1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
|
{
"metadata": {
"name": "",
"signature": "sha256:d7081c1de999174dc8f97847c2d374ebdce489247c4f5cd4f78037286264617c"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Chapter 5 - IC Operational Amplifiers in Switching Circuits"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example E1 - Pg 152"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Caption:Design a non inverting amplifier by determining Required resistances and output voltage\n",
"Av=28.#Voltage gain\n",
"E=50.#Input voltage(in mV)\n",
"Ib=500.#Base current(in nA)\n",
"i=100.*Ib*0.001\n",
"R3=E/i\n",
"Vo=Av*E*0.001\n",
"r=Vo*1000./i\n",
"R2=r-R3\n",
"R1=(R2*R3)/(R2+R3)\n",
"print '%s %.1f %s %.f %s %.f %s %.f' %('Output voltage(in volts)=',Vo,'\\nRequired resistances\\nR3(in kilo ohm)=',R3,'\\nR2(in kilo ohm)=',R2,'\\nR1(in kilo ohm)=',R1)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Output voltage(in volts)= 1.4 \n",
"Required resistances\n",
"R3(in kilo ohm)= 1 \n",
"R2(in kilo ohm)= 27 \n",
"R1(in kilo ohm)= 1\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example E3 - Pg 158"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Caption:Design an inverter by determining input resistance,current and capacitance \n",
"Vo=11.#Output voltage(in volts)\n",
"Vcc=12.#Collector voltage(in volts)\n",
"Vi=6.#Input voltage(in volts)\n",
"f=1.#Frequency(in Khz)\n",
"Vb=0.5#Base voltage(in volts)\n",
"Vee=-12.#Emitter voltage(in volts)\n",
"Ib=500.#Max base current(in nA)\n",
"Vc=2.#Collector voltage(in volts)\n",
"Vr2=Vb-Vee\n",
"I2=100.*Ib*0.001\n",
"R2=Vr2/I2\n",
"i=Vr2/R2\n",
"R1=(Vcc-Vb)/i\n",
"Ri=99.\n",
"Ii=60.6\n",
"pw=1000./(2.*f)\n",
"C=(Ii*pw)*10.**(-6)/Vc\n",
"print '%s %.f %s %.1f %s %.3f' %('Input resistance(in kilo ohm)=',Ri,'\\nInput current(in micro ampere)=',Ii,'\\nCapacitance(in micro farad)=',C)\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Input resistance(in kilo ohm)= 99 \n",
"Input current(in micro ampere)= 60.6 \n",
"Capacitance(in micro farad)= 0.015\n"
]
}
],
"prompt_number": 2
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example E4 - Pg 163"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Caption:Design a differentiating circuit by determining required resistances and capacitance\n",
"Vo=5.#Output voltage(in volts)\n",
"Vi=1.#Change in input voltage(in volts)\n",
"t=100.#Time period(in micro sec)\n",
"I=1.#Circuit current(in mA)\n",
"R2=Vo/I\n",
"R1=235.\n",
"R3=R2\n",
"C=Vo*t/(R2*Vi*1000.)\n",
"print '%s %.1f %s %.f %s %.f %s %.f' %('Required components for circuit are \\nCapacitance(in micro farad)=',C,'\\nResistances R1(in ohm)=',R1,'\\nR2(in kilo ohm)=',R2,'\\nR3(in kilo ohm)=',R3)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Required components for circuit are \n",
"Capacitance(in micro farad)= 0.1 \n",
"Resistances R1(in ohm)= 235 \n",
"R2(in kilo ohm)= 5 \n",
"R3(in kilo ohm)= 5\n"
]
}
],
"prompt_number": 3
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example E5 - Pg 163"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Caption:Calculate lowest operating frequency for circuit\n",
"import math\n",
"V=4.#Peak to peak amplitude of output waveform(in volts)\n",
"Vi=10.#Input voltage(in volts)\n",
"Vs=15.#Supply voltage(in volts)\n",
"Ib=500.#Maximum Base current(in nA)\n",
"f=250.#Frequency of input waveform(in hz)\n",
"I=1.#Circuit current(in mA)\n",
"R1=Vi/I\n",
"R3=20.*R1\n",
"R2=(R3*R1)/(R1+R3)\n",
"t=1000./(2.*f)\n",
"C=(I*t)/V\n",
"F=22.*1000./(2.*math.pi*C*R3)\n",
"print '%s %.f' %('Required frequency(in hz)=',F)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Required frequency(in hz)= 35\n"
]
}
],
"prompt_number": 4
}
],
"metadata": {}
}
]
}
|