1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
|
{
"metadata": {
"name": "",
"signature": "sha256:b5958de7401e7c4e703b1505a92fb4e5a51a053e9f715840d2c0c18527cc36e3"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Chapter 4 - Transistor Switching"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example E1 - Pg 111"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Caption:Determine (a)hfe (b)hfe for changed resistor\n",
"Ib=0.2#Base current(in mA)\n",
"Vcc=10.#Collector voltage(in volts)\n",
"Rc1=1.#Collector resistor(in kilo ohm)\n",
"Rc2=220.#Changed collector resistor(in ohm)\n",
"Ic1=Vcc/Rc1\n",
"h1=Ic1/Ib\n",
"print '%s %.f' %('(a)hfe=',h1)\n",
"Ic2=Vcc*1000./Rc2\n",
"h2=Ic2/Ib\n",
"print '%s %.f' %('(b)hfe for changed resistor=',h2)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"(a)hfe= 50\n",
"(b)hfe for changed resistor= 227\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example E2 - Pg 112"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Caption:Calculate the transistor power dissipation at (a)Cutoff (b)Saturation (c)When Vce is 2V\n",
"Vcc=10.#Collector voltage(in volts)\n",
"Ic=50.#Collector current(in nA)\n",
"Rc=1.#Collector resistor(in kilo ohm)\n",
"Vs=0.2#Voltage of collector emitter junction at saturation(in volts)\n",
"Vce=2.#Collector emitter voltage(in volts)\n",
"P1=Ic*Vcc/1000.\n",
"print '%s %.1f' %('(a)Power dissipation at cutoff(in micro watt)=',P1)\n",
"P2=(Vcc/Rc)*Vs\n",
"print '%s %.f' %('(b)Power dissipation at saturation(in mW)=',P2)\n",
"I=(Vcc-Vce)/Rc\n",
"P3=I*Vce\n",
"print '%s %.f' %('(c)Power dissipation at given Vce(in mW)=',P3)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"(a)Power dissipation at cutoff(in micro watt)= 0.5\n",
"(b)Power dissipation at saturation(in mW)= 2\n",
"(c)Power dissipation at given Vce(in mW)= 16\n"
]
}
],
"prompt_number": 2
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example E3 - Pg 115"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Caption:Calculate Vce (a)Before input pulse is applied (b)at end of delay time (c)at end of turn on time (d)Total time \n",
"Vcc=12.#Collector voltage(in volts)\n",
"Rc=3.3#Collector resistor(in Kilo ohm)\n",
"pw=5.#Pulse width of input voltage(in micro sec)\n",
"Ix=50.#Collector cutoff current(in nA)\n",
"t=250.#Switch off time(nA)\n",
"Vce=Vcc-(Ix*Rc*10.**(-6))\n",
"print '%s %.4f' %('(a)Collector emitter voltage before input pulse is applied(in volts)=',Vce)\n",
"Vce2=Vcc-(0.1*Vcc)\n",
"print '%s %.1f' %('(b)Collector emittter voltage at end of delay time(in volts)=',Vce2)\n",
"Vce3=Vcc-(0.9*Vcc)\n",
"print '%s %.1f' %('(c)Collector emitter voltage at end of turn on time(in volts)=',Vce3)\n",
"T=(t*10.**(-3))+pw\n",
"print '%s %.2f' %('(d)Total time from commencement of input to transistor switch off(in micro sec)=',T)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"(a)Collector emitter voltage before input pulse is applied(in volts)= 11.9998\n",
"(b)Collector emittter voltage at end of delay time(in volts)= 10.8\n",
"(c)Collector emitter voltage at end of turn on time(in volts)= 1.2\n",
"(d)Total time from commencement of input to transistor switch off(in micro sec)= 5.25\n"
]
}
],
"prompt_number": 2
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example E4 - Pg 120"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Caption:Determine (a)Capacitance that can give max turn on time (b)Max frequency\n",
"Rs=600.#Source resistor(in ohm)\n",
"Rb=5.6#Base resistor(in kilo ohm)\n",
"t=70.#Turn on time(in ns)\n",
"C=t*1000./(0.1*Rs)\n",
"print '%s %.f' %('(a)Required capacitance(in pF)=',C)\n",
"tre=2.3*Rb*C*10.**(-3)\n",
"f=1000./(2.*tre)\n",
"print '%s %.1f' %('(b)Max Frequency(in Khz)=',f)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"(a)Required capacitance(in pF)= 1167\n",
"(b)Max Frequency(in Khz)= 33.3\n"
]
}
],
"prompt_number": 3
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example E5 - Pg 125"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Caption:Calculate Rc and Rb\n",
"Vcc=12.#Collector voltage(in volts)\n",
"V=3.#Input voltage(in volts)\n",
"Ic=1.#collector current(in mA)\n",
"Vce=0.2#Saturated collector emitter voltage(in volts)\n",
"hfe=70.\n",
