1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
|
{
"metadata": {
"name": "chapter 3 som.ipynb",
"signature": "sha256:f204f91e23b9b059e7969e16bcc2c68fd35a3a7bdfec7a765456a9a04f17dab5"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Chapter 3:Stresses And Strains"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Problem 3.1,Page no.54"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"\n",
"#Initilization of Variables\n",
"\n",
"P=40 #mm #Force applied to stretch a tape\n",
"L=30 #m #Length of steel tape\n",
"A=6*1 #mm #Cross section area\n",
"E=200*10**9*10**-6 #KN/m**2 #Modulus of Elasticity\n",
"\n",
"#Calculations\n",
"\n",
"sigma_L=(P*L*10**3)*(A*E)**-1 #mm \n",
"\n",
"#Result\n",
"print\"The Elongation of steel tape is\",round(sigma_L,4),\"mm\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The Elongation of steel tape is 1.0 mm\n"
]
}
],
"prompt_number": 65
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Problem 3.2,Page no.54"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"\n",
"#Initilization of VAriables\n",
"\n",
"\n",
"#D=(D_0-2) #cm #Inside Diameter of cyclinder\n",
"#A=(pi*(D_0-1)) #cm**2 #Area of cross-section\n",
"#L=(pi*(D_0-1)*5400) #N #Crushing load for column\n",
"F=6 #Factor of safety\n",
"T=1 #cm #wall thickness of cyclinder\n",
"\n",
"#S=L*F**-1\n",
"#After Simplifying,we get\n",
"S=600*10**3\n",
"\n",
"#Calculations\n",
"\n",
"D_0=(S*F)*(pi*54000)**-1+1 #cm #Outside diameter of cyclinder\n",
"\n",
"#Result\n",
"print\"The outside Diameter of cyclinder is\",round(D_0,2),\"cm\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The outside Diameter of cyclinder is 22.22 cm\n"
]
}
],
"prompt_number": 4
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Problem 3.3,Page no.56"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math \n",
"\n",
"#Initilization of variables\n",
"\n",
"P=800 #N #force applied to steel wire\n",
"L=150 #m #Length of steel wire\n",
"E=200 #GN/m**2 #Modulus of Elasticity\n",
"d=10 #mm #Diameter of steel wire\n",
"W=7.8*10**4 #N/m**3 #Weight Density of steel\n",
"#A=(pi*4**-1)*(d)**2 #m**2\n",
"\n",
"#After simplifying Area,we get\n",
"A=7.85*10**-5 #m**2\n",
"\n",
"#calculation (Part-1)\n",
"\n",
"#Elongation Due to 800N Load \n",
"dell_L_1=(P*L*10**-3)*(A*E*10**9*10**-6)**-1 #mm\n",
"\n",
"#calculation (Part-2)\n",
"\n",
"#Elongation due to Weight of wire \n",
"dell_L_2=((pi*4**-1)*150*W*L*10**-3)*(2*A*E*10**7)**-1 #mm\n",
"\n",
"#calculation (Part-3)\n",
"\n",
"#Total Elongation of wire\n",
"dell_L_3=dell_L_1+dell_L_2\n",
"\n",
"\n",
"#Result\n",
"print\"The Elongation due to 800N Load is\",round(dell_L_1,2),\"mm\"\n",
"print\"The Elongation due to Weight of wire is\",round(dell_L_2,2),\"mm\"\n",
"print\"Total Elongation of wire is\",round(dell_L_3,2),\"mm\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The Elongation due to 800N Load is 7.64 mm\n",
"The Elongation due to Weight of wire is 4.39 mm\n",
"Total Elongation of wire is 12.03 mm\n"
]
}
],
"prompt_number": 25
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Problem 3.4,Page no.55"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"\n",
"#Intilization of variables\n",
"\n",
"d=10 #mm #Diameter of Punching Hole\n",
"t=4 #mm #Thickness of Mild Steel Plate\n",
