplifying we get, x=120*(y-10)\n",
      "\n",
      "#Z=pi*64**-1*y**4)*(y*32**-1)**-1 #Section modulus\n",
      "#After simplifying we get\n",
      "#Z=(pi*y**3)*(32)**-1\n",
      "\n",
      "#M=120*P(y-10) #bending moment at that section\n",
      "\n",
      "#From flexural formula we get,\n",
      "#sigma=M*Z**-1\n",
      "#After substituting and simplifying above equation we get,\n",
      "#sigma=3840*P*pi**-1*(1*y**2-1-10*y**3-1)\n",
      "\n",
      "#To find max value of sigma taking derivative of above equation we get\n",
      "y=15 #cm\n",
      "\n",
      "#Now substituting value of y in all equations with variable y\n",
      "x=120*(y-10)\n",
      "#sigma=3840*P*(15-10)*(pi*15**3)**-1 \n",
      "\n",
      "#After implifying above equation we get\n",
      "\n",
      "P=(3500*pi*15**3)*(3840*5)**-1 #N #Magnitude of load causing failure\n",
      "\n",
      "#Result\n",
      "print\"The Magnitude of Load is\",round(P,2),\"N\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The Magnitude of Load is 1932.82 N\n"
       ]
      }
     ],
     "prompt_number": 10
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Problem 5.8,Page no.127"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Initilization of variables\n",
      "\n",
      "L=3 #m #span of beam\n",
      "t=20 #mm #Thickness of steel\n",
      "D=200 #mm #overall depth \n",
      "B=140 #mm #overall width\n",
      "b=100 #mm #width of inner rectangle\n",
      "d=160 #mm #depth of inner rectangle\n",
      "w=77 #KN/mm**2\n",
      "sigma=100 #N/mm**2 #Bending stress\n",
      "#Calculations\n",
      "V=((D*10**-3*B*10**-3)-(d*10**-3*b*10**-3)) #m**3 #Volume of rectangular box\n",
      "W=V*3*w #KN #Weight of Beam\n",
      "I=(B*D**3-b*d**3)*12**-1 #mm**4 #M.I of beam section\n",
      "\n",
      "#Now using the relation,M*I**-1=sigma*y**-1\n",
      "\n",
      "y=200 #mm #distance from farthest fibre\n",
      "M=I*sigma*2*y**-1 #N*mm\n",
      "\n",
      "#M=3000*W+2772*3000*2**-1\n",
      "#After sub values in above equation we get\n",
      "\n",
      "W=((59.2*10**6-2772*3000*2**-1)*(3000)**-1)*10**-3 #KN #Max concentrated Load at free end\n",
      "\n",
      "F=W+2.772*2**-1 #KN #shear force at half length\n",
      "\n",
      "#Result\n",
      "print\"The shear force at half length is\",round(F,2),\"KN\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The shear force at half length is 19.73 KN\n"
       ]
      }
     ],
     "prompt_number": 15
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Problem 5.9,Page no.128"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Initilization of variables\n",
      "\n",
      "B=24 #mm #width of beam section\n",
      "D=21.7 #mm #depth of beam section\n",
      "E_1=11440 #MN/m**2 #Modulus of Elasticity parallel grain\n",
      "E_2=2860 #MN/m**2 ##Modulus of Elasticity perpendicular grain\n",
      "sigma_1=8.57 #MN/m**2\n",
      "sigma_2=2.14 #MN/m**2\n",
      "L=1.2 #m #span of beam\n",
      "\n",
      "#Calculations\n",
      "\n",
      "#Ratio of smaller modulus to larger modulus is E_2:E_1=1:4\n",
      "#Dimension of transformed Beam section\n",
      "b=18 #mm #width of Beam section\n",
      "d=3.1 #mm #depth of beam section\n",
      "\n",
      "I=(1*12**-1*B*10**-3*(D*10**-3)**3)-(3*(1*12**-1*b*10**-3*(d*10**-3)**3)) #m**4 #M.I of transformed section\n",
      "y=21.7*10**-3*2**-1 \n",
      "M=I*sigma_1*10**6*y**-1 #N*m #Safe B.M\n",
      "P=4*M*L**-1 #N\n",
      "\n",
      "#Result\n",
      "print\"Safe value of Load is\",round(P,2),\"N\" "
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Safe value of Load is 53.45 N\n"
       ]
      }
     ],
     "prompt_number": 28
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Problem 5.11,Page no.131"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Initilization of variables\n",
      "\n",
      "D=4 #cm #Outside diameter\n",
      "d=3 #cm #inside diamter\n",
      "L=2 #m #span of beam\n",
      "W=1000 #N #Max safe Load\n",
      "\n",
      "#Calculations\n",
      "\n",
      "I=pi*64**-1*(D**4-d**4) #cm**4 #M.I\n",
      "A=pi*4**-1*(D**2-d**2) #cm**2 #Area \n",
      "y=2 \n",
      "Z=I*y**-1 #cm**3 #Section modulus\n",