"Vbe=0.7#Base emitter voltage(in volts)\n",
"Rc=(Vcc-Vce)/Ic\n",
"Ib=Ic*1000./hfe\n",
"Rb=(V-Vbe)*1000./Ib\n",
"print '%s %.1f %s %.f' %('Rc(in kilo ohm)=',Rc,'\\nRb(in kilo ohm)=',Rb)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Rc(in kilo ohm)= 11.8 \n",
"Rb(in kilo ohm)= 161\n"
]
}
],
"prompt_number": 5
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example E6 - Pg 125"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Caption:Determine maximum value of capacitor\n",
"f=45.#Frequency(in khz)\n",
"Rb=150.#Base Resistor(in ohms)\n",
"t=1000./(2.*f)\n",
"C=t*1000./(2.3*Rb)\n",
"print '%s %.6f' %('Maxixmumvalue of capacitor(in pF)=',C)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Maxixmumvalue of capacitor(in pF)= 32.206119\n"
]
}
],
"prompt_number": 6
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example E7 - Pg 126"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Caption:Design a transistor by determining Rc,Rb and amplitude of output waveform\n",
"E=10.#Input voltage(in volts)\n",
"Vcc=15.#Collector voltage(in volts)\n",
"R=100.#Load resistance(in kilo ohm)\n",
"Vce=0.2#Saturted collector emitter voltage(in volts)\n",
"Vd=0.7#Diode forward voltage(in volts)\n",
"hfe=35.\n",
"Vbe=0.7#Base emitter voltage(in volts)\n",
"Rc=R/10.\n",
"Ic=(Vcc-Vce-Vd)/Rc\n",
"Ib=Ic/hfe\n",
"Rb=(E-Vbe-Vd)/Ib\n",
"Vmin=Vd+Vce\n",
"Vmax=(Vcc*R)/(R+Rc)\n",
"Vo=Vmax-Vmin\n",
"print '%s %.f %s %.f %s %.1f' %('Rc(in kilo ohm)=',Rc,'\\nRb(in kilo ohm)=',Rb,'\\namplitude of output waveform(in volts)=',Vo)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Rc(in kilo ohm)= 10 \n",
"Rb(in kilo ohm)= 213 \n",
"amplitude of output waveform(in volts)= 12.7\n"
]
}
],
"prompt_number": 4
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example E8 - Pg 129"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Caption:Calculate Rc,Rb,and Cc\n",
"Vcc=10.#Collector voltage(in volts)\n",
"Vce=0.2#Saturated collector emitter voltage(in volts)\n",
"Ic=10.#Collector current(in mA)\n",
"Vbe=0.7#Base emitter voltage(in volts)\n",
"hfe=100.\n",
"Pw=1.#Pulse width(in ms)\n",
"Vi=4.#Input voltage(in volts)\n",
"Rc=(Vcc-Vce)*1000./Ic\n",
"Ib=Ic*1000./hfe\n",
"Rb=(Vcc-Vbe)*1000./Ib\n",
"Vb=Vi-Vbe-0.5\n",
"I=(Vcc+Vi)/Rb\n",
"Cc=I*Pw/Vb\n",
"print '%s %.f %s %.f %s %.2f' %('Rc(in ohm)=',Rc,'\\nRb(in kilo ohm)=',Rb,'\\nCc(in micro farad)=',Cc)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Rc(in ohm)= 980 \n",
"Rb(in kilo ohm)= 93 \n",
"Cc(in micro farad)= 0.05\n"
]
}
],
"prompt_number": 5
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example E9 - Pg 132"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Caption:Determine required capacitance\n",
"import math\n",
"E=4.#Input voltage(in volts)\n",
"Pw=1.#Pulse width(in ms)\n",
"Rs=1.#Source resistance(in kilo ohm)\n",
"Vce=0.2#Saturated Collector emitter voltage(in volts)\n",
"Rc=1.#Collector resistance(in kilo ohm)\n",
"Vcc=10.#Collector voltage(in volts)\n",
"hfe=100.\n",
"Vbe=0.7#Base emitter voltage(in volts)\n",
"Rb=10.#Base resistance(in kilo ohm)\n",
"Ic=(Vcc-Vce)/Rc\n",
"Ib=Ic*1000./hfe\n",
"Irb=Vbe*1000./Rb\n",
"ic=Ib+Irb\n",
"I=(E-Vbe)/Rs\n",
"C=Pw/(Rs*(math.log(I*1000./ic)))\n",
"print '%s %.2f' %('Required capacitance(in micro farad)=',C)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Required capacitance(in micro farad)= 0.34\n"
]
}
],
"prompt_number": 6
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example E10 - Pg 136"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Caption:Determine output voltage when (a)Device is cutoff (b)Device is switched on\n",
"Idf=0.25#Drain current at cutoff(in ns)\n",
"rd=40.#Drain resistance at switched on(in ohm)\n",
"Vdd=15.#Drain voltage(in volts)\n",
"Rd=6.8#Drain resistance(in kilo ohm)\n",
"Vo=Vdd-(Idf*Rd*10.**(-6))\n",
"print '%s %.f' %('Output voltage when device is cutoff(in volts)=',Vo)\n",
"Id=Vdd/Rd\n",
"Vo2=Id*rd\n",
"print '%s %.f' %('Output voltage when device is switched on(in milli volts)=',Vo2)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Output voltage when device is cutoff(in volts)= 15\n",
"Output voltage when device is switched on(in milli volts)= 88\n"
]
}
],
"prompt_number": 7
}
],
"metadata": {}
}
]
}
|