"tou=320 #N/mm**2 #Shear Strength of mild Steel\n",
"\n",
"#Calculations\n",
"\n",
"#Force Required for punching the hole\n",
"P=tou*pi*d*t #N \n",
"\n",
"#Area of punch in contact with the plate surface\n",
"A=(pi*4**-1*d**2) #mm*2\n",
"\n",
"#Compressive stress\n",
"sigma_c=P*A**-1 #N/mm*2\n",
"\n",
"#Result\n",
"print\"Force Required for punching the hole is\",round(P,2),\"N\"\n",
"print\"Compressive stress is\",sigma_c,\"N/mm*2\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Force Required for punching the hole is 40212.39 N\n",
"Compressive stress is 512.0 N/mm*2\n"
]
}
],
"prompt_number": 29
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Problem 3.6,Page no.57"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"\n",
"#Initilization of variables\n",
"\n",
"P=200*10**3 #N\n",
"L_1=0.10 #mm #Length of of portin AB\n",
"L_2=0.16 #mm #Length of of portin BC\n",
"L_3=0.12 #mm #Length of of portin CD\n",
"E=200*10**9 #N\n",
"d_1=0.1 #cm\n",
"d_2=0.08 #cm\n",
"d_3=0.06 #cm\n",
"A_1=(pi*4**-1)*(0.1)**2 #mm**2\n",
"A_2=(pi*4**-1)*(0.08)**2 #mm**2\n",
"A_3=(pi*4**-1)*(0.06)**2 #mm**2\n",
"\n",
"#Calculations\n",
"\n",
"dell_L_1=(P*L_1*10**3)*(A_1*E)**-1 #mm\n",
"dell_L_2=(P*L_2*10**3)*(A_2*E)**-1 #mm\n",
"dell_L_3=(P*L_3*10**3)*(A_3*E)**-1 #mm\n",
"dell_L=dell_L_1+dell_L_2+dell_L_3 #mm\n",
"\n",
"#Result\n",
"print\"Total Elongation of steel bar is\",round(dell_L,3),\"mm\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Total Elongation of steel bar is 0.087 mm\n"
]
}
],
"prompt_number": 67
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Problem 3.7,Page no.57"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"\n",
"#Initilization of variables\n",
"\n",
"#from F.B.D,we get\n",
"P_1=50 #KN\n",
"P_2=20 #KN\n",
"P_3=40 #KN\n",
"\n",
"d=0.02 #mm #Diameter of steel bar\n",
"L_1=0.4 #mm\n",
"L_2=0.3 #mm\n",
"L_3=0.2 #mm\n",
"E=210*10**9 #N\n",
"\n",
"#After simplifying Area,we get\n",
"A=pi*10**-4 #m**2 #Area of cross section\n",
"\n",
"#Calculations\n",
"\n",
"sigma_AB=P_1*1000*A #N/m**2\n",
"sigma_BA=P_2*1000*A #N/m**2\n",
"sigma_CD=P_3*1000*A #N/m**2\n",
"dell_L=((P_1*L_1+P_2*L_2+P_3*L_3)*(A*E)**-1)*10**6 #mm\n",
"\n",
"#Result\n",
"print\"Total Elongation of Steel bar is\",round(dell_L,3),\"mm\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Total Elongation of Steel bar is 0.515 mm\n"
]
}
],
"prompt_number": 44
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Problem 3.8,Page no.58"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"import numpy as np\n",
"\n",
"#Initilization of variables\n",
"\n",
"#R_a+R_c=25 #KN #R_a,R_b are reactions at supports A and C respectively\n",
"L_ab=2 #m\n",
"L_bc=3 #m\n",
"\n",
"#Calculation\n",
"\n",
"#From F.B.D,we get\n",
"#dell_L_AB=(R_a*L_AB)*(A*E)**-1 #Elongation of portion AB\n",
"#dell_L_BC=(R_c*L_BC)*(A*E)**-1 #Compression of portion BC\n",
"\n",
"#After simplifying above equations we get,\n",
"#R_a=(1.5)*R_c #KN\n",
"#R_a+R_c=25 #KN\n",
"#Solving the above simultaneous equations using matrix method\n",
"A=np.array([[1,-1.5],[1,1]]) #Here the coefficients of the first equations of unknowns are setup\n",
"B=np.array([0,25]) #Here the RHS of both equations are setup\n",
"C=np.linalg.solve(A,B)\n",
"\n",
"#print C[0] #Prints the first element in the vector C\n",