      "\n",
      "M=W*L*4**-1 #N*cm #Max bending moment\n",
      "\n",
      "#From Flexural Formula\n",
      "sigma=M*Z**-1 #N/cm**2\n",
      "\n",
      "#For Tubes\n",
      "#M.I about x-x axis\n",
      "I_1=4*(8.59+5.492*2**2) #cm**4 \n",
      "\n",
      "Z_1=122.32*4**-1 #cm**3 \n",
      "\n",
      "#M=W_1*200*4**-1 #N*cm\n",
      "#After substituting values we get\n",
      "#M=50*W_1 (equation 1)\n",
      "\n",
      "#Again from Flexural Formula\n",
      "M=sigma*Z_1\n",
      "\n",
      "#substitute value of M in equation 1\n",
      "\n",
      "W=11640*30.58*50**-1 #N\n",
      "\n",
      "#Result\n",
      "print\"Max central load is\",round(W,2),\"N\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Max central load is 7119.02 N\n"
       ]
      }
     ],
     "prompt_number": 33
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Problem 5.12,Page no.133"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Initilization of variables\n",
      "\n",
      "b=200 #mm #width of beam\n",
      "d=300 #mm #depth of beam\n",
      "t=12 #mm #thickness of beam\n",
      "E_s=220 #KN/m**2 #modulus of elasticity of steel\n",
      "E_w=11 #KN/m**2 #modulus of elasticity of timber\n",
      "sigma_s=115 #MN/m**2 #stress of steel\n",
      "sigma_w=9.2 #MN/m**2 #stress of timber\n",
      "L=2 #m #Span of beam\n",
      "\n",
      "#Calculations\n",
      "\n",
      "#E_w*E_s**-1=1*20**-1 #ratio of Modulus of elasticity of timber to steel\n",
      "\n",
      "\n",
      "#(Part-1)\n",
      "b_1=b*20**-1 #mm #web thickness of transformed section\n",
      "stress=20*sigma_w #MN/m**2 #Allowable stress in web of equivalen beam\n",
      "#But allowable stress in flanges is sigma_s is 115 KN/m**2 and therefore taken into consideration\n",
      "\n",
      "\n",
      "d_1=324 #mm #depth of beam with thickness in consideration\n",
      "I=1*12**-1*0.2*0.324**3-2*1*12**-1*0.095*0.3**3 #m**4 #M.I of transformed section\n",
      "\n",
      "#Using Relation, M*I**-1=sigma*y**-1 we get\n",
      "\n",
      "#Part-2\n",
      "M_max=I*(324*10**-3*2**-1)**-1*sigma_s*10**6 #N*m #Max allowable Bending moment for steel section\n",
      "\n",
      "#Part-3\n",
      "#As beam is simply supported at the ends and the load is applied at the centre of beam\n",
      "#M_max=W*L*4**-1 #Max Bending moment \n",
      "W=M_max*4*L**-1 #N #Allowable stress Load\n",
      "\n",
      "#Result\n",
      "print\"Web thickness of Equivalent steel section is\",round(b_1,2),\"mm\"\n",
      "print\"Max Allowable bending moment for section is\",round(M_max,2),\"N*m\"\n",
      "print\"Allowable safe Load is\",round(W,2),\"N\"\n",
      " "
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Web thickness of Equivalent steel section is 10.0 mm\n",
        "Max Allowable bending moment for section is 98935.78 N*m\n",
        "Allowable safe Load is 197871.56 N\n"
       ]
      }
     ],
     "prompt_number": 6
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Problem 5.13,Page no.135"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Initilization of variables\n",
      "\n",
      "d=10 #cm #distance between joists\n",
      "t=2 #cm #thickness of steel plate \n",
      "d_2=20 #cm #depth of beam\n",
      "sigma_t=8.5 #N/mm**2 #stress in timber \n",
      "E_s=2*10**5 #N/mm**2 #Modulus of elasticity of steel\n",
      "E_t=10**4 #N/mm**2 ##Modulus of elasticity of timber\n",
      "L=5 #cm #span of beam\n",
      "\n",
      "#calculation\n",
      "sigma=10*15**-1*sigma_t #stress in timber at distance of 10 cm from XX\n",
      "\n",
      "dell=sigma*E_t**-1 #strain in timber at 10 cm from XX\n",
      "\n",
      "sigma_s=dell*E_s #N/mm**2 #Max stress\n",
      "\n",
      "#For Timber\n",
      "Z_w=1*6**-1*10*30**2*2 #cm**3 #section modulus of timber\n",
      "M_w=sigma_t*100*Z_w #moment of resistance of timber\n",
      "\n",
      "#For steel\n",
      "Z_s=1*6**-1*2*20**2 #cm**3 #section modulus of steel\n",
      "M_s=sigma_s*Z_s*100  #moment of resistance of steel\n",
      "\n",
      "M=(M_w+M_s)*10**-5 #total moment of resistance\n",
      "\n",
      "#M=w*L**2*8**-1 #N*m #Max bending moment\n",
      "w=8*M*(L**2)**-1 #N/m #Max uniform distributed Load\n",
