1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
|
{
"metadata": {
"name": "",
"signature": "sha256:15f85d6f61d4b6a1042826b7462beabaf536952c7c03e1ccf7c6cc8bf5becf3e"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"Chapter 14 - Digital Counting and Measurment"
]
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example E1 - Pg 453"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Caption:Determine Resistors Rc and Rb\n",
"#Ex14.1\n",
"Vcc=5.#Collector voltage(in volts)\n",
"Vi=5.#Input voltage(in volts)\n",
"Vf=1.2#Diode forward voltage(in volts)\n",
"hfe=100.\n",
"I=20.#Diode minimum forward current(in mA)\n",
"Vce=0.2#Collector emitter saturated voltage(in volts)\n",
"Vbe=0.7#Base emitter voltage(in volts)\n",
"Rc=(Vcc-Vf-Vce)*1000./I\n",
"Ib=I*1000./hfe\n",
"Rb=(Vi-Vbe)*1000./Ib\n",
"print '%s %.f' %('Resistors are Rc(in kilo ohm) =',Rc)\n",
"print '%s %.1f' %('Resistors are Rb(in kilo ohm) =',Rb)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Resistors are Rc(in kilo ohm) = 180\n",
"Resistors are Rb(in kilo ohm) = 21.5\n"
]
}
],
"prompt_number": 1
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example E5 - Pg 475"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Caption:Determine meter indication when time base uses (a)6 decade counter (b)4 decade counter\n",
"#Ex14.5\n",
"f=3500.#Applied frequency(in hz)\n",
"F=10.**6.#Clock generator frequency(in hz)\n",
"f1=F/(10.**6.)\n",
"t1=1./f1\n",
"c1=f*t1\n",
"print '%s %.f' %('Cycles of input counted during t1=',c1)\n",
"f2=F/(10.**4.)\n",
"t2=1./f2\n",
"c2=f*t2\n",
"print '%s %.f' %('Cycles of input counted during t2=',c2)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Cycles of input counted during t1= 3500\n",
"Cycles of input counted during t2= 35\n"
]
}
],
"prompt_number": 2
},
{
"cell_type": "heading",
"level": 2,
"metadata": {},
"source": [
"Example E6 - Pg 483"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#Caption:Determine required current\n",
"#Ex14.6\n",
"c=1280.#Input wave clock cycles\n",
"f=200.#Output frequency(in khz)\n",
"p=1000.#Pulses during t2\n",
"V=1.#Input voltage(in volts)\n",
"R=10.#Resistance(in kilo ohm)\n",
"C=0.1#Capacitance(in micro farad)\n",
"I=V*1000./R\n",
"T=1000./f\n",
"t1=T*c\n",
"vo=(I*t1)/(C*1000.)\n",
"t2=T*p\n",
"Ir=C*vo*1000./t2\n",
"print '%s %.f' %('Required current(in micro ampere)=',Ir)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Required current(in micro ampere)= 128\n"
]
}
],
"prompt_number": 3
}
],
"metadata": {}
}
]
}
|