"#print C[1] #Prints the second element in the vector C\n",
"\n",
"#Result\n",
"print\"The reaction at support A is\",round(C[0],2),\"KN\"\n",
"print\"The reaction at support C is\",round(C[1],2),\"KN\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The reaction at support A is 15.0 KN\n",
"The reaction at support C is 10.0 KN\n"
]
}
],
"prompt_number": 26
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Problem 3.9,Page no.59"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"\n",
"#Initilization of variables\n",
"\n",
"#P is the force acting on the bar BC compressive in nature and force on AB is (100-P) Tensile in nature\n",
"E=200*10*9 #N\n",
"A_1=3*10**-4 #cm**2 #Area of AB\n",
"A_2=4*10**-4 #cm**2 #Area of BC\n",
"L=1.5 #cm #Length of bar\n",
"\n",
"#Calculations\n",
"\n",
"#The total elongation of bar\n",
"#(((100-P)*10**3*1.5)*(3*10**-4*E)**-1)-((P*10**3*1.5)*(4*10**-4*E)**-1)=0 \n",
"\n",
"#The total elongation of bar is limited to 1\n",
"#(25-0.4375*P)*10**-4=1*10**-3\n",
"\n",
"#After simplifying above equation we get,\n",
"P=-(10-25)*0.4375**-1 #KN #Total elongation of bar\n",
"F_AB=100-P #KN #force in AB\n",
"F_BC=P #KN #Force in BC\n",
"sigma_AB=(((F_AB)*(3*10**-4)**-1)*10**-3) #KN #Stress in AB\n",
"sigma_BC=((F_BC)*(4*10**-4)**-1*10**-3) #KN #Stress in Bc\n",
"\n",
"\n",
"#Result\n",
"print\"F_AB\",round(F_AB,2),\"KN\"\n",
"print\"F_BC\",round(F_BC,2),\"KN\"\n",
"print\"sigma_AB\",round(sigma_AB,2),\"KN\"\n",
"print\"sigma_BC\",round(sigma_BC,2),\"KN\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"F_AB 65.71 KN\n",
"F_BC 34.29 KN\n",
"sigma_AB 219.05 KN\n",
"sigma_BC 85.71 KN\n"
]
}
],
"prompt_number": 17
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Problem 3.12,Page no.61"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"\n",
"#Initilization of variables\n",
"\n",
"P=500 #KN #Safe Load\n",
"d=20 #mm #steel rod diameter\n",
"n=4 #number of steel rod\n",
"sigma_c=4 #N/mm**2 #stress in concrete \n",
"#E_S*E_c**-1=15\n",
"\n",
"\n",
"#Calculations\n",
"\n",
"A_s=4*pi*4**-1*d**2 #mm**2 #Area os steel rod\n",
"sigma_s=15*sigma_c #N/mm**2 #stress in steel\n",
"\n",
"#P=sigma_s*A_s+sigma_c*A_c \n",
"\n",
"#After substituting and simplifying above equation we get,\n",
"\n",
"A_c=(P*10**3-sigma_s*1256)*(sigma_c)**-1 #mm**2 #Area of the concrete\n",
"X=(A_s+A_c)**0.5 #mm #Total cross sectional area\n",
"P_s=A_s*sigma_s*10**-3 #KN #Load carried by steel\n",
"\n",
"#Result\n",
"print\"Load carried by steel is\",round(P_s,2),\"KN\"\n",
"print\"stress induced in steel is\",round(sigma_s,3),\"KN\"\n",
"print\"cross sectional area of column is\",round(X,2),\"mm\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Load carried by steel is 75.4 KN\n",
"stress induced in steel is 60.0 KN\n",
"cross sectional area of column is 327.74 mm\n"
]
}
],
"prompt_number": 11
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Problem 3.13,Page no.62"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"\n",
"#Initilization of variables\n",
"\n",
"A_s=500 #mm**2\n",
"E_s=200000\n",
"E_al=80000\n",
"A_al=1000\n",
"\n",
"\n",
"#Calculations\n",
"\n",
"#(P_al*L_al)*(A_al*E_al)**-1+(P_s*L_s)*(A_s*E_s)**-1=1*2**-1 \n",
"\n",
"P=1*1000**-1*((A_s*E_s*A_al*E_al)*(A_s*E_s+A_al*E_al)**-1) #N\n",