      "\n",
      "#Result\n",
      "print\"Moment of resistance is\",round(M,3),\"N*cm\"\n",
      "print\"Max uniform distributed Load\",round(w,3),\"N/m\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Moment of resistance is 40.611 N*cm\n",
        "Max uniform distributed Load 12.996 N/m\n"
       ]
      }
     ],
     "prompt_number": 25
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Problem 5.14,Page no.136"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Initilization of variables\n",
      "\n",
      "B=10 #cm #width of timber section\n",
      "D=15 #cm #depth of timber section\n",
      "b=10 #cm #width of steel plate\n",
      "t=12 #mm #thickness \n",
      "w=3 #KN/m #Uniformly distributed Load\n",
      "L=4 #m #Span of beam\n",
      "m=20 #Ratio of modulus of elasticity of steel to timber \n",
      "W=3 #KN/m #Load\n",
      "\n",
      "#Calculations\n",
      "\n",
      "y_1=15*2**-1 #C.G of timber \n",
      "y_2=1.2*2**-1 #C.G of steel plate\n",
      "b_s=10*m**-1 #cm #Equivalent width of steel\n",
      "Y_bar=(10*1.2*0.6+15*0.5*8.7)*(10*1.2+15*0.5)**-1 #cm #distance of C.G from bottom edge\n",
      "\n",
      "I=1*12**-1*10*(1.2)**3+10*1.2*(3.72-0.6)**2+1*12**-1*0.5*(15)**3+0.5*15*(7.5-3.72)**2\n",
      "M=W*10**5*L**2*8**-1 #N*m\n",
      "\n",
      "Y_bar_1=3.72 #cm #C.G from bottom edge\n",
      "Y_bar_2=16.2-Y_bar #cm #C.G from top edge\n",
      "\n",
      "sigma_1=(M*I**-1*Y_bar_1)*10**-2 #N/mm**2 #stress at bottom\n",
      "\n",
      "sigma_2=(M*I**-1*Y_bar_2)*10**-2 #N/mm**2 #stress at top\n",
      "\n",
      "sigma_max=sigma_2*m**-1 \n",
      "\n",
      "#The Answers in book for Moment of Inertia about x-x axis onwards are incorrect\n",
      "\n",
      "#Result\n",
      "print M\n",
      "print\"The Max Stress in steel is\",round(sigma_1,2),\"N/mm**2\"\n",
      "print\"The Max Stress in timber is\",round(sigma_max,2),\"N/mm**2\"\n",
      "\n"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "600000.0\n",
        "The Max Stress in steel is 60.98 N/mm**2\n",
        "The Max Stress in timber is 10.23 N/mm**2\n"
       ]
      }
     ],
     "prompt_number": 8
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Problem 5.15,Page no.137"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "import math\n",
      "\n",
      "#Initilization of variables\n",
      "\n",
      "B=20 #cm #width of timber\n",
      "D=30 #cm #depth of timber\n",
      "d=25 #cm #depth of steel plate\n",
      "b=1.2 #cm #width of steel plate\n",
      "sigma_s=90 #N/mm**2 #Bending stress in steel\n",
      "sigma_t=6 #N/mm**2 #Bending stress in timber\n",
      "m=20 #Ratio of modulus of elasticity of of steel to timber\n",
      "\n",
      "#Calculation\n",
      "\n",
      "#Equivalent width of wood section,when 1.2 cm wide steel plate is replaced by steel plate is\n",
      "b_1=1.2*20 #cm\n",
      "d_1=25 #cm #depth of wood section\n",
      "y_1=d*2**-1 #cm #C.G of timber section\n",
      "y_2=D*2**-1 #cm #C.G of steel section\n",
      "\n",
      "Y_bar=(2*d*b_1*y_1+D*B*y_2)*(2*d*b_1+D*B)**-1 #cm #Distance of C.G from Bottom edge\n",
      "I=B*D**3*12**-1+B*D*(y_2-Y_bar)**2+2*(b_1*d_1**3*12**-1+b_1*d_1*(Y_bar-y_1)**2) #M.I of equivalent timber section about N.A\n",
      "Y=30-Y_bar #distance of C.G from top of equivalent wood section\n",
      "\n",
      "#Thus max stress will occur at top and that in steel will occur at bottom\n",
      "#sigma_s=m*Y_bar*Y**-1*sigma_t \n",
      "\n",
      "#After simplifying we get\n",
      "#sigma_s=15.99*sigma_t\n",
      "\n",
      "sigma_t=sigma_s*15.99**-1 #N/mm**2 #Max stress in Equivalent timber section\n",
      "\n",
      "Z_t=I*Y**-1 #Section modulus of equivalent section\n",
      "M=sigma_t*Z_t*10**-5*100 #Moment of resistance of beam\n",
      "\n",
      "#Result\n",
      "print\"Position of N.A is\",round(Y_bar,2),\"cm\"\n",
      "print\"Moment of Resistance of beam is\",round(M,2),\"KN*m\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Position of N.A is 13.33 cm\n",
        "Moment of Resistance of beam is 37.15 KN*m\n"
       ]
      }
     ],
     "prompt_number": 13
    }
   ],
   "metadata": {}
  }
 ]
}