summaryrefslogtreecommitdiff
path: root/Solid_State_Pulse_Circuits/Chapter_15.ipynb
blob: ffc067f21ece71386ceed18dfee2d507ac7cf5d0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
{
 "metadata": {
  "name": "",
  "signature": "sha256:c536e76d90eae6f1eede1cdd9e694d9c8eb0678157f5d1a96e0f9e1b8f802232"
 },
 "nbformat": 3,
 "nbformat_minor": 0,
 "worksheets": [
  {
   "cells": [
    {
     "cell_type": "heading",
     "level": 1,
     "metadata": {},
     "source": [
      "Chapter 15 - Sampling, Conversion, Modulation and Multiplexing"
     ]
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example E1 - Pg 496"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Caption:Determine the errors due to Rs and Rd\n",
      "#Ex15.1\n",
      "Vs=1.#Source voltage(in volts)\n",
      "Rs=100.#Source resistance(in ohm)\n",
      "Rl=10.#Load resistance(in kilo ohm)\n",
      "Rd=30.#Drain resistance(in ohm)\n",
      "Vgs=10.#Gate source voltage(in volts)\n",
      "V1=-(Vs+Vgs+1.)\n",
      "Id=Vs/(Rs+Rd+Rl)\n",
      "e1=(Id*Rs)*100./(Vs)\n",
      "e2=(Id*Rd)*100./(Vs)\n",
      "print '%s %.2f' %('Errors due to Rs(in %)=',e1)\n",
      "print '%s %.2f' %('Errors due to Rd(in %)=',e2)\n",
      "#Calclation error in textbook"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Errors due to Rs(in %)= 71.43\n",
        "Errors due to Rd(in %)= 21.43\n"
       ]
      }
     ],
     "prompt_number": 1
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example E2 - Pg 501"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Caption:Determine capacitance and minimum acquisition time\n",
      "#Ex15.2\n",
      "Vs=1.#Supply voltage(in volts)\n",
      "a=0.25#Accuracy(in %)\n",
      "t=500.#Holding time(in micro sec)\n",
      "Ib=500.#Maximum base current(in nA)\n",
      "Rd=30.#Drain Resistance(in ohm)\n",
      "v=Vs*0.1/100.\n",
      "C=Ib*t*10.**(-9.)/v\n",
      "T=7.*C*Rd\n",
      "print '%s %.2f' %('Required capacitance(in micro farad)=',C,)\n",
      "print '%s %.1f' %('Required acquisition time(in micro sec)=',T)"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Required capacitance(in micro farad)= 0.25\n",
        "Required acquisition time(in micro sec)= 52.5\n"
       ]
      }
     ],
     "prompt_number": 2
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example E3 - Pg 502"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#Caption:Determine the error due to capacitance\n",
      "#Ex15.3\n",
      "Vgs=10.#Gate source voltage(in volts)\n",
      "C=10.5#Capacitance(in pF)\n",
      "Vs=1.#Supply voltage(in volts)\n",
      "C1=0.25#Capacitance(in micro farad)\n",
      "V1=-(Vs+Vgs+1.)\n",
      "Vgsm=Vs-(V1)\n",
      "Q=C*Vgsm\n",
      "Vo=Q/C1\n",
      "e=Vo*10.**(-6.)*100./Vs\n",
      "print '%s %.2f' %('Error due to capacitance(in %)=',e)"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Error due to capacitance(in %)= 0.05\n"
       ]
      }
     ],
     "prompt_number": 3
    },
    {
     "cell_type": "heading",
     "level": 2,
     "metadata": {},
     "source": [
      "Example E4 - Pg 505"
     ]
    },
    {
     "cell_type": "code",
     "collapsed": false,
     "input": [
      "#caption:Calculate the output voltage\n",
      "#Ex15.4\n",
      "Vie=1.#Input voltage for resistor Re(in volts)\n",
      "Vid=0#Input voltage for resistor Rd(in volts)\n",
      "Vic=1.#Input voltage for resistor Rc(in volts)\n",
      "Vib=1.#Input voltag for resistor Rb(in volts)\n",
      "Via=0#Input voltage for resistor Ra(in volts)\n",
      "R=16.#Input Resistor(in kilo ohm)\n",
      "re=1.#Resistor(in kilo ohm)\n",
      "rd=2.#Resistor(in kilo ohm)\n",
      "rc=4.#Resistor(in kilo ohm)\n",
      "rb=8.#Resistor(in kilo ohm)\n",
      "ra=16.#Resistor(in kilo ohm)\n",
      "Vo=R*((Vie/re)+(Vid/rd)+(Vic/rc)+(Vib/rb)+(Via/ra))\n",
      "print '%s %.f' %('Output voltage(in volts)=',Vo)"
     ],
     "language": "python",
     "metadata": {},
     "outputs": [
      {
       "output_type": "stream",
       "stream": "stdout",
       "text": [
        "Output voltage(in volts)= 22\n"
       ]
      }
     ],
     "prompt_number": 4
    }
   ],
   "metadata": {}
  }
 ]
}