"P_s=P_al=P #N\n",
"sigma_t=P_s*A_s**-1 #N/mm**2 #Tensile stress in bolt\n",
"sigma_c=P_al*A_al**-1 #N/mm**2 #Compressive stress in Aluminium tube\n",
"\n",
"#result\n",
"print\"Tensile stress in bolt is\",round(sigma_t,2),\"N/mm**2\"\n",
"print\"Compressive stress in Aluminium tube is\",round(sigma_c,2),\"N/mm**2\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Tensile stress in bolt is 88.89 N/mm**2\n",
"Compressive stress in Aluminium tube is 44.44 N/mm**2\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Problem 3.14,Page no.63"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"\n",
"#Initilization of variables\n",
"\n",
"A=1600 #mm**2 #Area of the Bar\n",
"P=480*10**3 #N #Load\n",
"dell_L=0.4 #mm #Contraction of metal bar\n",
"L=200 #mm #Length of metal bar\n",
"sigma_t=0.04 #mm #Guage Length\n",
"t=40\n",
"\n",
"#Calculations\n",
"\n",
"sigma_L=dell_L*L**-1\n",
"E=((P*L)*(A*dell_L)**-1*10**-3) #N/mm**2 #Young's Modulus \n",
"m=t*sigma_t**-1*sigma_L\n",
"\n",
"\n",
"#Result\n",
"print\"The value of Young's Modulus is\",round(E,2),\"N/mm*2\"\n",
"print\"The value of Poissoin's ratio is\",round(m,2)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"The value of Young's Modulus is 150.0 N/mm*2\n",
"The value of Poissoin's ratio is 2.0\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Problem 3.15,Page no.63"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"\n",
"#Initilization of variables\n",
"\n",
"A_s=0.003848 #m**2 #Area of steel bar\n",
"A_al=0.003436 #m**2 #Area of Aluminium tube\n",
"E=220*10*9 #N #Young's modulus of steel\n",
"E=70*10*9 #N #Young's modulus of aluminium\n",
"P=600*10**3 #N #Load applied to the bar\n",
"#dell_L_al-dell_L_s=0.00015 #mm #difference between strain in aluminium bar and steel bar\n",
"\n",
"#Calculations\n",
"\n",
"\n",
"#Let the aluminium tube be compressed by dell_L_al and steel bar by by dellL_s\n",
"#dell_L_al=sigma_al*E_al**-1*L_al\n",
"#dell_L_s=sigma_s*E_s**-1*L_s\n",
"\n",
"#After substituting and simplifying above equation we get,\n",
"#((sigma_al*70**-1)-(sigma_s*220**-1))=300000 #(equation 1)\n",
"\n",
"#After simplifying above equation we get,\n",
"#sigma_al=17462.165*10**4-1.1199*sigma_s #(equation 2)\n",
"\n",
"#Now substituting sigma_al in equation(1)\n",
"#((17462.165*10**4-1.1199*sigma_s)*(70)**-1)-(sigma_s*220**-1)=300000\n",
"\n",
"#After simplifying above equation we get,\n",
"\n",
"sigma_s=-((300000-249.4594*10**4)*0.0205444**-1)*10**-6 #MN/m**2 #stress developed in steel bar\n",
"#sigma_al=17462.165*10**4-1.1199*sigma_s\n",
"sigma_al=(17462.165*10**4-1.1199*106822005.02)*10**-6\n",
"\n",
"\n",
"#Result\n",
"print\"stress developed in steel bar is\",round(sigma_s,2),\"MN/m**2\"\n",
"print\"stress developed in aluminium bar is\",round(sigma_al,2),\"MN/m**2\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"stress developed in steel bar is 106.82 MN/m**2\n",
"stress developed in aluminium bar is 54.99 MN/m**2\n"
]
}
],
"prompt_number": 21
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Problem 3.16,Page no.64"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"\n",
"#Initilization of variables\n",
"\n",
"E=200 #GN/m**2 #Modulus of elasticity\n",
"alpha=11*10**-6 #per degree celsius #coeffecient o flinear expansion of steel bar\n",
