summaryrefslogtreecommitdiff
path: root/Solid_state_physics/Chapter_4_1.ipynb
blob: 019aaef99efb3d23739cc22ebf77e04a3a232dee (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
{
 "metadata": {
  "name": "",
  "signature": "sha256:c896524cb6d8dfdd75df5649979d411984ee380fa5c3cbff49f27851e63b1fb4"
 },
 "nbformat": 3,
 "nbformat_minor": 0,
 "worksheets": [
  {
   "cells": [
    {
     "cell_type": "heading",
     "level": 1,
     "metadata": {},
     "source": [
      "Chapter 4:Defects in Solids"
     ]
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 4.1, Page number 4.6"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "import math\n",
      "\n",
      "#Variable declaration\n",
      "k = 1.38*10**-23   #Boltzmann constant(eV/K)\n",
      "e = 1.6*10**-19    #Electronic charge(C)\n",
      "T1 = 500           #First temperature for metal(K)\n",
      "T2 = 1000          #Second temperature for metal(K)\n",
      "Ev = 1             #Average energy required to create a vacancy in metal(eV)\n",
      "\n",
      "#Calculations\n",
      "x = k/e\n",
      "#n_500 = N*exp(-Ev/T1*k)  ---(1)\n",
      "#n_1000 = N*exp(-Ev/T2*k) ---(2)\n",
      "#Dividing (1) by (2), we get the following expression\n",
      "n = math.exp(Ev/(T2*x))\n",
      "\n",
      "#Result\n",
      "print \"Ratio of vacancies=\",round((n/1E+5),3),\"*10^5\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Ratio of vacancies= 1.085 *10^5\n"
       ]
      }
     ],
     "prompt_number": 1
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 4.2, Page number 4.7"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "import math\n",
      "\n",
      "#Variable declaration\n",
      "n1_by_N = 1.*10**-10  #frequency of vacancy sites at 500 C\n",
      "T1 = 500.+273.        #K\n",
      "T2 = 1000.+273.       #K\n",
      "\n",
      "#Calculations\n",
      "x = math.exp((T1/T2)*math.log(n1_by_N))\n",
      "\n",
      "#Result\n",
      "print \"Frequency of vacancy sites at 1000 C =\",round((x/1E-7),4),\"*10^-7\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Frequency of vacancy sites at 1000 C = 8.467 *10^-7\n"
       ]
      }
     ],
     "prompt_number": 2
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 4.3, Page number 4.9"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "#Variable declaration\n",
      "r = 2.82*10**-10  #interionic distance(m)\n",
      "n = 5*10**11      #density of Schottky defect(per m^3)\n",
      "T = 25+273        #temperature(K)\n",
      "k = 8.625*10**-5  #Boltzmann constant(/K)\n",
      "\n",
      "#Calculations\n",
      "v = (2*r)**3       #volume of one unit cell(m^3)\n",
      "N = 4/v           #density of ion pairs\n",
      "Es = 2*k*T*2.303*math.log10(N/n)\n",
      "\n",
      "#Result\n",
      "print \"The average energy required for creation of one Schottky defect is\",round(Es,3),\"eV\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The average energy required for creation of one Schottky defect is 1.971 eV\n"
       ]
      }
     ],
     "prompt_number": 4
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example 4.4, Page number 4.11"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "\n",
      "#Variable declaration\n",
      "T1 = 20+273  #K\n",
      "T2 = 300+273 #K\n",
      "Ef = 1.4     #average energy for creating a Freknel defect(eV)\n",
      "k = 8.625*10**-5  #Boltzmann constant(J/K)\n",
      "N = 1             #For simplicity assume total number of metal ions to be unity\n",
      "Ni = 1            #For simplicity assume total number of metal ions to be unity\n",
      "\n",
      "#Calculations\n",
      "n1 = (N*Ni)**0.5*math.exp(-Ef/(2*k*T1)) \n",
      "n2 = (N*Ni)**0.5*math.exp(-Ef/(2*k*T2))      \n",
      "x = n1/n2\n",
      "\n",
      "#Result\n",
      "print \"The ratio of the number of Frenkel defects is\",round((x/1E-6),2),\"*10^-6 or\",round(((1/x)/1E+5),2),\"*10^5\""
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "The ratio of the number of Frenkel defects is 1.32 *10^-6 or 7.56 *10^5\n"
       ]
      }
     ],
     "prompt_number": 27
    }
   ],
   "metadata": {}
  }
 ]
}