"L=6 #m #Length of rod\n",
"\n",
"\n",
"#Calculations \n",
"\n",
"#(Part-1) #IF the walls do not yield\n",
"\n",
"t=58 #degree celsius #Fall in temperature #(t=80-22)\n",
"dell=alpha*t #strain\n",
"sigma=E*10**9*dell*10**-6 #MN/m**2 #Stress\n",
"A=pi*4**-1*6.25*10**-4 #mm**2 #Area of wall and rod\n",
"P=sigma*10**6*A*10**-3 #KN #Pull Exerted\n",
"\n",
"#(Part-2) #IF the walls yield together at the two ends is 1.15 mm\n",
"\n",
"L_2=L*(1-alpha*t) #m #Length of rod at 22 degree celsius\n",
"L_3=L-L_2 #m #Decrease in Length \n",
"\n",
"#As the walls yield by 1.5 mm, actual decrease in length is\n",
"L_4=L_3-0.0015 #m \n",
"dell_2=L_4*L**-1 #strain \n",
"P_2=E*10**9*dell_2*A*10**-3 #KN\n",
"\n",
"#Result\n",
"print\"Pull Exerted by the rod:when walls do not yield\",round(P,2),\"KN\"\n",
"print\" :when total yield together at two ends is 1.5 mm\",round(P_2,2),\"KN\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Pull Exerted by the rod:when walls do not yield 62.64 KN\n",
" :when total yield together at two ends is 1.5 mm 38.09 KN\n"
]
}
],
"prompt_number": 43
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Problem 3.17,Page no.65"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"\n",
"#Initilization of variables\n",
"\n",
"D=4.5 #cm #External Diameter of tube\n",
"d=3 #cm #Internal diameter of tube\n",
"t=3 #mm #thickness of tube\n",
"t_1=30 #degree celsius\n",
"t_2=180 #degree celsius #when metal heated\n",
"L=30 #cm #Original LEngth\n",
"alpha_s=1.08*10**-5 #Per degree celsius #coefficient of Linear expansion of steel tube\n",
"alpha_c=1.7*10**-5 #Per degree celsius #coefficient of Linear expansion of copper tube\n",
"E_s=210 #GPa #Modulus of Elasticity of steel \n",
"E_c=110 #GPA #Modulus of Elasticity of copper\n",
"\n",
"#Calculation\n",
"\n",
"#For Equilibrium of the system, Total tension in steel=Total tension in copper\n",
"\n",
"#sigma_s*A_s=sigma_c*A_c (equation 1)\n",
"\n",
"A_c=pi*4**-1*d**2 #cm**2 #Area of copper\n",
"A_s=pi*4**-1*(D**2-d**2) #cm**2 #Area of steel\n",
"\n",
"#simplifying equation 1\n",
"#sigma_s=1.785*sigma_c\n",
"\n",
"T=t_2-t_1 #change in temperature\n",
"\n",
"#Actual expansion of steel=Actual expansion of copper\n",
"#alpha_s*T*L+sigma_s*E_s**-1*L=alpha_c*T*L-sigma_c*E_c**-1*L\n",
"\n",
"#After substituting values in above equation and simplifying we get\n",
"\n",
"sigma_c=(930*10**5*1.7591**-1)*10**-6 #MN/m**2 #Stress in copper\n",
"sigma_s=1.785*sigma_c #MN/m**2 #Stress in steel\n",
"\n",
"#Increase in Length of either component\n",
"L_2=(alpha_s*T+sigma_s*10**6*(E_s*10**9)**-1)*L\n",
"\n",
"#Result\n",
"print\"stress in copper bar is\",round(sigma_c,2),\"MN/m**2\"\n",
"print\"stress in steel bar is\",round(sigma_s,2),\"MN/m**2\"\n",
"print\"Increase in Length is\",round(L_2,3),\"cm\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"stress in copper bar is 52.87 MN/m**2\n",
"stress in steel bar is 94.37 MN/m**2\n",
"Increase in Length is 0.062 cm\n"
]
}
],
"prompt_number": 54
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Problem 3.18,Page no.66"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"\n",
"#Initilization of variables\n",
"\n",
"t_1=15 #degree celsius #temperature of steel bar\n",
"t_2=315 #degree celsius #raised temperature \n",
"E_s=210 #GPa #Modulus of Elasticity of steel bar\n",
"E_c=100 #GPa #Modulus of Elasticity of copper bar\n",
"dell_L=0.15 #cm #Increase in Length of bar\n",
"\n",
"#Calculation\n",
"\n",
"#For Equilibrium of the system, Tension in steel bar = Tension in copper bar\n",
"#sigma_s*A_s = sigma_c*2*A_c\n",
"#sigma_S=2*sigma_c\n",
"\n",
"#Actual expansion of steel = Actual expansion of copper\n",
"#L*alpha_s*T+sigma_s*E_s**-1*L = L*alpha_c*T-sigma_c*E_c**-1*L (Equation 1)\n",
"\n",
"T=t_2-t_1 #per degree celsius #change in temperature\n",
"\n",
"#After substituting values in above equation and simplifying we get\n",
"sigma_c=(1650*10**5*1.9524**-1)*10**-6 #MN/m**2 #Stress in copper\n",
"sigma_s=2*sigma_c #MN/m**2 #Stress in steel\n",
"\n",
"#Actual Expansion of steel bar \n",
"#L*alpha_s*T+sigma_s*E_s**-1*L = L*alpha_c*T-sigma_c*E_c**-1*L \n",
"#After substituting values in above equation and simplifying we get\n",
"L=0.15*10**-2*0.0044048**-1 #m\n",
"\n",
"#Result\n",
"print\"Stress in copper bar is\",round(sigma_c,2),\"MN/m**2\"\n",
"print\"Stress in steel bar is\",round(sigma_s,2),\"MN/m**2\"\n",
"print\"Original Length of bar is\",round(L,2),\"m\"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Stress in copper bar is 84.51 MN/m**2\n",
"Stress in steel bar is 169.02 MN/m**2\n",
"Original Length of bar is 0.34 m\n"
]
}
],
"prompt_number": 60
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Problem 3.19,Page no.67"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"\n",
"#Initilization of variables\n",
"\n",
"L=100 #m #Length of rod\n",
"A=2 #cm**2 #cross sectional area\n",
"rho=80 #KN/m**3\n",
"\n",
"#Calculatiom\n",
"W=A*10**-4*L*rho #KN\n",
"\n",
"sigma_s=10+1.6 #KN #Rod experiencing max tensile stress when it is at top performing upstroke\n",
"sigma_s_2=sigma_s*10**3*200**-1 #N/mm**2 #corresponding stress at this moment\n",
"\n",
"sigma_c=1 #KN ##Rod experiencing max compressive stress at its lower end,free from its own weight\n",
"sigma_c_2=sigma_c*10**3*200**-1 #corresponding stress at this moment\n",
"\n",
"#Result\n",
"print\"Tensile stress in bar\",round(sigma_s_2,2),\"N/mm**2\"\n",
"print\"Compressive stress in bar\",round(sigma_c_2,2),\"N/mm**2\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Tensile stress in bar 58.0 N/mm**2\n",
"Compressive stress in bar 5.0 N/mm**2\n"
]
}
],
"prompt_number": 64
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Problem 3.20,Page no.68"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import math\n",
"\n",
"#Initilization of variables\n",
"\n",
"sigma=0.012 #strain\n",
"P=150 #KN #Total Load on the Post\n",
"E=1.4*10**4 #N/mm**2 #modulus of elasticity\n",
"#b be the width of the post in mm\n",
"#2b is the longer dimension of the post in mm\n",
"\n",
"#Calculations\n",
"\n",
"#We know,\n",
"#sigma=(P*(A*E)**-1) \n",
"\n",
"#After substituting values and simplifying, we get\n",
"b=((150*10**3)*(0.012*1.4*2*10**4)**-1)**0.5\n",
"q=2*b #mm #Longer dimension of post\n",
"\n",
"#Result\n",
"print\"Width of post is\",round(b,2),\"mm\"\n",
"print\"Longer dimension of post is\",round(q,2),\"mm\""
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Width of post is 21.13 mm\n",
"Longer dimension of post is 42.26 mm\n"
]
}
],
"prompt_number": 6
}
],
"metadata": {}
}
]
}
|